inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Sesquicaesium hemisodium tetra­cyanidoplatinate(II) sesquihydrate

aDepartment of Chemistry, University of South Alabama, Mobile, AL 36688-0002, USA
*Correspondence e-mail: rsykora@jaguar1.usouthal.edu

(Received 26 July 2010; accepted 12 August 2010; online 18 August 2010)

The title compound, Cs1.5Na0.5[Pt(CN)4]·1.5H2O, was isolated from solution as a salt. The tetra­cyanidoplatinate (TCP) anions are stacked in a linear quasi-one-dimensional arrangement along the b axis, with Pt⋯Pt inter­actions of 3.6321 (5) Å. The mixed alkali metal TCP contains three distinct alkali metal positions in the structure that do not show any mixed occupancy: Cs1 (site symmetry 2), Cs2 (general position) and Na1 (site symmetry [\overline{1}]). The Na+ ion contains an octa­hedral coordination environment composed of two water mol­ecules and four N-terminal cyanides, which serve to bridge TCP anions. The Cs+ cations contain mono- and bicapped square-prismatic environments, where the square prisms are formed from cyanide N atoms with water mol­ecules capping the faces. The 1.5 water mol­ecules per formula unit are a result of two fully occupied sites, one on a general position and one on a twofold rotation axis. Weak hydrogen-bonding inter­actions are observed between one water mol­ecule and terminal N-atom acceptors from TCP, while the second water mol­ecule is not involved in hydrogen bonding.

Related literature

Crystalline TCP systems have been studied extensively for their inter­esting structural and spectroscopic, especially photoluminescent, properties (Holzapfel et al., 1981[Holzapfel, W., Yersin, H. & Gliemann, G. (1981). Z. Kristallogr. 157, 47-67.]; Gliemann & Yersin, 1985[Gliemann, G. & Yersin, H. (1985). Struct. Bond. 62, 87-153.]; Stojanovic et al., 2010[Stojanovic, M., Robinson, N. J., Chen, X., Smith, P. A. & Sykora, R. E. (2010). J. Solid State Chem. 183, 933-939.]). An intrinsic factor affecting the optical properties and arrangement of TCP chains is the identity of the cations involved, and much work has been done in the systematic study of various combinations of alkali metal cations involved (Holzapfel et al., 1981[Holzapfel, W., Yersin, H. & Gliemann, G. (1981). Z. Kristallogr. 157, 47-67.]). However, only one known reference of a caesium/sodium mixed alkali metal TCP, viz. NaCs[Pt(CN)4]·1.5H2O, exists (Bergsoe et al., 1962[Bergsoe, P., Hansen, P. G. & Jacobsen, C. F. (1962). Nucl. Instrum. Methods Phys. Res. 17, 325-331.]), which notes the synthesis and scintillation properties for the compound, but not any structural information.

Experimental

Crystal data
  • Cs1.5Na0.5[Pt(CN)4]·1.5H2O

  • Mr = 1074.11

  • Monoclinic, C 2/c

  • a = 17.4090 (5) Å

  • b = 7.2190 (1) Å

  • c = 18.3921 (5) Å

  • β = 117.858 (4)°

  • V = 2043.56 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 18.99 mm−1

  • T = 290 K

  • 0.20 × 0.14 × 0.08 mm

Data collection
  • Oxford Diffraction Excalibur-E diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.471, Tmax = 1.00

  • 8164 measured reflections

  • 1949 independent reflections

  • 1789 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.014

  • wR(F2) = 0.034

  • S = 1.15

  • 1949 reflections

  • 126 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N1i 0.85 (2) 2.37 (3) 3.154 (6) 155 (5)
O1—H1B⋯N3ii 0.83 (2) 2.17 (2) 2.982 (5) 166 (5)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x, -y+1, -z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Crystalline tetracyanidoplatinate (TCP) systems have been studied extensively for their interesting structural and spectroscopic, especially photoluminescent, properties (Holzapfel et al., 1981; Gliemann & Yersin, 1985; Stojanovic et al., 2010). The title compound, Cs1.5Na0.5Pt(CN)4.1.5H2O, was obtained as an unexpected product from a reaction that was an attempt to prepare a heterometallic cyanidometalate complex containing Eu(III), TCP, and dicyanidoaurate moieties. A number of related mixed-metal cation (alkali, alkaline-earth) TCPs have been reported (Holzapfel et al., 1981; Gliemann & Yersin, 1985). However, only one known reference of a caesium/ sodium mixed-alkali metal TCP (NaCsPt(CN)4.1.5H2O) exists (Bergsoe et al., 1962), which notes the synthesis and scintillation properties for the compound, but not any structural information.

The structure of the title compound consists of pseudo one-dimensional chains of square-planar TCP anions tethered by Pt···Pt interactions of 3.6321 (5) Å. The platinate chains run parallel to the b axis and are bridged by ionic interactions among Cs+ and Na+ ions with the N atoms of the cyanidoplatinate, and show a loose packing of water molecules within that space. The water molecules feature weak H-bonding interactions with the N atoms of the platinate as well (Table 1). The Na+ ion contains a nearly regular octahedral coordination environment composed of two trans water molecules and four cyanido N atoms. Cs1 and Cs2 contain mono- and bi-capped square prismatic environments, respectively, where the slightly distorted square prisms are formed from cyanido N atoms and the capping positions are occupied by water molecules. As per each discrete TCP anion, the empirical structure of the compound contains an equivalency of 1.5 Cs+ as a result of the Cs1 site residing on a twofold rotation axis and Cs2 occupying a general position, 1.5 H2O molecules due to O1 residing on a general position and the presence of O2 on a twofold rotation axis, and 0.5 Na+ as a result of Na1 residing on an inversion center.

The N1 and N3 sites, trans to one another on the TCP anion, are involved in H-bonding interactions to the water molecule containing O1, while the other trans pair of cyanide groups containing N2 and N4 are involved in interactions with Na+ (2.527 (4) and 2.541 (4) Å, respectively). The O2 water molecule interacts with Cs1 at a distance of 3.103 (6) Å, but does not engage in any meaningful H-bonding interactions.

Related literature top

CrystallineTCP systems have been studied extensively for their interesting structural and spectroscopic, especially photoluminescent, properties (Holzapfel et al., 1981; Gliemann & Yersin, 1985; Stojanovic et al., 2010). An intrinsic factor affecting the optical properties and arrangement of TCP chains is the identity of the cations involved, and much work has been done in the systematic study of various combinations of alkali metal cations involved (Holzapfel et al., 1981). However, only one known reference of a caesium/sodium mixed alkali metal TCP, viz. NaCsPt(CN)4.1.5H2O, exists (Bergsoe et al., 1962), which notes the synthesis and scintillation properties for the compound, but not any structural information.

Experimental top

Eu(CF3SO3)3.9H2O (98%), Na2Pt(CN)4 (99.95%), NaAu(CN)2 (99.9%), and CsCl (99.9%) were used as received from Alfa Aesar. The title compound was obtained inadvertently in an attempt to produce a heterometallic cyanidometallate compound containing europium, TCP, and dicyanidoaurate. This involved the following preparation: Eu-trifluoromethanesulfonate (6.0 mg, 0.076 mmol) dissolved in 400 µl 80% CH3CN:H2O within a 5 ml test tube was layered with the solutions of sodium tetracyanidoplatinate (6.9 mg, 0.020 mmol) dissolved in 300 µl 80% CH3CN:H2O, and sodium dicyanidoaurate (2.7 mg, 0.010 mmol) dissolved in 400 µl 80% CH3CN:H2O. The solution was allowed to stand for 25 minutes until 1 ml caesium chloride (33.7 mg, 0.20 mmol) in 80% CH3CN:H2O solution was layered onto the mixture. Colorless, transparent crystals of Cs1.5Na0.5Pt(CN)4.1.5H2O were harvested from the reaction tube following slow evaporation of solvent.

Refinement top

All H-atoms on the water molecules were located in a difference map and restrained with O—H distances of 0.85 Å, H···H separations of 1.39 Å, and Uiso(H) = 1.5Ueq(O).

Structure description top

Crystalline tetracyanidoplatinate (TCP) systems have been studied extensively for their interesting structural and spectroscopic, especially photoluminescent, properties (Holzapfel et al., 1981; Gliemann & Yersin, 1985; Stojanovic et al., 2010). The title compound, Cs1.5Na0.5Pt(CN)4.1.5H2O, was obtained as an unexpected product from a reaction that was an attempt to prepare a heterometallic cyanidometalate complex containing Eu(III), TCP, and dicyanidoaurate moieties. A number of related mixed-metal cation (alkali, alkaline-earth) TCPs have been reported (Holzapfel et al., 1981; Gliemann & Yersin, 1985). However, only one known reference of a caesium/ sodium mixed-alkali metal TCP (NaCsPt(CN)4.1.5H2O) exists (Bergsoe et al., 1962), which notes the synthesis and scintillation properties for the compound, but not any structural information.

The structure of the title compound consists of pseudo one-dimensional chains of square-planar TCP anions tethered by Pt···Pt interactions of 3.6321 (5) Å. The platinate chains run parallel to the b axis and are bridged by ionic interactions among Cs+ and Na+ ions with the N atoms of the cyanidoplatinate, and show a loose packing of water molecules within that space. The water molecules feature weak H-bonding interactions with the N atoms of the platinate as well (Table 1). The Na+ ion contains a nearly regular octahedral coordination environment composed of two trans water molecules and four cyanido N atoms. Cs1 and Cs2 contain mono- and bi-capped square prismatic environments, respectively, where the slightly distorted square prisms are formed from cyanido N atoms and the capping positions are occupied by water molecules. As per each discrete TCP anion, the empirical structure of the compound contains an equivalency of 1.5 Cs+ as a result of the Cs1 site residing on a twofold rotation axis and Cs2 occupying a general position, 1.5 H2O molecules due to O1 residing on a general position and the presence of O2 on a twofold rotation axis, and 0.5 Na+ as a result of Na1 residing on an inversion center.

The N1 and N3 sites, trans to one another on the TCP anion, are involved in H-bonding interactions to the water molecule containing O1, while the other trans pair of cyanide groups containing N2 and N4 are involved in interactions with Na+ (2.527 (4) and 2.541 (4) Å, respectively). The O2 water molecule interacts with Cs1 at a distance of 3.103 (6) Å, but does not engage in any meaningful H-bonding interactions.

CrystallineTCP systems have been studied extensively for their interesting structural and spectroscopic, especially photoluminescent, properties (Holzapfel et al., 1981; Gliemann & Yersin, 1985; Stojanovic et al., 2010). An intrinsic factor affecting the optical properties and arrangement of TCP chains is the identity of the cations involved, and much work has been done in the systematic study of various combinations of alkali metal cations involved (Holzapfel et al., 1981). However, only one known reference of a caesium/sodium mixed alkali metal TCP, viz. NaCsPt(CN)4.1.5H2O, exists (Bergsoe et al., 1962), which notes the synthesis and scintillation properties for the compound, but not any structural information.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of Cs1.5Na0.5Pt(CN)4.1.5H2O with the atom-numbering scheme. Displacement ellipsoids for non-hydrogen atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram for Cs1.5Na0.5Pt(CN)4.1.5H2O along the b axis illustrating the tetracyanidoplatinate stacking.
Sesquicaesium hemisodium tetracyanidoplatinate(II) sesquihydrate top
Crystal data top
Cs1.5Na0.5[Pt(CN)4]·1.5H2OF(000) = 1864
Mr = 1074.11Dx = 3.491 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6424 reflections
a = 17.4090 (5) Åθ = 3.1–25.6°
b = 7.2190 (1) ŵ = 18.99 mm1
c = 18.3921 (5) ÅT = 290 K
β = 117.858 (4)°Prism, colorless
V = 2043.56 (11) Å30.20 × 0.14 × 0.08 mm
Z = 4
Data collection top
Oxford Diffraction Excalibur-E
diffractometer
1949 independent reflections
Radiation source: fine-focus sealed tube1789 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
Detector resolution: 16.0514 pixels mm-1θmax = 25.7°, θmin = 3.1°
ω scansh = 2121
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 88
Tmin = 0.471, Tmax = 1.00l = 2222
8164 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.014H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.034 w = 1/[σ2(Fo2) + (0.0147P)2 + 4.0939P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max = 0.002
1949 reflectionsΔρmax = 0.63 e Å3
126 parametersΔρmin = 0.47 e Å3
6 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.000819 (19)
Crystal data top
Cs1.5Na0.5[Pt(CN)4]·1.5H2OV = 2043.56 (11) Å3
Mr = 1074.11Z = 4
Monoclinic, C2/cMo Kα radiation
a = 17.4090 (5) ŵ = 18.99 mm1
b = 7.2190 (1) ÅT = 290 K
c = 18.3921 (5) Å0.20 × 0.14 × 0.08 mm
β = 117.858 (4)°
Data collection top
Oxford Diffraction Excalibur-E
diffractometer
1949 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
1789 reflections with I > 2σ(I)
Tmin = 0.471, Tmax = 1.00Rint = 0.019
8164 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0146 restraints
wR(F2) = 0.034H atoms treated by a mixture of independent and constrained refinement
S = 1.15Δρmax = 0.63 e Å3
1949 reflectionsΔρmin = 0.47 e Å3
126 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cs10.00001.18745 (7)0.25000.04903 (13)
Cs20.111975 (18)0.76781 (4)0.017780 (19)0.03819 (9)
Na10.25000.25000.00000.0307 (5)
Pt10.236863 (10)0.51660 (2)0.244311 (9)0.02326 (7)
C10.3610 (3)0.5200 (6)0.3297 (3)0.0321 (10)
C20.2026 (3)0.5153 (5)0.3330 (2)0.0285 (9)
C30.1120 (3)0.5245 (6)0.1605 (3)0.0298 (9)
C40.2736 (3)0.5128 (5)0.1564 (2)0.0267 (9)
N10.4315 (3)0.5232 (6)0.3789 (3)0.0477 (11)
N20.1834 (3)0.5155 (6)0.3851 (3)0.0446 (10)
N30.0407 (3)0.5366 (6)0.1146 (3)0.0465 (10)
N40.2955 (3)0.5061 (5)0.1069 (2)0.0376 (9)
O10.1138 (2)0.2401 (5)0.0028 (2)0.0443 (9)
H1A0.109 (3)0.213 (8)0.040 (2)0.066*
H1B0.070 (2)0.289 (7)0.040 (2)0.066*
O20.00000.7576 (8)0.25000.087 (2)
H20.031 (5)0.698 (5)0.2927 (19)0.131*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cs10.0443 (2)0.0501 (3)0.0628 (3)0.0000.0335 (2)0.000
Cs20.02998 (15)0.04395 (17)0.04217 (17)0.00112 (12)0.01814 (13)0.00518 (13)
Na10.0286 (12)0.0374 (13)0.0269 (12)0.0005 (10)0.0135 (10)0.0005 (10)
Pt10.02326 (9)0.02732 (10)0.01992 (9)0.00030 (6)0.01069 (7)0.00112 (6)
C10.033 (2)0.035 (2)0.029 (2)0.0009 (19)0.016 (2)0.0013 (19)
C20.028 (2)0.028 (2)0.027 (2)0.0014 (17)0.0107 (18)0.0025 (17)
C30.032 (2)0.034 (2)0.026 (2)0.0021 (18)0.0149 (19)0.0017 (18)
C40.025 (2)0.026 (2)0.026 (2)0.0001 (17)0.0094 (17)0.0009 (17)
N10.031 (2)0.059 (3)0.043 (2)0.0010 (19)0.0084 (19)0.003 (2)
N20.059 (3)0.050 (2)0.038 (2)0.004 (2)0.033 (2)0.0024 (19)
N30.032 (2)0.056 (3)0.042 (2)0.0005 (19)0.0088 (19)0.004 (2)
N40.043 (2)0.044 (2)0.034 (2)0.0008 (18)0.0247 (18)0.0023 (17)
O10.0303 (16)0.066 (2)0.038 (2)0.0061 (16)0.0175 (15)0.0116 (17)
O20.083 (5)0.069 (4)0.127 (7)0.0000.063 (5)0.000
Geometric parameters (Å, º) top
Cs1—O23.103 (6)Pt1—C21.982 (4)
Cs1—N1i3.464 (4)Pt1—C11.991 (4)
Cs2—N1ii3.191 (4)Pt1—C31.993 (4)
Cs2—N4i3.227 (4)Pt1—C41.996 (4)
Cs2—N3iii3.262 (4)C1—N11.135 (6)
Cs2—N2iv3.316 (4)C2—N21.153 (6)
Cs2—O1v3.420 (4)C3—N31.132 (6)
Cs2—N43.491 (4)C4—N41.141 (5)
Na1—O12.349 (3)O1—H1A0.85 (4)
Na1—N2vi2.527 (4)O1—H1B0.83 (4)
Na1—N42.541 (4)O2—H20.84 (3)
O2—Cs1—N1i63.96 (7)C4—Cs2—N2ix63.43 (9)
O2—Cs1—N1ii63.96 (7)N1ii—Cs2—C3110.04 (10)
N1i—Cs1—N1ii127.93 (15)N4i—Cs2—C3153.14 (10)
O2—Cs1—N3vii124.57 (7)N3iii—Cs2—C380.06 (10)
N1i—Cs1—N3vii169.41 (10)N2iv—Cs2—C3109.76 (10)
N1ii—Cs1—N3vii61.00 (10)O1v—Cs2—C3113.80 (9)
O2—Cs1—N3viii124.57 (7)N4—Cs2—C362.76 (9)
N1i—Cs1—N3viii61.00 (10)N1ix—Cs2—C361.13 (9)
N1ii—Cs1—N3viii169.41 (10)N3—Cs2—C317.67 (9)
N3vii—Cs1—N3viii110.86 (14)C4—Cs2—C345.64 (9)
O2—Cs1—N4ii67.01 (6)N2ix—Cs2—C392.48 (9)
N1i—Cs1—N4ii82.40 (9)N1ii—Cs2—C1ix89.08 (11)
N1ii—Cs1—N4ii77.84 (9)N4i—Cs2—C1ix110.29 (9)
N3vii—Cs1—N4ii106.38 (9)N3iii—Cs2—C1ix123.44 (10)
N3viii—Cs1—N4ii99.28 (9)N2iv—Cs2—C1ix151.87 (10)
O2—Cs1—N4i67.01 (6)O1v—Cs2—C1ix56.47 (9)
N1i—Cs1—N4i77.84 (9)N4—Cs2—C1ix88.55 (9)
N1ii—Cs1—N4i82.40 (9)N1ix—Cs2—C1ix17.65 (9)
N3vii—Cs1—N4i99.28 (9)N3—Cs2—C1ix62.37 (9)
N3viii—Cs1—N4i106.38 (9)C4—Cs2—C1ix73.70 (9)
N4ii—Cs1—N4i134.02 (12)N2ix—Cs2—C1ix59.27 (9)
O2—Cs1—N2viii125.63 (6)C3—Cs2—C1ix57.73 (9)
N1i—Cs1—N2viii104.50 (9)O1—Na1—O1x180.00 (17)
N1ii—Cs1—N2viii105.13 (9)O1—Na1—N2vi93.58 (13)
N3vii—Cs1—N2viii65.76 (9)O1x—Na1—N2vi86.42 (13)
N3viii—Cs1—N2viii75.49 (9)O1—Na1—N2iv86.42 (13)
N4ii—Cs1—N2viii167.20 (9)O1x—Na1—N2iv93.58 (13)
N4i—Cs1—N2viii58.66 (9)N2vi—Na1—N2iv180.00 (16)
O2—Cs1—N2vii125.63 (6)O1—Na1—N4x90.84 (13)
N1i—Cs1—N2vii105.13 (9)O1x—Na1—N4x89.16 (13)
N1ii—Cs1—N2vii104.50 (9)N2vi—Na1—N4x90.85 (13)
N3vii—Cs1—N2vii75.49 (9)N2iv—Na1—N4x89.15 (13)
N3viii—Cs1—N2vii65.76 (9)O1—Na1—N489.16 (13)
N4ii—Cs1—N2vii58.66 (9)O1x—Na1—N490.84 (13)
N4i—Cs1—N2vii167.20 (9)N2vi—Na1—N489.15 (13)
N2viii—Cs1—N2vii108.74 (13)N2iv—Na1—N490.85 (13)
O2—Cs1—C1ii66.00 (7)N4x—Na1—N4180.00 (18)
N1i—Cs1—C1ii126.47 (9)C2—Pt1—C189.08 (17)
N1ii—Cs1—C1ii17.94 (9)C2—Pt1—C389.86 (17)
N3vii—Cs1—C1ii63.92 (10)C1—Pt1—C3177.41 (17)
N3viii—Cs1—C1ii154.32 (10)C2—Pt1—C4178.54 (16)
N4ii—Cs1—C1ii61.35 (9)C1—Pt1—C489.91 (17)
N4i—Cs1—C1ii99.31 (9)C3—Pt1—C491.18 (16)
N2viii—Cs1—C1ii119.49 (9)N1—C1—Pt1179.2 (4)
N2vii—Cs1—C1ii88.95 (9)N1—C1—Cs1i70.0 (3)
O2—Cs1—C1i66.00 (7)Pt1—C1—Cs1i110.74 (16)
N1i—Cs1—C1i17.94 (9)N1—C1—Cs2vi69.5 (3)
N1ii—Cs1—C1i126.47 (9)Pt1—C1—Cs2vi110.15 (16)
N3vii—Cs1—C1i154.32 (10)Cs1i—C1—Cs2vi110.37 (11)
N3viii—Cs1—C1i63.92 (10)N2—C2—Pt1179.4 (4)
N4ii—Cs1—C1i99.31 (9)N2—C2—Cs1vii75.9 (3)
N4i—Cs1—C1i61.35 (9)Pt1—C2—Cs1vii104.31 (14)
N2viii—Cs1—C1i88.95 (9)N2—C2—Cs2vi73.6 (3)
N2vii—Cs1—C1i119.49 (9)Pt1—C2—Cs2vi106.10 (15)
C1ii—Cs1—C1i132.01 (13)Cs1vii—C2—Cs2vi148.78 (12)
O2—Cs1—C3viii123.99 (6)N3—C3—Pt1176.8 (4)
N1i—Cs1—C3viii61.52 (10)N3—C3—Cs1vii70.7 (3)
N1ii—Cs1—C3viii165.39 (9)Pt1—C3—Cs1vii106.37 (15)
N3vii—Cs1—C3viii108.55 (9)N3—C3—Cs275.9 (3)
N3viii—Cs1—C3viii17.71 (9)Pt1—C3—Cs2104.23 (15)
N4ii—Cs1—C3viii116.12 (9)Cs1vii—C3—Cs2110.00 (11)
N4i—Cs1—C3viii89.80 (9)N4—C4—Pt1178.2 (4)
N2viii—Cs1—C3viii60.29 (9)N4—C4—Cs274.1 (3)
N2vii—Cs1—C3viii81.03 (9)Pt1—C4—Cs2107.38 (14)
C1ii—Cs1—C3viii168.91 (9)N4—C4—Cs1i71.4 (3)
C1i—Cs1—C3viii58.23 (9)Pt1—C4—Cs1i107.30 (14)
N1ii—Cs2—N4i92.57 (11)Cs2—C4—Cs1i144.19 (12)
N1ii—Cs2—N3iii70.67 (10)C1—N1—Cs2xi151.8 (4)
N4i—Cs2—N3iii122.44 (10)C1—N1—Cs1i92.0 (3)
N1ii—Cs2—N2iv118.92 (11)Cs2xi—N1—Cs1i93.27 (11)
N4i—Cs2—N2iv68.68 (9)C1—N1—Cs2vi92.8 (3)
N3iii—Cs2—N2iv72.87 (11)Cs2xi—N1—Cs2vi107.60 (12)
N1ii—Cs2—O1v62.99 (9)Cs1i—N1—Cs2vi121.89 (13)
N4i—Cs2—O1v63.17 (8)C2—N2—Na1ix119.8 (3)
N3iii—Cs2—O1v133.63 (9)C2—N2—Cs2xii140.8 (3)
N2iv—Cs2—O1v131.82 (9)Na1ix—N2—Cs2xii95.96 (12)
N1ii—Cs2—N4172.46 (10)C2—N2—Cs1vii86.4 (3)
N4i—Cs2—N494.96 (9)Na1ix—N2—Cs1vii95.09 (12)
N3iii—Cs2—N4104.84 (9)Cs2xii—N2—Cs1vii107.33 (11)
N2iv—Cs2—N464.01 (10)C2—N2—Cs2vi89.0 (3)
O1v—Cs2—N4121.04 (8)Na1ix—N2—Cs2vi81.26 (11)
N1ii—Cs2—N1ix72.40 (12)Cs2xii—N2—Cs2vi80.48 (9)
N4i—Cs2—N1ix115.65 (10)Cs1vii—N2—Cs2vi171.76 (12)
N3iii—Cs2—N1ix110.69 (10)C3—N3—Cs2iii133.2 (3)
N2iv—Cs2—N1ix168.32 (10)C3—N3—Cs1vii91.6 (3)
O1v—Cs2—N1ix54.15 (9)Cs2iii—N3—Cs1vii112.71 (12)
N4—Cs2—N1ix104.40 (9)C3—N3—Cs286.4 (3)
N1ii—Cs2—N393.85 (10)Cs2iii—N3—Cs2113.08 (12)
N4i—Cs2—N3170.13 (9)Cs1vii—N3—Cs2117.54 (12)
N3iii—Cs2—N366.92 (12)C4—N4—Na1123.3 (3)
N2iv—Cs2—N3114.26 (10)C4—N4—Cs2i144.7 (3)
O1v—Cs2—N3113.53 (9)Na1—N4—Cs2i91.37 (11)
N4—Cs2—N378.72 (9)C4—N4—Cs287.6 (3)
N1ix—Cs2—N359.58 (10)Na1—N4—Cs291.55 (11)
N1ii—Cs2—C4155.22 (10)Cs2i—N4—Cs285.04 (9)
N4i—Cs2—C4109.89 (10)C4—N4—Cs1i91.0 (3)
N3iii—Cs2—C4103.78 (10)Na1—N4—Cs1i97.36 (11)
N2iv—Cs2—C480.30 (10)Cs2i—N4—Cs1i90.55 (9)
O1v—Cs2—C4117.45 (8)Cs2—N4—Cs1i170.16 (12)
N4—Cs2—C418.33 (9)Na1—O1—Cs2xiii90.18 (10)
N1ix—Cs2—C488.03 (9)Na1—O1—H1A121 (4)
N3—Cs2—C462.56 (9)Cs2xiii—O1—H1A81 (4)
N1ii—Cs2—N2ix122.71 (10)Na1—O1—H1B122 (4)
N4i—Cs2—N2ix62.33 (9)Cs2xiii—O1—H1B113 (4)
N3iii—Cs2—N2ix166.50 (10)H1A—O1—H1B115 (4)
N2iv—Cs2—N2ix99.52 (9)Cs1—O2—Cs2xiv88.88 (9)
O1v—Cs2—N2ix59.73 (8)Cs1—O2—Cs288.88 (9)
N4—Cs2—N2ix61.66 (9)Cs2xiv—O2—Cs2177.76 (18)
N1ix—Cs2—N2ix74.63 (9)Cs1—O2—H2121 (3)
N3—Cs2—N2ix107.83 (9)Cs2—O2—H2147 (4)
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x1/2, y+3/2, z1/2; (iii) x, y+1, z; (iv) x, y+1, z1/2; (v) x, y+1, z; (vi) x+1/2, y1/2, z+1/2; (vii) x, y+2, z; (viii) x, y+2, z1/2; (ix) x+1/2, y+1/2, z+1/2; (x) x+1/2, y+1/2, z; (xi) x+1/2, y+3/2, z+1/2; (xii) x, y+1, z+1/2; (xiii) x, y1, z; (xiv) x, y, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N1vi0.85 (2)2.37 (3)3.154 (6)155 (5)
O1—H1B···N3iii0.83 (2)2.17 (2)2.982 (5)166 (5)
Symmetry codes: (iii) x, y+1, z; (vi) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaCs1.5Na0.5[Pt(CN)4]·1.5H2O
Mr1074.11
Crystal system, space groupMonoclinic, C2/c
Temperature (K)290
a, b, c (Å)17.4090 (5), 7.2190 (1), 18.3921 (5)
β (°) 117.858 (4)
V3)2043.56 (11)
Z4
Radiation typeMo Kα
µ (mm1)18.99
Crystal size (mm)0.20 × 0.14 × 0.08
Data collection
DiffractometerOxford Diffraction Excalibur-E
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.471, 1.00
No. of measured, independent and
observed [I > 2σ(I)] reflections
8164, 1949, 1789
Rint0.019
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.014, 0.034, 1.15
No. of reflections1949
No. of parameters126
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.63, 0.47

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N1i0.847 (19)2.37 (3)3.154 (6)155 (5)
O1—H1B···N3ii0.829 (19)2.17 (2)2.982 (5)166 (5)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x, y+1, z.
 

Acknowledgements

The authors gratefully acknowledge the National Science Foundation for its generous support (NSF-CAREER grant to RES, grant No. CHE-0846680).

References

First citationBergsoe, P., Hansen, P. G. & Jacobsen, C. F. (1962). Nucl. Instrum. Methods Phys. Res. 17, 325–331.  CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGliemann, G. & Yersin, H. (1985). Struct. Bond. 62, 87–153.  CrossRef CAS Google Scholar
First citationHolzapfel, W., Yersin, H. & Gliemann, G. (1981). Z. Kristallogr. 157, 47–67.  CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStojanovic, M., Robinson, N. J., Chen, X., Smith, P. A. & Sykora, R. E. (2010). J. Solid State Chem. 183, 933–939.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds