metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Amino­pyridinium tri­iodidoplumbate(II)

aDepartment of Chemistry, Nanjing Xiaozhuang College, Nanjing 210017, People's Republic of China
*Correspondence e-mail: duanhaibao4660@163.com

(Received 21 August 2010; accepted 9 September 2010; online 15 September 2010)

The title complex, (C5H7N2)[PbI3], consists of a 1-amino­pyridinium cation, disordered about a mirror plane, and a [PbI3] anion. The Pb2+ ion (site symmetry [\overline{1}]) is surrounded by six I atoms in a slightly distorted octa­hedral coordination. The PbI6 octa­hedra share faces, building up 1[PbI6/2] chains running along [010]. The cations are situated between the chains. Coulombic attractions and van der Waals inter­actions between the inorganic and organic components are mainly responsible for the cohesion of the structure.

Related literature

For background to hybrid materials, see: Rogow et al. (2010[Rogow, D. L., Russell, M. P., Wayman, L. M., Swanson, C. H., Oliver, A. G. & Oliver, S. R. J. (2010). Cryst. Growth Des. 10, 823-829.]); Thirumurugan & Rao (2008[Thirumurugan, A. & Rao, C. N. R. (2008). Cryst. Growth Des. 8, 1640-1644.]). For structures with lead halide building blocks, see: Li et al. (2008[Li, Y., Zheng, G., Lin, C. & Lin, J. (2008). Cryst. Growth Des. 8, 1990-1996.]); Zhang et al. (2008[Zhang, Z. J., Xiang, S. C. & Guo, G. C. (2008). Angew. Chem. Int. Ed. 47, 4149-4152.]).

[Scheme 1]

Experimental

Crystal data
  • (C5H7N2)[PbI3]

  • Mr = 683.03

  • Orthorhombic, P n m a

  • a = 15.0417 (19) Å

  • b = 8.1316 (10) Å

  • c = 10.5625 (14) Å

  • V = 1291.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 20.18 mm−1

  • T = 296 K

  • 0.6 × 0.2 × 0.1 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.011, Tmax = 0.133

  • 10792 measured reflections

  • 1607 independent reflections

  • 1263 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.056

  • S = 1.11

  • 1607 reflections

  • 61 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.86 e Å−3

  • Δρmin = −1.05 e Å−3

Table 1
Selected bond lengths (Å)

Pb1—I3 3.2301 (5)
Pb1—I1 3.2303 (5)
Pb1—I2 3.2412 (5)

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Inorganic metal-halide building-blocks have received special attention with respect to the construction of inorganic-organic hybrid materials (Rogow et al., 2010; Thirumurugan et al., 2008). Among these materials octahedral building blocks of lead halides are frequently found and numerous crystal structures, from one-dimensional chains to three-dimensional frameworks (Li et al., 2008; Zhang et al., 2008), were observed. Herein we report the crystal structure of the title compound, (C5H7N2)[PbI3] (I).

Compound (I) crystallizes with one [PbI3]- anion and one 1-aminopyridinium cation in the asymmetric unit (Fig. 1). The cation is disordered about a mirror plane. The Pb2+ cation is coordinated by six iodide anions in a slightly distorted octahedral coordination geometry. The PbI6 octahedra share faces, resulting in anionic chains running along [010]. As show in Fig. 2., the straight inorganic chains are embedded in cationic stacks. Besides Coulomb attractions, only weak van der Waals interactions between the inorganic and organic components exist.

Related literature top

For background to hybrid materials, see: Rogow et al. (2010); Thirumurugan & Rao (2008). For structures with lead halide building blocks, see: Li et al. (2008); Zhang et al. (2008).

Experimental top

A mixture of PbI2 (922 mg, 2.0 mmol) and 1-aminopyridinium iodide (190 mg, 2.0 mmol) in a molar ratio of 1:1 in DMF was slowly evaporated to produce orange needle-shaped crystals.

Refinement top

The H atoms were placed in geometrically idealized positions and refined as riding atoms, with Uiso(H) = 1.2Ueq(C). The cation is disordered about a mirror plane. Atoms C3 and N1 occupy the same site with an occupation factor of 50%. The respective —NH2 group and the H atom show likewise half-occupation.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Part of the structure of (I), showing the atom-numbering scheme and displacement ellipsoids at the 30% probability level. Atom C3 and N1 are positionally disordered. H atoms have been omitted for clyrity. [Symmetry code: A x, 0.5 - y, z.]
[Figure 2] Fig. 2. The alignment of inorganic and organic components in the crystals of l along [010].
1-Aminopyridinium triiodidoplumbate(II) top
Crystal data top
(C5H7N2)[PbI3]Z = 4
Mr = 683.03F(000) = 1168
Orthorhombic, PnmaDx = 3.512 Mg m3
Hall symbol: -P 2ac 2nMo Kα radiation, λ = 0.71073 Å
a = 15.0417 (19) ŵ = 20.18 mm1
b = 8.1316 (10) ÅT = 296 K
c = 10.5625 (14) ÅNeedle, orange
V = 1291.9 (3) Å30.6 × 0.2 × 0.1 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1607 independent reflections
Radiation source: fine-focus sealed tube1263 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
phi and ω scansθmax = 27.6°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1919
Tmin = 0.011, Tmax = 0.133k = 1010
10792 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.056H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.016P)2 + 2.8133P]
where P = (Fo2 + 2Fc2)/3
1607 reflections(Δ/σ)max = 0.001
61 parametersΔρmax = 0.86 e Å3
1 restraintΔρmin = 1.05 e Å3
Crystal data top
(C5H7N2)[PbI3]V = 1291.9 (3) Å3
Mr = 683.03Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 15.0417 (19) ŵ = 20.18 mm1
b = 8.1316 (10) ÅT = 296 K
c = 10.5625 (14) Å0.6 × 0.2 × 0.1 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1607 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1263 reflections with I > 2σ(I)
Tmin = 0.011, Tmax = 0.133Rint = 0.036
10792 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0251 restraint
wR(F2) = 0.056H-atom parameters constrained
S = 1.11Δρmax = 0.86 e Å3
1607 reflectionsΔρmin = 1.05 e Å3
61 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pb10.50000.50000.50000.05028 (11)
I10.66188 (4)0.25000.44218 (7)0.06995 (19)
I20.45861 (4)0.25000.73162 (5)0.05961 (16)
I30.38187 (5)0.25000.33215 (6)0.06837 (19)
C10.0996 (6)0.1682 (10)0.4247 (8)0.100 (3)
H10.07080.11000.36090.120*
C20.1419 (7)0.0883 (12)0.5186 (9)0.103 (3)
H20.14240.02610.51970.123*
C30.1824 (5)0.1708 (11)0.6087 (7)0.100 (3)0.50
H30.21140.11420.67310.120*0.50
N10.1824 (5)0.1708 (11)0.6087 (7)0.100 (3)0.50
N20.2230 (10)0.132 (2)0.7177 (16)0.121 (5)0.50
H2A0.24150.20910.76720.146*0.50
H2B0.23070.03100.73820.146*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb10.0585 (2)0.03787 (16)0.05448 (19)0.00017 (13)0.00130 (15)0.00097 (14)
I10.0549 (3)0.0611 (4)0.0938 (5)0.0000.0189 (3)0.000
I20.0727 (4)0.0575 (3)0.0486 (3)0.0000.0023 (3)0.000
I30.0753 (4)0.0603 (4)0.0696 (4)0.0000.0268 (3)0.000
C10.120 (7)0.100 (6)0.081 (5)0.001 (5)0.015 (5)0.010 (5)
C20.104 (7)0.089 (6)0.114 (8)0.005 (5)0.008 (6)0.004 (6)
C30.064 (4)0.162 (9)0.074 (5)0.010 (4)0.010 (3)0.026 (5)
N10.064 (4)0.162 (9)0.074 (5)0.010 (4)0.010 (3)0.026 (5)
N20.111 (11)0.121 (12)0.133 (13)0.004 (10)0.004 (11)0.029 (11)
Geometric parameters (Å, º) top
Pb1—I3i3.2301 (5)C1—C1iii1.331 (16)
Pb1—I33.2301 (5)C1—C21.345 (12)
Pb1—I13.2303 (5)C1—H10.9300
Pb1—I1i3.2303 (5)C2—C31.315 (11)
Pb1—I23.2412 (5)C2—H20.9300
Pb1—I2i3.2412 (5)C3—C3iii1.288 (18)
I1—Pb1ii3.2303 (5)C3—H30.9300
I2—Pb1ii3.2412 (5)N2—H2A0.8600
I3—Pb1ii3.2301 (5)N2—H2B0.8600
I3i—Pb1—I3180.0I2—Pb1—I2i180.0
I3i—Pb1—I194.886 (17)Pb1ii—I1—Pb178.000 (17)
I3—Pb1—I185.114 (17)Pb1ii—I2—Pb177.688 (16)
I3i—Pb1—I1i85.114 (17)Pb1—I3—Pb1ii78.007 (16)
I3—Pb1—I1i94.886 (17)C1iii—C1—C2118.9 (6)
I1—Pb1—I1i180.0C1iii—C1—H1120.6
I3i—Pb1—I294.940 (16)C2—C1—H1120.6
I3—Pb1—I285.060 (16)C3—C2—C1120.4 (9)
I1—Pb1—I283.844 (15)C3—C2—H2119.8
I1i—Pb1—I296.156 (15)C1—C2—H2119.8
I3i—Pb1—I2i85.060 (16)C3iii—C3—C2120.7 (6)
I3—Pb1—I2i94.940 (16)C3iii—C3—H3119.7
I1—Pb1—I2i96.156 (15)C2—C3—H3119.7
I1i—Pb1—I2i83.844 (15)H2A—N2—H2B120.0
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y1/2, z+1; (iii) x, y+1/2, z.

Experimental details

Crystal data
Chemical formula(C5H7N2)[PbI3]
Mr683.03
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)296
a, b, c (Å)15.0417 (19), 8.1316 (10), 10.5625 (14)
V3)1291.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)20.18
Crystal size (mm)0.6 × 0.2 × 0.1
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.011, 0.133
No. of measured, independent and
observed [I > 2σ(I)] reflections
10792, 1607, 1263
Rint0.036
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.056, 1.11
No. of reflections1607
No. of parameters61
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.86, 1.05

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Pb1—I33.2301 (5)Pb1—I23.2412 (5)
Pb1—I13.2303 (5)
 

Acknowledgements

The authors thank the Science and Technology Department of Jiangsu Province for financial support (grant No 10774076).

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, Y., Zheng, G., Lin, C. & Lin, J. (2008). Cryst. Growth Des. 8, 1990–1996.  Web of Science CrossRef CAS Google Scholar
First citationRogow, D. L., Russell, M. P., Wayman, L. M., Swanson, C. H., Oliver, A. G. & Oliver, S. R. J. (2010). Cryst. Growth Des. 10, 823–829.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThirumurugan, A. & Rao, C. N. R. (2008). Cryst. Growth Des. 8, 1640–1644.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, Z. J., Xiang, S. C. & Guo, G. C. (2008). Angew. Chem. Int. Ed. 47, 4149–4152.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds