metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[di­imidazole-μ4-oxalato-μ2-oxalato-dicopper(II)]

aJinhua Professional Technical College, No. 1188 Wuzhou Street, Jinhua, Zhejiang 321007, People's Republic of China
*Correspondence e-mail: jh_ll@126.com

(Received 29 March 2011; accepted 26 April 2011; online 7 May 2011)

The title compound, [Cu2(C2O4)2(C3H4N2)2]n, was obtained as an unexpected product under hydro­thermal conditions. The CuII atom is in a Jahn–Teller-distorted octa­hedral environment formed by one imidazole N atom and five O atoms from three oxalate anions. The two independent oxalate anions are situated on centres of inversion and coordinate to the CuII atom in two different modes, viz. bidentate and monodentate. The bidentate anions bridge two CuII atoms, whereas the monodentate anions bridge four CuII atoms, leading to a layered arrangement parallel to (100). These layers are further linked into a final three-dimensional network structure via inter­molecular N—H⋯O hydrogen bonds. The title compound is isotypic with the Zn analogue.

Related literature

For background to oxalates, see: Ghosh et al. (2004[Ghosh, S. K., Savitha, G. & Bharadwaj, P. K. (2004). Inorg. Chem. 43, 5495-5497.]); Ye & Lin (2010[Ye, S.-F. & Lin, H. (2010). Acta Cryst. E66, m901-m902.]). For the isotypic Zn analogue, see: Lu et al. (2005[Lu, J., Zhao, K., Fang, Q. R., Xu, J. Q., Yu, J. H., Zhang, X., Bie, H. Y. & Wang, T. G. (2005). Cryst. Growth Des. 5, 1091-1098.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C2O4)2(C3H4N2)2]

  • Mr = 439.28

  • Monoclinic, P 21 /c

  • a = 8.3367 (4) Å

  • b = 9.3131 (5) Å

  • c = 8.4838 (5) Å

  • β = 92.352 (3)°

  • V = 658.13 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.29 mm−1

  • T = 296 K

  • 0.28 × 0.18 × 0.06 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.497, Tmax = 0.821

  • 10313 measured reflections

  • 1511 independent reflections

  • 1362 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.062

  • S = 1.09

  • 1511 reflections

  • 109 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—N1 1.9624 (18)
Cu1—O3 1.9713 (13)
Cu1—O2i 1.9960 (14)
Cu1—O1 2.0016 (13)
Cu1—O4 2.3536 (14)
Cu1—O4ii 2.512 (1)
Symmetry codes: (i) -x-2, -y, -z; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O2iii 0.86 2.00 2.841 (2) 167
Symmetry code: (iii) -x-1, -y, -z.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Oxalates can represent one of the end-products of the degradation of some organic ligands, under both oxidative and non-oxidative conditions (Ghosh et al., 2004). For example, we reported an oxalate compound with a three-dimensional structure, which was constructed by decomposition of 2-carboxymethylsulfanyl nicotinic acid (Ye et al., 2010). Herein, we report a new polymeric oxalate compound, Cu2(C2O4)2(C3N2H4)2, (I), which is isotypic with Zn2(C2O4)2(C3N2H4)2 (Lu et al., 2005).

A view on the molecular structure of compound (I) is given in Fig. 1. The CuII atoms are each in a Jahn-Teller distorted coordination by one nitrogen atom from imidazole and five oxygen atoms from three oxalate groups. The oxalate anions adopt two different coordination modes: one adopts a chelate bis-bidentate linkage, the other adopts a chelate and bridging bis-bidentate linkage (Fig. 1). As shown in Fig. 2, the oxalate anions connect the CuII atoms into a two dimensional layer along the bc plane, and are further linked into a three-dimensional network structure by N—H···O hydrogen bonds (Fig. 3).

Related literature top

For background to oxalates, see: Ghosh et al. (2004); Ye et al. (2010). For the isotypic Zn analogue, see: Lu et al. (2005).

Experimental top

A mixture of 2-carboxymethylsulfanyl nicotinic acid (0.086 g, 0.40 mmol), CuCl2.2H2O (0.068 g, 0.40 mmol), and imidazole (0.054 g, 0.80 mmol) in CH3CH2OH (2 ml)/H2O (16 ml) was placed in a 25 ml Teflon-lined stainless steel reactor and heated at 383 K for 24 h, and then cooled to room temperature over a period of 24 h. Green crystals suitable for X-ray analysis were obtained.

Refinement top

The H-atoms were positioned geometrically and included in the refinement using a riding model [C—H 0.93Å and Uiso(H) = 1.2Ueq(C); N—H 0.86 Å; and Uiso(H) = 1.2Ueq(N)].

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Part of the structure of Cu2(C2O4)2(C3N2H4)2. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The two-dimensional layer constructed by bridging oxalate anions. Imidazole ligands are omitted for clarity.
[Figure 3] Fig. 3. The three-dimensional network in Cu2(C2O4)2(C3N2H4)2. The N—H···O hydrogen bond interactions are depicted by dashed lines.
Poly[diimidazole-µ4-oxalato-µ2-oxalato-dicopper(II)] top
Crystal data top
[Cu2(C2O4)2(C3H4N2)2]F(000) = 436
Mr = 439.28Dx = 2.217 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4365 reflections
a = 8.3367 (4) Åθ = 2.5–27.6°
b = 9.3131 (5) ŵ = 3.29 mm1
c = 8.4838 (5) ÅT = 296 K
β = 92.352 (3)°Block, green
V = 658.13 (6) Å30.28 × 0.18 × 0.06 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
1511 independent reflections
Radiation source: fine-focus sealed tube1362 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω scansθmax = 27.6°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 109
Tmin = 0.497, Tmax = 0.821k = 1212
10313 measured reflectionsl = 1110
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.062H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0335P)2 + 0.3353P]
where P = (Fo2 + 2Fc2)/3
1511 reflections(Δ/σ)max = 0.001
109 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
[Cu2(C2O4)2(C3H4N2)2]V = 658.13 (6) Å3
Mr = 439.28Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.3367 (4) ŵ = 3.29 mm1
b = 9.3131 (5) ÅT = 296 K
c = 8.4838 (5) Å0.28 × 0.18 × 0.06 mm
β = 92.352 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
1511 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1362 reflections with I > 2σ(I)
Tmin = 0.497, Tmax = 0.821Rint = 0.028
10313 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.062H-atom parameters constrained
S = 1.09Δρmax = 0.49 e Å3
1511 reflectionsΔρmin = 0.42 e Å3
109 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.87721 (3)0.23821 (2)0.10302 (3)0.02435 (10)
O10.80090 (16)0.04677 (14)0.02324 (17)0.0263 (3)
O20.90639 (16)0.15701 (14)0.06412 (17)0.0265 (3)
O30.97708 (18)0.41685 (14)0.18398 (16)0.0277 (3)
O40.91189 (18)0.37282 (15)0.12789 (17)0.0296 (3)
N10.6552 (2)0.30160 (19)0.1281 (2)0.0294 (4)
N20.3925 (2)0.2996 (3)0.1154 (3)0.0450 (5)
H2A0.29560.27040.09750.054*
C10.9154 (2)0.03131 (19)0.0114 (2)0.0214 (4)
C21.0193 (2)0.51365 (19)0.0895 (2)0.0225 (4)
C30.5993 (3)0.4276 (3)0.1902 (3)0.0411 (5)
H3A0.66310.50190.23050.049*
C40.4374 (3)0.4264 (3)0.1836 (3)0.0483 (6)
H4A0.36990.49810.21860.058*
C50.5252 (3)0.2292 (2)0.0814 (3)0.0400 (6)
H5A0.52660.14040.03130.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02007 (15)0.01856 (14)0.03460 (17)0.00096 (8)0.00343 (10)0.00411 (9)
O10.0212 (7)0.0228 (6)0.0351 (8)0.0002 (5)0.0017 (6)0.0042 (6)
O20.0215 (7)0.0203 (6)0.0377 (8)0.0020 (5)0.0023 (6)0.0040 (5)
O30.0356 (8)0.0206 (6)0.0269 (7)0.0042 (5)0.0015 (6)0.0004 (5)
O40.0369 (8)0.0235 (7)0.0284 (7)0.0072 (6)0.0001 (6)0.0016 (5)
N10.0244 (8)0.0261 (8)0.0379 (10)0.0009 (7)0.0034 (7)0.0014 (7)
N20.0216 (10)0.0462 (12)0.0670 (15)0.0008 (8)0.0001 (9)0.0017 (10)
C10.0204 (9)0.0217 (8)0.0222 (9)0.0022 (7)0.0013 (7)0.0013 (7)
C20.0224 (9)0.0214 (8)0.0238 (10)0.0019 (7)0.0008 (7)0.0019 (7)
C30.0339 (12)0.0401 (12)0.0490 (14)0.0052 (10)0.0025 (10)0.0143 (10)
C40.0334 (12)0.0551 (15)0.0561 (16)0.0138 (11)0.0001 (11)0.0164 (13)
C50.0272 (12)0.0303 (11)0.0624 (16)0.0021 (8)0.0015 (11)0.0043 (10)
Geometric parameters (Å, º) top
Cu1—N11.9624 (18)N1—C31.375 (3)
Cu1—O31.9713 (13)N2—C51.328 (3)
Cu1—O2i1.9960 (14)N2—C41.361 (3)
Cu1—O12.0016 (13)N2—H2A0.8600
Cu1—O42.3536 (14)C1—C1i1.532 (4)
Cu1—O4ii2.512 (1)C2—O4iii1.240 (2)
O1—C11.245 (2)C2—C2iii1.560 (4)
O2—C11.254 (2)C3—C41.348 (3)
O2—Cu1i1.9960 (14)C3—H3A0.9300
O3—C21.266 (2)C4—H4A0.9300
O4—C2iii1.240 (2)C5—H5A0.9300
N1—C51.323 (3)
N1—Cu1—O395.45 (7)C3—N1—Cu1129.37 (16)
N1—Cu1—O2i174.07 (6)C5—N2—C4107.7 (2)
O3—Cu1—O2i90.33 (6)C5—N2—H2A126.2
N1—Cu1—O190.95 (6)C4—N2—H2A126.2
O3—Cu1—O1173.43 (6)O1—C1—O2126.46 (17)
O2i—Cu1—O183.31 (5)O1—C1—C1i117.3 (2)
N1—Cu1—O494.51 (7)O2—C1—C1i116.2 (2)
O3—Cu1—O477.05 (5)O4iii—C2—O3125.35 (17)
O2i—Cu1—O485.50 (6)O4iii—C2—C2iii118.0 (2)
O1—Cu1—O4103.96 (5)O3—C2—C2iii116.7 (2)
O1—Cu1—O4ii87.92 (5)C4—C3—N1109.4 (2)
O4—Cu1—O4ii164.20 (6)C4—C3—H3A125.3
O3—Cu1—O4ii89.98 (5)N1—C3—H3A125.3
N1—Cu1—O4ii95.69 (6)C3—C4—N2106.4 (2)
C1—O1—Cu1111.35 (12)C3—C4—H4A126.8
C1—O2—Cu1i111.80 (12)N2—C4—H4A126.8
C2—O3—Cu1120.32 (12)N1—C5—N2111.3 (2)
C2iii—O4—Cu1107.87 (12)N1—C5—H5A124.4
C5—N1—C3105.23 (19)N2—C5—H5A124.4
C5—N1—Cu1125.38 (16)
N1—Cu1—O1—C1178.87 (13)O2i—Cu1—N1—C3170.1 (6)
O3—Cu1—O1—C114.0 (6)O1—Cu1—N1—C3175.6 (2)
O2i—Cu1—O1—C10.34 (13)O4—Cu1—N1—C380.3 (2)
O4—Cu1—O1—C183.99 (13)Cu1—O1—C1—O2179.88 (16)
N1—Cu1—O3—C296.29 (15)Cu1—O1—C1—C1i0.4 (3)
O2i—Cu1—O3—C282.40 (15)Cu1i—O2—C1—O1179.67 (16)
O1—Cu1—O3—C296.7 (5)Cu1i—O2—C1—C1i0.0 (2)
O4—Cu1—O3—C22.90 (14)Cu1—O3—C2—O4iii177.21 (15)
N1—Cu1—O4—C2iii97.23 (13)Cu1—O3—C2—C2iii2.8 (3)
O3—Cu1—O4—C2iii2.66 (13)C5—N1—C3—C41.7 (3)
O2i—Cu1—O4—C2iii88.72 (13)Cu1—N1—C3—C4179.68 (18)
O1—Cu1—O4—C2iii170.67 (12)N1—C3—C4—N20.6 (3)
O3—Cu1—N1—C5174.7 (2)C5—N2—C4—C30.7 (3)
O2i—Cu1—N1—C57.6 (8)C3—N1—C5—N22.1 (3)
O1—Cu1—N1—C56.7 (2)Cu1—N1—C5—N2179.75 (17)
O4—Cu1—N1—C597.3 (2)C4—N2—C5—N11.8 (3)
O3—Cu1—N1—C32.9 (2)
Symmetry codes: (i) x2, y, z; (ii) x, y+1/2, z1/2; (iii) x2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2iv0.862.002.841 (2)167
Symmetry code: (iv) x1, y, z.

Experimental details

Crystal data
Chemical formula[Cu2(C2O4)2(C3H4N2)2]
Mr439.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)8.3367 (4), 9.3131 (5), 8.4838 (5)
β (°) 92.352 (3)
V3)658.13 (6)
Z2
Radiation typeMo Kα
µ (mm1)3.29
Crystal size (mm)0.28 × 0.18 × 0.06
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.497, 0.821
No. of measured, independent and
observed [I > 2σ(I)] reflections
10313, 1511, 1362
Rint0.028
(sin θ/λ)max1)0.653
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.062, 1.09
No. of reflections1511
No. of parameters109
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.42

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—N11.9624 (18)Cu1—O12.0016 (13)
Cu1—O31.9713 (13)Cu1—O42.3536 (14)
Cu1—O2i1.9960 (14)Cu1—O4ii2.512 (1)
Symmetry codes: (i) x2, y, z; (ii) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2iii0.862.002.841 (2)167
Symmetry code: (iii) x1, y, z.
 

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGhosh, S. K., Savitha, G. & Bharadwaj, P. K. (2004). Inorg. Chem. 43, 5495–5497.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLu, J., Zhao, K., Fang, Q. R., Xu, J. Q., Yu, J. H., Zhang, X., Bie, H. Y. & Wang, T. G. (2005). Cryst. Growth Des. 5, 1091–1098.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYe, S.-F. & Lin, H. (2010). Acta Cryst. E66, m901–m902.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds