metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages m455-m456

Bis(2-amino-6-methyl­pyridinium) trans-di­aqua­bis­­(pyrazine-2,3-di­carboxyl­ato)cuprate(II) hexa­hydrate

aDepartment of Chemistry, School of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran, and bFaculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
*Correspondence e-mail: mirzaeesh@ferdowsi.um.ac.ir

(Received 21 February 2011; accepted 9 March 2011; online 15 March 2011)

The title compound, (C6H9N2)2[Cu(C6H2N2O4)2(H2O)2]·6H2O, was obtained by the reaction of CuCl2·2H2O with pyrazine-2,3-dicarb­oxy­lic acid (pyzdcH2) and 2-amino-6-methyl­pyridine (2a-6mpy) in aqueous solution. The CuII atom is located on an inversion centre and has an overall octa­hedral coordination environment. Two N and two O atoms from (pyzdc)2− ligands define the equatorial plane and two water mol­ecules are in axial positions, resulting in a typical tetra­gonally Jahn–Teller-distorted environment. Extensive classical O—H⋯O, O—H⋯N and N—H⋯O and non-classical C—H⋯O hydrogen bonds, as well as ππ stacking inter­actions between aromatic rings of the cations [centroid–centroid distance = 3.58 (9) Å], lead to the formation of a three-dimensional supra­molecular structure.

Related literature

For background to this class of compounds, see: Aghabozorg et al. (2008[Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184-227.], 2010[Aghabozorg, H., Eshtiagh-Hosseini, H., Salimi, A. R. & Mirzaei, M. (2010). J. Iran. Chem. Soc. 7, 289-300.]). For related structures, see: Eshtiagh-Hosseini et al. (2010a[Eshtiagh-Hosseini, H., Aghabozorg, H. & Mirzaei, M. (2010a). Acta Cryst. E66, m882.],b[Eshtiagh-Hosseini, H., Gschwind, F., Alfi, N. & Mirzaei, M. (2010b). Acta Cryst. E66, m826-m827.],c[Eshtiagh-Hosseini, H., Necas, M., Alfi, N. & Mirzaei, M. (2010c). Acta Cryst. E66, m1320-m1321.], 2011[Eshtiagh-Hosseini, H., Alfi, N., Mirzaei, M. & Fanwick, P. E. (2011). Acta Cryst. E67, m266-m267.]); Che et al. (2009[Che, T. L., Gao, Q. C., Zhang, W. P., Nan, Z. X., Li, H. X., Cai, Y. G. & Zhao, J. S. (2009). Russ. J. Coord. Chem.35, 723-730.]).

[Scheme 1]

Experimental

Crystal data
  • (C6H9N2)2[Cu(C6H2N2O4)2(H2O)2]·6H2O

  • Mr = 758.16

  • Triclinic, [P \overline 1]

  • a = 6.7353 (3) Å

  • b = 8.0757 (4) Å

  • c = 15.0170 (6) Å

  • α = 79.450 (4)°

  • β = 86.320 (4)°

  • γ = 89.828 (4)°

  • V = 801.31 (6) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.77 mm−1

  • T = 100 K

  • 0.20 × 0.18 × 0.18 mm

Data collection
  • Oxford Diffraction KM-4-CCD diffractometer

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2010)[Oxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.] Tmin = 0.845, Tmax = 0.910

  • 7090 measured reflections

  • 3758 independent reflections

  • 3230 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.082

  • S = 1.09

  • 3758 reflections

  • 224 parameters

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O1 1.9522 (10)
Cu1—N1 1.9882 (13)
Cu1—O1W 2.4484 (13)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯O5Wi 0.83 1.97 2.7841 (17) 166
O1W—H2W⋯O6Wii 0.85 2.18 3.0199 (17) 172
O5W—H5W⋯O6W 0.82 2.05 2.8640 (17) 173
O5W—H6W⋯O7Wiii 0.82 1.96 2.7839 (16) 175
O6W—H7W⋯N2 0.80 2.19 2.9688 (17) 162
O6W—H8W⋯O4iv 0.82 1.99 2.7921 (16) 168
O7W—H9W⋯O2iv 0.78 1.97 2.7559 (15) 177
O7W—H10W⋯O3 0.86 1.87 2.7221 (16) 176
N11—H11⋯O4 0.80 1.95 2.7522 (16) 175
N12—H12B⋯O3 0.80 2.06 2.8623 (17) 172
N12—H12C⋯O7Wv 0.85 2.05 2.9014 (17) 178
C5—H5⋯O1Wiv 0.95 2.53 3.3206 (19) 141
C6—H6⋯O5Wii 0.95 2.38 3.2485 (19) 151
C13—H13⋯O2vi 0.95 2.53 3.4081 (19) 153
C16—H16B⋯O2iii 0.98 2.58 3.2419 (19) 125
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+1, -z+1; (iii) x, y-1, z; (iv) x+1, y, z; (v) -x+1, -y+2, -z; (vi) -x, -y+1, -z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2010)[Oxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]; cell refinement: CrysAlis RED (Oxford Diffraction, 2010)[Oxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]; data reduction: CrysAlis RED[Oxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In recent years, supramolecular complexes have attracted extensive attention owing to their potential applications. In this context, our research group has made several attempts to prepare supramolecular crystalline coordination compounds based on proton–transfer mechanism between dicarboxylic acids and amines (Eshtiagh-Hosseini, et al., 2010a, 2010b, 2010c, 2011). Proton transfer mechanisms play a basic role in construction of supramolecular coordination compounds and water clusters (Aghabozorg et al., 2008, 2010). In particular, pyrazine-2,3-dicarboxylic acid provides different modes of coordination to the metal ions (Che et al., 2009). Therefore, the anion of this acid is well-know to act as a suitable ligand, especially in the design and construction of supramolecular networks. Herein, we describe the molecular and supramolecular crystal structure of a new compound, 1, with chemical formula (2a-6mpyH)2[Cu(pyzdc)2(H2O)2].6H2O, where pyzdcH2= pyrazine-2,3-dicarboxylic acid and 2a-6mpy = 2-amino-6-methylpyridine.

Fig. 1 shows the coordination environment of the CuII ion (site symmetry 1). The coordination sphere can be described as distorted octahedral, with two N and two O atoms from (pyzdc)2- ligands defining the equatorial plane and two water molecules in axial positions. The Jahn-Teller effect, as observed for numerous CuII complexes, results in the elongation of the two axial Cu—O bonds towards a strong tetragonal distortion. The molecular entities of 1 consist of a [Cu(pyzdc)2(H2O)2]2- anion, a (2a-6mpyH)+ cation and uncoordinated water molecules in a 1:2:6 molar ratio.

For the three–dimensional supramolecular structural set-up, extensive X—H···O (X = O, N, and C) and O—H···N hydrogen bonding interactions as well as ππ stacking interactions between aromatic rings of the cations with a centroid—centroid distance of 3.589 Å are responsible (Fig. 2).

Related literature top

For background to this class of compounds, see: Aghabozorg et al. (2008, 2010). For related structures, see: Eshtiagh-Hosseini, et al. (2010a,b,c, 2011); Che et al. (2009).

Experimental top

A solution of pyzdcH2 (0.6 mmol, 0.1 g) and 2a-6mpy (1.2 mmol, 0.13 g) in water (10 ml) was refluxed for 1 h, then a solution of CuCl2.2H2O (0.2 mmol, 0.01 g) was added dropwise and refluxing was continued for 6 h at 343 K. The obtained blue solution yielded blue block-like crystals of the title compound after slow evaporation of the solvent at room temperature.

Refinement top

The H atoms were generated geometrically and refined using a riding model, with C—H = 0.95–0.98 Å and Uiso(H) = 1.2, 1.5 Ueq(C). H atoms bonded to water molecules and nitrogen atoms were found from difference maps and than fixed. They were finally refined in the riding model approximation with riding model, with Uiso(H) = 1.2Ueq(N) and 1.5Ueq(O).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2010); cell refinement: CrysAlis RED (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code a): -x, -y+2, -z+1.]
[Figure 2] Fig. 2. The packing diagram of the title compound, showing the supramolecular structure. The intermolecular C—H···O, N—H···O, O—H···O, and O—H···N hydrogen bonds are shown as dashed lines.
Bis(2-amino-6-methylpyridinium) trans-diaquabis(pyrazine-2,3-dicarboxylato)cuprate(II) hexahydrate top
Crystal data top
(C6H9N2)2[Cu(C6H2N2O4)2(H2O)2]·6H2OZ = 1
Mr = 758.16F(000) = 395
Triclinic, P1Dx = 1.571 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.7353 (3) ÅCell parameters from 3230 reflections
b = 8.0757 (4) Åθ = 3.0–28.6°
c = 15.0170 (6) ŵ = 0.77 mm1
α = 79.450 (4)°T = 100 K
β = 86.320 (4)°Block, blue
γ = 89.828 (4)°0.20 × 0.18 × 0.18 mm
V = 801.31 (6) Å3
Data collection top
Oxford Diffraction KM-4-CCD
diffractometer
3758 independent reflections
Radiation source: fine-focus sealed tube3230 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ω scansθmax = 28.6°, θmin = 3.0°
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2010)
h = 88
Tmin = 0.845, Tmax = 0.910k = 1010
7090 measured reflectionsl = 1820
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0454P)2 + 0.2055P]
where P = (Fo2 + 2Fc2)/3
3758 reflections(Δ/σ)max < 0.001
224 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
(C6H9N2)2[Cu(C6H2N2O4)2(H2O)2]·6H2Oγ = 89.828 (4)°
Mr = 758.16V = 801.31 (6) Å3
Triclinic, P1Z = 1
a = 6.7353 (3) ÅMo Kα radiation
b = 8.0757 (4) ŵ = 0.77 mm1
c = 15.0170 (6) ÅT = 100 K
α = 79.450 (4)°0.20 × 0.18 × 0.18 mm
β = 86.320 (4)°
Data collection top
Oxford Diffraction KM-4-CCD
diffractometer
3758 independent reflections
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2010)
3230 reflections with I > 2σ(I)
Tmin = 0.845, Tmax = 0.910Rint = 0.015
7090 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 1.09Δρmax = 0.55 e Å3
3758 reflectionsΔρmin = 0.21 e Å3
224 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The X-ray data were collected at 100 K using a KM4-CCD diffractometer and graphite-monochromated MoKalpha radiation generated from Oxford Diffraction X-ray tube operated at 50 kV and 25 mA. The obtained images were indexed, integrated, and scaled using the Oxford Diffraction data reduction package. The structure was solved by direct methods using SHELXS97 and refined by the full?matrix least-squares method on all F2 data. The data were corrected for absorption [CrysAlis], min/max absorption coefficients for 1 are (0.845/0.910).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.00001.00000.50000.01475 (9)
O10.13388 (16)0.97838 (14)0.39113 (7)0.0154 (2)
O20.10153 (16)0.85683 (14)0.26828 (7)0.0142 (2)
O30.32384 (16)0.80385 (14)0.16138 (7)0.0153 (2)
O40.16155 (16)0.56417 (14)0.22248 (7)0.0149 (2)
N10.20923 (19)0.86576 (16)0.44718 (8)0.0128 (3)
N20.46299 (19)0.67808 (16)0.35325 (9)0.0139 (3)
C10.0421 (2)0.89169 (18)0.33887 (10)0.0116 (3)
C20.1593 (2)0.82665 (18)0.36827 (10)0.0115 (3)
C30.2884 (2)0.73410 (18)0.32044 (10)0.0119 (3)
C40.2508 (2)0.69782 (19)0.22677 (10)0.0127 (3)
C50.5068 (2)0.7161 (2)0.43260 (10)0.0155 (3)
H50.62780.67620.45770.019*
C60.3820 (2)0.8123 (2)0.48003 (10)0.0150 (3)
H60.41970.83960.53550.018*
O1W0.14082 (18)0.72777 (16)0.57622 (8)0.0229 (3)
H1W0.23000.73210.61660.034*
H2W0.04430.67160.59950.034*
N110.21766 (18)0.46151 (16)0.05780 (8)0.0118 (2)
H110.20530.49600.10470.014*
C110.2788 (2)0.56690 (19)0.02005 (10)0.0123 (3)
C120.2921 (2)0.5011 (2)0.10119 (10)0.0151 (3)
H12A0.33490.57090.15710.018*
C130.2428 (2)0.3360 (2)0.09838 (11)0.0179 (3)
H130.24890.29210.15300.021*
C140.1833 (2)0.2305 (2)0.01580 (11)0.0173 (3)
H140.15160.11540.01430.021*
C150.1715 (2)0.29512 (19)0.06241 (11)0.0143 (3)
C160.1078 (2)0.1984 (2)0.15434 (11)0.0175 (3)
H16A0.20400.21700.19780.026*
H16B0.10130.07800.15200.026*
H16C0.02370.23650.17350.026*
N120.32229 (19)0.72626 (16)0.01707 (9)0.0145 (3)
H12B0.31870.75750.03090.017*
H12C0.35040.79440.06650.017*
O5W0.48141 (18)0.24042 (15)0.31316 (8)0.0221 (3)
H5W0.58110.29660.31510.033*
H6W0.50900.17740.27710.033*
O6W0.80815 (17)0.46006 (14)0.32461 (8)0.0193 (2)
H7W0.73330.53560.32980.029*
H8W0.90460.50410.29350.029*
O7W0.59226 (16)1.03986 (14)0.18630 (7)0.0168 (2)
H9W0.67930.99040.21090.025*
H10W0.50950.96220.18110.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01330 (14)0.02161 (16)0.01211 (14)0.00441 (10)0.00247 (10)0.00986 (10)
O10.0136 (5)0.0207 (6)0.0143 (5)0.0036 (4)0.0020 (4)0.0092 (4)
O20.0148 (5)0.0174 (5)0.0123 (5)0.0007 (4)0.0031 (4)0.0066 (4)
O30.0180 (5)0.0170 (5)0.0116 (5)0.0023 (4)0.0010 (4)0.0051 (4)
O40.0158 (5)0.0153 (5)0.0150 (5)0.0024 (4)0.0004 (4)0.0070 (4)
N10.0137 (6)0.0145 (6)0.0108 (6)0.0004 (5)0.0001 (5)0.0041 (5)
N20.0119 (6)0.0156 (6)0.0147 (6)0.0005 (5)0.0002 (5)0.0042 (5)
C10.0114 (7)0.0117 (7)0.0118 (7)0.0008 (5)0.0000 (5)0.0023 (5)
C20.0123 (7)0.0128 (7)0.0098 (6)0.0018 (6)0.0007 (5)0.0032 (5)
C30.0121 (7)0.0119 (7)0.0118 (7)0.0028 (5)0.0004 (5)0.0028 (5)
C40.0090 (6)0.0169 (7)0.0138 (7)0.0031 (6)0.0004 (5)0.0073 (6)
C50.0129 (7)0.0177 (7)0.0159 (7)0.0008 (6)0.0026 (6)0.0030 (6)
C60.0152 (7)0.0183 (8)0.0124 (7)0.0014 (6)0.0032 (6)0.0040 (6)
O1W0.0195 (6)0.0287 (7)0.0193 (6)0.0008 (5)0.0010 (5)0.0013 (5)
N110.0120 (6)0.0141 (6)0.0105 (6)0.0002 (5)0.0007 (5)0.0054 (5)
C110.0080 (6)0.0157 (7)0.0140 (7)0.0014 (5)0.0022 (5)0.0044 (6)
C120.0130 (7)0.0216 (8)0.0116 (7)0.0028 (6)0.0008 (5)0.0049 (6)
C130.0145 (7)0.0238 (8)0.0186 (8)0.0045 (6)0.0039 (6)0.0116 (6)
C140.0149 (7)0.0145 (7)0.0248 (8)0.0008 (6)0.0029 (6)0.0090 (6)
C150.0090 (6)0.0146 (7)0.0197 (7)0.0010 (5)0.0020 (6)0.0040 (6)
C160.0169 (7)0.0153 (7)0.0196 (8)0.0002 (6)0.0004 (6)0.0010 (6)
N120.0174 (6)0.0156 (6)0.0108 (6)0.0014 (5)0.0007 (5)0.0036 (5)
O5W0.0189 (6)0.0273 (6)0.0227 (6)0.0005 (5)0.0024 (5)0.0110 (5)
O6W0.0181 (6)0.0179 (6)0.0211 (6)0.0005 (5)0.0031 (5)0.0031 (5)
O7W0.0151 (5)0.0160 (5)0.0196 (6)0.0008 (4)0.0055 (4)0.0024 (4)
Geometric parameters (Å, º) top
Cu1—O1i1.9522 (10)N11—C111.3553 (19)
Cu1—O11.9522 (10)N11—C151.3685 (19)
Cu1—N1i1.9881 (13)N11—H110.8021
Cu1—N11.9882 (13)C11—N121.3301 (19)
Cu1—O1W2.4484 (13)C11—C121.413 (2)
Cu1—O1W2.4483 (12)C12—C131.367 (2)
Cu1—O1Wi2.4483 (12)C12—H12A0.9500
O1—C11.2745 (18)C13—C141.406 (2)
O2—C11.2360 (17)C13—H130.9500
O3—C41.2540 (19)C14—C151.367 (2)
O4—C41.2508 (18)C14—H140.9500
N1—C61.333 (2)C15—C161.494 (2)
N1—C21.3438 (18)C16—H16A0.9800
N2—C51.3347 (19)C16—H16B0.9800
N2—C31.349 (2)C16—H16C0.9800
C1—C21.516 (2)N12—H12B0.8045
C2—C31.394 (2)N12—H12C0.8505
C3—C41.525 (2)O5W—H5W0.8163
C5—C61.392 (2)O5W—H6W0.8210
C5—H50.9500O6W—H7W0.8018
C6—H60.9500O6W—H8W0.8180
O1W—H1W0.8314O7W—H9W0.7824
O1W—H2W0.8488O7W—H10W0.8577
O1i—Cu1—O1179.999 (1)N1—C6—C5119.66 (14)
O1i—Cu1—N1i83.11 (5)N1—C6—H6120.2
O1—Cu1—N1i96.89 (5)C5—C6—H6120.2
O1i—Cu1—N196.89 (5)H1W—O1W—H2W109.0
O1—Cu1—N183.11 (5)C11—N11—C15123.79 (13)
N1i—Cu1—N1180.000 (2)C11—N11—H11120.1
O1i—Cu1—O1W90.35 (4)C15—N11—H11116.1
O1—Cu1—O1W89.65 (4)N12—C11—N11119.09 (13)
N1i—Cu1—O1W94.44 (5)N12—C11—C12123.08 (14)
N1—Cu1—O1W85.56 (5)N11—C11—C12117.82 (13)
O1i—Cu1—O1Wi89.65 (4)C13—C12—C11119.33 (14)
O1—Cu1—O1Wi90.35 (4)C13—C12—H12A120.3
N1i—Cu1—O1Wi85.56 (5)C11—C12—H12A120.3
N1—Cu1—O1Wi94.44 (5)C12—C13—C14120.91 (15)
O1W—Cu1—O1Wi180.0C12—C13—H13119.5
C1—O1—Cu1115.34 (9)C14—C13—H13119.5
C6—N1—C2119.22 (13)C15—C14—C13119.33 (14)
C6—N1—Cu1128.82 (10)C15—C14—H14120.3
C2—N1—Cu1111.95 (10)C13—C14—H14120.3
C5—N2—C3117.26 (13)C14—C15—N11118.80 (14)
O2—C1—O1126.48 (14)C14—C15—C16125.00 (14)
O2—C1—C2118.29 (13)N11—C15—C16116.19 (13)
O1—C1—C2115.23 (12)C15—C16—H16A109.5
N1—C2—C3120.38 (14)C15—C16—H16B109.5
N1—C2—C1114.31 (13)H16A—C16—H16B109.5
C3—C2—C1125.31 (13)C15—C16—H16C109.5
N2—C3—C2121.00 (13)H16A—C16—H16C109.5
N2—C3—C4115.44 (13)H16B—C16—H16C109.5
C2—C3—C4123.47 (13)C11—N12—H12B120.0
O4—C4—O3126.82 (14)C11—N12—H12C119.0
O4—C4—C3118.06 (13)H12B—N12—H12C121.0
O3—C4—C3115.00 (13)H5W—O5W—H6W106.8
N2—C5—C6122.45 (14)H7W—O6W—H8W105.5
N2—C5—H5118.8H9W—O7W—H10W103.7
C6—C5—H5118.8
N1i—Cu1—O1—C1178.18 (10)N1—C2—C3—C4174.52 (13)
N1—Cu1—O1—C11.82 (10)C1—C2—C3—C45.3 (2)
O1i—Cu1—N1—C60.11 (14)N2—C3—C4—O491.19 (16)
O1—Cu1—N1—C6179.90 (14)C2—C3—C4—O492.28 (18)
O1i—Cu1—N1—C2179.37 (10)N2—C3—C4—O385.16 (17)
O1—Cu1—N1—C20.63 (10)C2—C3—C4—O391.36 (17)
Cu1—O1—C1—O2177.40 (12)C3—N2—C5—C61.2 (2)
Cu1—O1—C1—C22.51 (16)C2—N1—C6—C50.4 (2)
C6—N1—C2—C31.3 (2)Cu1—N1—C6—C5178.80 (11)
Cu1—N1—C2—C3179.36 (11)N2—C5—C6—N11.8 (2)
C6—N1—C2—C1178.89 (13)C15—N11—C11—N12179.23 (13)
Cu1—N1—C2—C10.45 (15)C15—N11—C11—C121.1 (2)
O2—C1—C2—N1177.94 (13)N12—C11—C12—C13179.40 (15)
O1—C1—C2—N11.98 (19)N11—C11—C12—C130.2 (2)
O2—C1—C2—C32.3 (2)C11—C12—C13—C141.3 (2)
O1—C1—C2—C3177.83 (13)C12—C13—C14—C151.1 (2)
C5—N2—C3—C20.5 (2)C13—C14—C15—N110.2 (2)
C5—N2—C3—C4176.09 (13)C13—C14—C15—C16179.08 (14)
N1—C2—C3—N21.8 (2)C11—N11—C15—C141.3 (2)
C1—C2—C3—N2178.38 (13)C11—N11—C15—C16179.68 (13)
Symmetry code: (i) x, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O5Wii0.831.972.7841 (17)166
O1W—H2W···O6Wiii0.852.183.0199 (17)172
O5W—H5W···O6W0.822.052.8640 (17)173
O5W—H6W···O7Wiv0.821.962.7839 (16)175
O6W—H7W···N20.802.192.9688 (17)162
O6W—H8W···O4v0.821.992.7921 (16)168
O7W—H9W···O2v0.781.972.7559 (15)177
O7W—H10W···O30.861.872.7221 (16)176
N11—H11···O40.801.952.7522 (16)175
N12—H12B···O30.802.062.8623 (17)172
N12—H12C···O7Wvi0.852.052.9014 (17)178
C5—H5···O1Wv0.952.533.3206 (19)141
C6—H6···O5Wiii0.952.383.2485 (19)151
C13—H13···O2vii0.952.533.4081 (19)153
C16—H16B···O2iv0.982.583.2419 (19)125
Symmetry codes: (ii) x, y+1, z+1; (iii) x+1, y+1, z+1; (iv) x, y1, z; (v) x+1, y, z; (vi) x+1, y+2, z; (vii) x, y+1, z.

Experimental details

Crystal data
Chemical formula(C6H9N2)2[Cu(C6H2N2O4)2(H2O)2]·6H2O
Mr758.16
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)6.7353 (3), 8.0757 (4), 15.0170 (6)
α, β, γ (°)79.450 (4), 86.320 (4), 89.828 (4)
V3)801.31 (6)
Z1
Radiation typeMo Kα
µ (mm1)0.77
Crystal size (mm)0.20 × 0.18 × 0.18
Data collection
DiffractometerOxford Diffraction KM-4-CCD
diffractometer
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2010)
Tmin, Tmax0.845, 0.910
No. of measured, independent and
observed [I > 2σ(I)] reflections
7090, 3758, 3230
Rint0.015
(sin θ/λ)max1)0.674
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.082, 1.09
No. of reflections3758
No. of parameters224
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.55, 0.21

Computer programs: CrysAlis CCD (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005).

Selected bond lengths (Å) top
Cu1—O11.9522 (10)Cu1—O1W2.4484 (13)
Cu1—N11.9882 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O5Wi0.831.972.7841 (17)166
O1W—H2W···O6Wii0.852.183.0199 (17)172
O5W—H5W···O6W0.822.052.8640 (17)173
O5W—H6W···O7Wiii0.821.962.7839 (16)175
O6W—H7W···N20.802.192.9688 (17)162
O6W—H8W···O4iv0.821.992.7921 (16)168
O7W—H9W···O2iv0.781.972.7559 (15)177
O7W—H10W···O30.861.872.7221 (16)176
N11—H11···O40.801.952.7522 (16)175
N12—H12B···O30.802.062.8623 (17)172
N12—H12C···O7Wv0.852.052.9014 (17)178
C5—H5···O1Wiv0.952.533.3206 (19)141
C6—H6···O5Wii0.952.383.2485 (19)151
C13—H13···O2vi0.952.533.4081 (19)153
C16—H16B···O2iii0.982.583.2419 (19)125
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x, y1, z; (iv) x+1, y, z; (v) x+1, y+2, z; (vi) x, y+1, z.
 

Acknowledgements

The Ferdowsi University of Mashhad is gratefully acknowledged for financial support.

References

First citationAghabozorg, H., Eshtiagh-Hosseini, H., Salimi, A. R. & Mirzaei, M. (2010). J. Iran. Chem. Soc. 7, 289–300.  CrossRef CAS Google Scholar
First citationAghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184–227.  CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChe, T. L., Gao, Q. C., Zhang, W. P., Nan, Z. X., Li, H. X., Cai, Y. G. & Zhao, J. S. (2009). Russ. J. Coord. Chem.35, 723–730.  Google Scholar
First citationEshtiagh-Hosseini, H., Aghabozorg, H. & Mirzaei, M. (2010a). Acta Cryst. E66, m882.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEshtiagh-Hosseini, H., Alfi, N., Mirzaei, M. & Fanwick, P. E. (2011). Acta Cryst. E67, m266–m267.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEshtiagh-Hosseini, H., Gschwind, F., Alfi, N. & Mirzaei, M. (2010b). Acta Cryst. E66, m826–m827.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEshtiagh-Hosseini, H., Necas, M., Alfi, N. & Mirzaei, M. (2010c). Acta Cryst. E66, m1320–m1321.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages m455-m456
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds