inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

K3Gd(PO4)2

aDepartment of Physics and Chemistry, Henan Polytechnic University, Jiaozuo, Henan 454000, People's Republic of China
*Correspondence e-mail: iamzd@hpu.edu.cn

(Received 9 July 2010; accepted 3 August 2010; online 11 August 2010)

The title compound, tripotassium gadolinium(III) bis­[ortho­phosphate(V)], was synthesized by a high-temperature solution reaction. Of the 12 atoms of the asymmetric unit (1 × Gd, 2 × P, 3 × K, 6 × O), all but two O atoms (which are in general positions) lie on mirror planes. The crystal structure features sheets of composition [Gd(PO4)2]3− which extend parallel to (100) and are built up from isolated PO4 tetra­hedra and GdO7 monocapped prisms through corner- and edge-sharing. The K+ ions, which have coordination numbers of 10, 9 and 11, help to stack the anionic sheets along [100] into a three-dimensional structure.

Related literature

For the structures, properties and applications of phosphates with general formula M3RE(PO4)2 (M = alkali metal, RE = rare earth metal), see: K3Lu(PO4)2 (Efremov et al., 1981[Efremov, V. A., Melnikov, P. P. & Komissarova, L. N. (1981). Coord. Chem. 7, 467-471.]); K3(La0.99Nd0.01)(PO4)2 (Hong & Chinn, 1976[Hong, Y. P. & Chinn, S. R. (1976). Mater. Res. Bull. 11, 421-428.]); Na3Ce(PO4)2 (Karpov et al., 1980[Karpov, O. G., Pushcharovskii, D. Yu., Khomyakov, A. P., Pobedimskaya, E. A. & Belov, N. V. (1980). Kristallografiya, 25, 1135-1141.]); K3Eu(PO4)2 (Morozov et al., 2001[Morozov, V. A., Bobylev, A. P., Gerasimova, N. V., Kirichenko, A. N., Mikhailin, V. V., Pushkina, G. Ya., Lazoryak, B. I. & Komissarova, L. N. (2001). Zh. Neorg. Khim. 46, 805-813.]); K3Sm(PO4)2 (Toumi et al., 1999[Toumi, M., Smiri-Dogguy, L. & Bulou, A. (1999). Eur. J. Inorg. Chem. pp. 1545-1550.]); K3Ce(PO4)2 (Zah-Letho et al., 1988[Zah-Letho, J. J., Houenou, P. & Eholie, R. (1988). C. R. Acad. Sci. Ser. II, 307, 1177-1179.]).

Experimental

Crystal data
  • K3Gd(PO4)2

  • Mr = 464.49

  • Monoclinic, P 21 /m

  • a = 7.4153 (15) Å

  • b = 5.6206 (11) Å

  • c = 9.445 (2) Å

  • β = 90.723 (14)°

  • V = 393.62 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 10.43 mm−1

  • T = 293 K

  • 0.30 × 0.10 × 0.10 mm

Data collection
  • Rigaku Mercury70 CCD diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.304, Tmax = 0.624

  • 3036 measured reflections

  • 993 independent reflections

  • 946 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.065

  • S = 1.03

  • 993 reflections

  • 80 parameters

  • Δρmax = 2.38 e Å−3

  • Δρmin = −2.68 e Å−3

Data collection: CrystalClear (Rigaku, 2004[Rigaku (2004). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2004[Brandenburg, K. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Inorganic phosphates with general formula M3RE(PO4)2 have been investigated in the past years due to their interesting optical properties, in which M is a alkali metal cation and RE is a trivalent rare-earth cation: K3Lu(PO4)2, space group P3 (Efremov et al., 1981); K3(La0.99Nd0.01)(PO4)2, P21/m (Hong & Chinn, 1976); Na3Ce(PO4)2, Pca21 (Karpov et al., 1980); K3Eu(PO4)2, P21/m (Morozov et al., 2001); K3Sm(PO4)2, P21/m (Toumi et al., 1999); K3Ce(PO4)2, P21/m (Zah-Letho et al., 1988). We report herein the synthesis and crystal structure of K3Gd(PO4)2 which is isotypic with all structures crystallizing in space group P21/m.

As shown in Fig. 1, the crystal structure of K3Gd(PO4)2 features two-dimensional sheets with composition [Gd(PO4)2]3- extending in the bc plane and constructed from isolated PO4 tetrahedra and isolated GdO7 monocapped prisms through corner- and edge-sharing. The K+ cations, with coordination numbers of 10 (K1), 9 (K2) and 11 (K3), are situated between these sheets and join them through coulombic action to the O2- anions, eventually forming the three-dimensional framework of K3Gd(PO4)2 (Fig. 2).

Related literature top

For the structures, properties and applications of phosphates with general formula M3RE(PO4)2 (M = alkali metal, RE = rare earth metal), see: K3Lu(PO4)2 (Efremov et al., 1981); K3(La0.99Nd0.01)(PO4)2 (Hong & Chinn, 1976); Na3Ce(PO4)2 (Karpov et al., 1980); K3Eu(PO4)2 (Morozov et al., 2001); K3Sm(PO4)2 (Toumi et al., 1999); K3Ce(PO4)2 (Zah-Letho et al., 1988).

Experimental top

The finely ground reagents K2CO3, Gd2O3, and NH4H2PO4 were mixed in the molar ratio K: Gd: P = 12: 1: 10, placed in a Pt crucible, and heated at 573 K for 4 h. The mixture was re-ground and heated at 1173 K for 20 h, then cooled to 573 K at a rate of 4 K h-1, and finally quenched to room temperature. A few colorless crystals of the title compound with prismatic shape were obtained.

Refinement top

The highest peak in the difference electron density map is 1.10 Å from Gd1 while the deepest hole is 0.85 Å from the same atom.

Structure description top

Inorganic phosphates with general formula M3RE(PO4)2 have been investigated in the past years due to their interesting optical properties, in which M is a alkali metal cation and RE is a trivalent rare-earth cation: K3Lu(PO4)2, space group P3 (Efremov et al., 1981); K3(La0.99Nd0.01)(PO4)2, P21/m (Hong & Chinn, 1976); Na3Ce(PO4)2, Pca21 (Karpov et al., 1980); K3Eu(PO4)2, P21/m (Morozov et al., 2001); K3Sm(PO4)2, P21/m (Toumi et al., 1999); K3Ce(PO4)2, P21/m (Zah-Letho et al., 1988). We report herein the synthesis and crystal structure of K3Gd(PO4)2 which is isotypic with all structures crystallizing in space group P21/m.

As shown in Fig. 1, the crystal structure of K3Gd(PO4)2 features two-dimensional sheets with composition [Gd(PO4)2]3- extending in the bc plane and constructed from isolated PO4 tetrahedra and isolated GdO7 monocapped prisms through corner- and edge-sharing. The K+ cations, with coordination numbers of 10 (K1), 9 (K2) and 11 (K3), are situated between these sheets and join them through coulombic action to the O2- anions, eventually forming the three-dimensional framework of K3Gd(PO4)2 (Fig. 2).

For the structures, properties and applications of phosphates with general formula M3RE(PO4)2 (M = alkali metal, RE = rare earth metal), see: K3Lu(PO4)2 (Efremov et al., 1981); K3(La0.99Nd0.01)(PO4)2 (Hong & Chinn, 1976); Na3Ce(PO4)2 (Karpov et al., 1980); K3Eu(PO4)2 (Morozov et al., 2001); K3Sm(PO4)2 (Toumi et al., 1999); K3Ce(PO4)2 (Zah-Letho et al., 1988).

Computing details top

Data collection: CrystalClear (Rigaku, 2004); cell refinement: CrystalClear (Rigaku, 2004); data reduction: CrystalClear (Rigaku, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2004); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Section of the structure of K3Gd(PO4)2 with the atom labelling scheme. The displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) x, y, z; (ii) -1+x, y, z; (iii) 1-x, 1-y, 1-z; (iv) 1-x, 0.5+y, 1-z; (v) 1-x, -0.5+y, 1-z; (vi) 1-x, -y, 1-z; (vii) 1-x, 1-y, -z; (viii) x, 0.5-y, z; (ix) 1-x, 0.5+y, -z; (x) -1+x, 1+y, z; (xi) -x, 0.5+y, 1-z; (xii) x, y, -1+z; (xiii) x, 1+y, -1+z.]
[Figure 2] Fig. 2. View of the crystal structure of K3Gd(PO4)2. K—O bonds were omitted for clarity.
tripotassium gadolinium(III) bis[orthophosphate(V)] top
Crystal data top
K3Gd(PO4)2F(000) = 430
Mr = 464.49Dx = 3.919 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybCell parameters from 1264 reflections
a = 7.4153 (15) Åθ = 2.2–27.5°
b = 5.6206 (11) ŵ = 10.43 mm1
c = 9.445 (2) ÅT = 293 K
β = 90.723 (14)°Prism, colourless
V = 393.62 (14) Å30.30 × 0.10 × 0.10 mm
Z = 2
Data collection top
Rigaku Mercury70 CCD
diffractometer
993 independent reflections
Radiation source: fine-focus sealed tube946 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.045
Detector resolution: 14.6306 pixels mm-1θmax = 27.5°, θmin = 2.2°
ω scansh = 99
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 77
Tmin = 0.304, Tmax = 0.624l = 1212
3036 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027 w = 1/[σ2(Fo2) + (0.0356P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.065(Δ/σ)max < 0.001
S = 1.03Δρmax = 2.38 e Å3
993 reflectionsΔρmin = 2.68 e Å3
80 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0314 (17)
Crystal data top
K3Gd(PO4)2V = 393.62 (14) Å3
Mr = 464.49Z = 2
Monoclinic, P21/mMo Kα radiation
a = 7.4153 (15) ŵ = 10.43 mm1
b = 5.6206 (11) ÅT = 293 K
c = 9.445 (2) Å0.30 × 0.10 × 0.10 mm
β = 90.723 (14)°
Data collection top
Rigaku Mercury70 CCD
diffractometer
993 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
946 reflections with I > 2σ(I)
Tmin = 0.304, Tmax = 0.624Rint = 0.045
3036 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02780 parameters
wR(F2) = 0.0650 restraints
S = 1.03Δρmax = 2.38 e Å3
993 reflectionsΔρmin = 2.68 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Gd10.00699 (3)0.25000.29011 (3)0.00731 (15)
P10.80967 (19)0.25000.57350 (15)0.0076 (3)
P20.2303 (2)0.25000.91166 (15)0.0066 (3)
K10.20438 (17)0.75000.08160 (13)0.0119 (3)
K20.50495 (17)0.25000.19219 (13)0.0142 (3)
K30.36353 (18)0.25000.59102 (14)0.0142 (3)
O11.0137 (6)0.25000.5478 (4)0.0169 (10)
O20.7564 (4)0.4735 (5)0.6577 (3)0.0123 (6)
O30.7177 (6)0.25000.4266 (4)0.0116 (9)
O40.8481 (4)0.0269 (5)0.1623 (3)0.0129 (6)
O50.4337 (6)0.25000.8991 (5)0.0163 (9)
O60.1744 (6)0.25001.0689 (4)0.0113 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Gd10.0066 (2)0.0068 (2)0.0085 (2)0.0000.00097 (12)0.000
P10.0065 (7)0.0086 (8)0.0076 (7)0.0000.0012 (5)0.000
P20.0070 (7)0.0052 (7)0.0076 (6)0.0000.0009 (5)0.000
K10.0137 (6)0.0100 (7)0.0118 (6)0.0000.0001 (5)0.000
K20.0101 (7)0.0186 (8)0.0138 (6)0.0000.0021 (5)0.000
K30.0126 (6)0.0136 (7)0.0165 (6)0.0000.0002 (5)0.000
O10.007 (2)0.031 (3)0.012 (2)0.0000.0023 (16)0.000
O20.0176 (16)0.0087 (15)0.0105 (14)0.0023 (12)0.0007 (12)0.0019 (11)
O30.0087 (19)0.015 (2)0.0110 (19)0.0000.0010 (16)0.000
O40.0152 (15)0.0081 (15)0.0152 (14)0.0033 (12)0.0016 (12)0.0018 (12)
O50.010 (2)0.021 (3)0.018 (2)0.0000.0017 (16)0.000
O60.013 (2)0.014 (2)0.0076 (19)0.0000.0012 (16)0.000
Geometric parameters (Å, º) top
Gd1—O4i2.287 (3)K1—O4xii3.030 (3)
Gd1—O4ii2.287 (3)K1—O6xiii3.132 (4)
Gd1—O2iii2.390 (3)K2—O6v2.700 (4)
Gd1—O2iv2.390 (3)K2—O32.702 (4)
Gd1—O1i2.434 (4)K2—O5v2.812 (4)
Gd1—O6v2.444 (4)K2—O2iv2.872 (3)
Gd1—O3i2.517 (4)K2—O2iii2.872 (3)
P1—O11.535 (4)K2—O5vii2.9761 (15)
P1—O31.538 (4)K2—O5iii2.9761 (16)
P1—O21.541 (3)K2—O4vi2.999 (3)
P1—O2vi1.541 (3)K2—O42.999 (3)
P2—O51.515 (4)K3—O1i2.621 (4)
P2—O61.547 (4)K3—O3vii2.8785 (11)
P2—O4vii1.545 (3)K3—O3iii2.8785 (11)
P2—O4viii1.545 (3)K3—O2iv2.945 (3)
K1—O5iii2.687 (5)K3—O2iii2.945 (3)
K1—O2viii2.776 (3)K3—O52.949 (4)
K1—O2iii2.776 (3)K3—O33.067 (4)
K1—O4ix2.803 (3)K3—O4viii3.092 (3)
K1—O4x2.803 (3)K3—O4vii3.092 (3)
K1—O6v2.8215 (7)K3—O23.227 (3)
K1—O6xi2.8215 (7)K3—O2vi3.227 (3)
K1—O4ii3.030 (3)
O4i—Gd1—O4ii85.75 (15)O3vii—K3—O595.24 (9)
O4i—Gd1—O2iii157.36 (10)O3iii—K3—O595.24 (9)
O4ii—Gd1—O2iii92.20 (11)O2iv—K3—O5146.60 (6)
O4i—Gd1—O2iv92.20 (11)O2iii—K3—O5146.60 (6)
O4ii—Gd1—O2iv157.36 (10)O1i—K3—O3140.64 (13)
O2iii—Gd1—O2iv81.09 (14)O3vii—K3—O398.65 (8)
O4i—Gd1—O1i122.12 (9)O3iii—K3—O398.65 (8)
O4ii—Gd1—O1i122.12 (9)O2iv—K3—O381.26 (9)
O2iii—Gd1—O1i77.78 (10)O2iii—K3—O381.26 (9)
O2iv—Gd1—O1i77.78 (10)O5—K3—O3110.96 (12)
O4i—Gd1—O6v79.20 (10)O1i—K3—O4viii66.82 (11)
O4ii—Gd1—O6v79.20 (10)O3vii—K3—O4viii109.38 (10)
O2iii—Gd1—O6v78.27 (10)O3iii—K3—O4viii62.60 (10)
O2iv—Gd1—O6v78.27 (10)O2iv—K3—O4viii131.63 (9)
O1i—Gd1—O6v148.30 (14)O2iii—K3—O4viii103.66 (8)
O4i—Gd1—O3i80.43 (10)O5—K3—O4viii48.81 (9)
O4ii—Gd1—O3i80.43 (10)O3—K3—O4viii145.84 (9)
O2iii—Gd1—O3i121.51 (9)O1i—K3—O4vii66.82 (11)
O2iv—Gd1—O3i121.51 (9)O3vii—K3—O4vii62.60 (10)
O1i—Gd1—O3i59.63 (13)O3iii—K3—O4vii109.38 (10)
O6v—Gd1—O3i152.07 (14)O2iv—K3—O4vii103.66 (8)
O1—P1—O3106.5 (2)O2iii—K3—O4vii131.63 (9)
O1—P1—O2109.94 (15)O5—K3—O4vii48.81 (9)
O3—P1—O2110.60 (15)O3—K3—O4vii145.84 (9)
O1—P1—O2vi109.94 (15)O4viii—K3—O4vii47.86 (11)
O3—P1—O2vi110.60 (15)O1i—K3—O2156.87 (6)
O2—P1—O2vi109.2 (2)O3vii—K3—O2125.38 (10)
O5—P2—O6110.7 (2)O3iii—K3—O279.56 (10)
O5—P2—O4vii109.50 (16)O2iv—K3—O2128.60 (6)
O6—P2—O4vii109.28 (15)O2iii—K3—O2102.30 (8)
O5—P2—O4viii109.50 (16)O5—K3—O270.11 (10)
O6—P2—O4viii109.28 (15)O3—K3—O247.34 (8)
O4vii—P2—O4viii108.5 (2)O4viii—K3—O299.24 (8)
O5iii—K1—O2viii81.16 (11)O4vii—K3—O2118.45 (9)
O5iii—K1—O2iii81.16 (11)P2—K3—O295.98 (7)
O2viii—K1—O2iii53.82 (12)O1i—K3—O2vi156.87 (6)
O5iii—K1—O4ix100.61 (10)O3vii—K3—O2vi79.56 (10)
O2viii—K1—O4ix172.75 (9)O3iii—K3—O2vi125.38 (10)
O2iii—K1—O4ix119.30 (8)O2iv—K3—O2vi102.30 (8)
O5iii—K1—O4x100.61 (10)O2iii—K3—O2vi128.60 (6)
O2viii—K1—O4x119.30 (8)O5—K3—O2vi70.11 (10)
O2iii—K1—O4x172.75 (9)O3—K3—O2vi47.34 (8)
O4ix—K1—O4x67.45 (12)O4viii—K3—O2vi118.45 (9)
O5iii—K1—O6v94.64 (9)O4vii—K3—O2vi99.24 (8)
O2viii—K1—O6v119.72 (11)P2—K3—O2vi95.98 (7)
O2iii—K1—O6v66.06 (10)O2—K3—O2vi45.82 (11)
O4ix—K1—O6v53.27 (10)P1—O1—Gd1xiv98.6 (2)
O4x—K1—O6v120.53 (11)P1—O1—K3xiv162.0 (3)
O5iii—K1—O6xi94.64 (9)Gd1xiv—O1—K3xiv99.39 (14)
O2viii—K1—O6xi66.06 (10)P1—O2—Gd1iii116.36 (16)
O2iii—K1—O6xi119.72 (11)P1—O2—K1iii93.68 (14)
O4ix—K1—O6xi120.53 (11)Gd1iii—O2—K1iii92.46 (10)
O4x—K1—O6xi53.27 (10)P1—O2—K2iii151.02 (17)
O6v—K1—O6xi169.79 (18)Gd1iii—O2—K2iii92.56 (9)
O5iii—K1—O4ii148.85 (8)K1iii—O2—K2iii82.58 (8)
O2viii—K1—O4ii92.65 (9)P1—O2—K3iii95.46 (13)
O2iii—K1—O4ii70.83 (9)Gd1iii—O2—K3iii92.00 (9)
O4ix—K1—O4ii82.21 (9)K1iii—O2—K3iii166.79 (12)
O4x—K1—O4ii108.90 (7)K2iii—O2—K3iii84.80 (9)
O6v—K1—O4ii61.97 (10)P1—O2—K379.54 (13)
O6xi—K1—O4ii110.76 (11)Gd1iii—O2—K3162.12 (12)
O5iii—K1—O4xii148.85 (8)K1iii—O2—K394.66 (9)
O2viii—K1—O4xii70.83 (9)K2iii—O2—K372.18 (7)
O2iii—K1—O4xii92.65 (9)K3iii—O2—K377.70 (8)
O4ix—K1—O4xii108.90 (7)P1—O3—Gd1xiv95.21 (19)
O4x—K1—O4xii82.21 (9)P1—O3—K2170.6 (2)
O6v—K1—O4xii110.76 (11)Gd1xiv—O3—K294.17 (13)
O6xi—K1—O4xii61.97 (10)P1—O3—K3vii98.18 (9)
O4ii—K1—O4xii48.89 (11)Gd1xiv—O3—K3vii98.59 (8)
O5iii—K1—O6xiii156.91 (13)K2—O3—K3vii80.39 (9)
O2viii—K1—O6xiii119.07 (9)P1—O3—K3iii98.18 (9)
O2iii—K1—O6xiii119.07 (9)Gd1xiv—O3—K3iii98.59 (8)
O4ix—K1—O6xiii60.83 (9)K2—O3—K3iii80.39 (9)
O4x—K1—O6xiii60.83 (9)K3vii—O3—K3iii155.01 (17)
O6v—K1—O6xiii84.90 (9)P1—O3—K385.20 (16)
O6xi—K1—O6xiii84.90 (9)Gd1xiv—O3—K3179.59 (17)
O4ii—K1—O6xiii48.27 (9)K2—O3—K385.42 (12)
O4xii—K1—O6xiii48.27 (9)K3vii—O3—K381.34 (8)
O6v—K2—O3150.53 (13)K3iii—O3—K381.34 (8)
O6v—K2—O5v54.35 (12)P2vii—O4—Gd1xiv168.2 (2)
O3—K2—O5v155.12 (13)P2vii—O4—K1x91.81 (14)
O6v—K2—O2iv66.32 (9)Gd1xiv—O4—K1x96.97 (10)
O3—K2—O2iv89.20 (10)P2vii—O4—K298.57 (15)
O5v—K2—O2iv111.49 (10)Gd1xiv—O4—K291.67 (10)
O6v—K2—O2iii66.32 (9)K1x—O4—K271.34 (8)
O3—K2—O2iii89.20 (10)P2vii—O4—K1xv82.80 (13)
O5v—K2—O2iii111.49 (10)Gd1xiv—O4—K1xv88.25 (10)
O2iv—K2—O2iii65.51 (12)K1x—O4—K1xv97.79 (9)
O6v—K2—O5vii90.93 (9)K2—O4—K1xv169.05 (11)
O3—K2—O5vii98.48 (9)P2vii—O4—K3vii79.62 (13)
O5v—K2—O5vii75.07 (9)Gd1xiv—O4—K3vii98.11 (10)
O2iv—K2—O5vii74.84 (10)K1x—O4—K3vii141.08 (12)
O2iii—K2—O5vii139.49 (10)K2—O4—K3vii72.55 (7)
O6v—K2—O5iii90.93 (9)K1xv—O4—K3vii118.30 (10)
O3—K2—O5iii98.48 (9)P2—O5—K1iii171.6 (3)
O5v—K2—O5iii75.07 (9)P2—O5—K2xvi95.6 (2)
O2iv—K2—O5iii139.49 (10)K1iii—O5—K2xvi76.00 (12)
O2iii—K2—O5iii74.84 (10)P2—O5—K385.06 (19)
O5vii—K2—O5iii141.57 (16)K1iii—O5—K3103.34 (14)
O6v—K2—O4vi136.55 (9)K2xvi—O5—K3179.34 (17)
O3—K2—O4vi65.80 (10)P2—O5—K2vii100.29 (10)
O5v—K2—O4vi93.23 (10)K1iii—O5—K2vii82.16 (9)
O2iv—K2—O4vi154.93 (10)K2xvi—O5—K2vii104.93 (9)
O2iii—K2—O4vi110.14 (8)K3—O5—K2vii74.93 (9)
O5vii—K2—O4vi109.26 (11)P2—O5—K2iii100.29 (10)
O5iii—K2—O4vi49.45 (10)K1iii—O5—K2iii82.16 (9)
O6v—K2—O4136.55 (9)K2xvi—O5—K2iii104.93 (9)
O3—K2—O465.80 (9)K3—O5—K2iii74.93 (9)
O5v—K2—O493.23 (10)K2vii—O5—K2iii141.57 (16)
O2iv—K2—O4110.14 (8)P2—O6—Gd1xvi165.0 (3)
O2iii—K2—O4154.93 (10)P2—O6—K2xvi99.3 (2)
O5vii—K2—O449.45 (10)Gd1xvi—O6—K2xvi95.71 (14)
O5iii—K2—O4109.26 (11)P2—O6—K1xvi91.08 (8)
O4vi—K2—O462.52 (12)Gd1xvi—O6—K1xvi90.24 (8)
O1i—K3—O3vii77.59 (8)K2xvi—O6—K1xvi84.90 (9)
O1i—K3—O3iii77.59 (8)P2—O6—K1xvii91.08 (8)
O3vii—K3—O3iii155.01 (17)Gd1xvi—O6—K1xvii90.24 (8)
O1i—K3—O2iv65.64 (10)K2xvi—O6—K1xvii84.90 (9)
O3vii—K3—O2iv51.52 (10)K1xvi—O6—K1xvii169.79 (18)
O3iii—K3—O2iv114.09 (11)P2—O6—K1xiii79.26 (17)
O1i—K3—O2iii65.64 (10)Gd1xvi—O6—K1xiii85.73 (12)
O3vii—K3—O2iii114.09 (11)K2xvi—O6—K1xiii178.56 (15)
O3iii—K3—O2iii51.52 (10)K1xvi—O6—K1xiii95.10 (9)
O2iv—K3—O2iii63.70 (12)K1xvii—O6—K1xiii95.10 (9)
O1i—K3—O5108.39 (13)
Symmetry codes: (i) x1, y, z; (ii) x1, y+1/2, z; (iii) x+1, y+1, z+1; (iv) x+1, y1/2, z+1; (v) x, y, z1; (vi) x, y+1/2, z; (vii) x+1, y, z+1; (viii) x+1, y+1/2, z+1; (ix) x+1, y+1/2, z; (x) x+1, y+1, z; (xi) x, y+1, z1; (xii) x1, y+1, z; (xiii) x, y+1, z+1; (xiv) x+1, y, z; (xv) x+1, y1, z; (xvi) x, y, z+1; (xvii) x, y1, z+1.

Experimental details

Crystal data
Chemical formulaK3Gd(PO4)2
Mr464.49
Crystal system, space groupMonoclinic, P21/m
Temperature (K)293
a, b, c (Å)7.4153 (15), 5.6206 (11), 9.445 (2)
β (°) 90.723 (14)
V3)393.62 (14)
Z2
Radiation typeMo Kα
µ (mm1)10.43
Crystal size (mm)0.30 × 0.10 × 0.10
Data collection
DiffractometerRigaku Mercury70 CCD
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.304, 0.624
No. of measured, independent and
observed [I > 2σ(I)] reflections
3036, 993, 946
Rint0.045
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.065, 1.03
No. of reflections993
No. of parameters80
Δρmax, Δρmin (e Å3)2.38, 2.68

Computer programs: CrystalClear (Rigaku, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2004), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Acknowledgements

The authors acknowledge the Doctoral Foundation of Henan Polytechnic University (B2010–92, 648483).

References

First citationBrandenburg, K. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationEfremov, V. A., Melnikov, P. P. & Komissarova, L. N. (1981). Coord. Chem. 7, 467–471.  CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHong, Y. P. & Chinn, S. R. (1976). Mater. Res. Bull. 11, 421–428.  CrossRef CAS Web of Science Google Scholar
First citationKarpov, O. G., Pushcharovskii, D. Yu., Khomyakov, A. P., Pobedimskaya, E. A. & Belov, N. V. (1980). Kristallografiya, 25, 1135–1141.  CAS Google Scholar
First citationMorozov, V. A., Bobylev, A. P., Gerasimova, N. V., Kirichenko, A. N., Mikhailin, V. V., Pushkina, G. Ya., Lazoryak, B. I. & Komissarova, L. N. (2001). Zh. Neorg. Khim. 46, 805–813.  CAS Google Scholar
First citationRigaku (2004). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationToumi, M., Smiri-Dogguy, L. & Bulou, A. (1999). Eur. J. Inorg. Chem. pp. 1545–1550.  CrossRef Google Scholar
First citationZah-Letho, J. J., Houenou, P. & Eholie, R. (1988). C. R. Acad. Sci. Ser. II, 307, 1177–1179.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds