metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{tris­­[3-(2-pyrid­yl)-1H-pyrazole]iron(II)} tetra­deca­molybdo(V,VI)silicate

aAdvanced Material Institute of Research, Department of Chemistry and Chemical Engineering, ShanDong Institute of Education, Jinan 250013, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
*Correspondence e-mail: xiutangzhang@yahoo.com.cn

(Received 12 January 2010; accepted 19 January 2010; online 23 January 2010)

The asymmetric unit of the title compound, [Fe(C8H7N3)3]2[SiMo14O44], consists of a complex [Fe(C8H7N3)3]2+ cation and half of a derivative of an α-Keggin-type anion, [SiMo14O44]4−. In the mixed-valent MoV/VI anion, the α-Keggin type core is capped on two oppositely disposed tetra­gonal faces by additional (MoO2) units. The [SiMo14O44]4− anion shows disorder. Two O atoms of the central SiO4 group ([\overline{1}] symmetry) are equally disordered about an inversion centre. Moreover, two of the outer bridging O atoms and the O atoms of the capping (MoO2) unit are likewise disordered. The Fe2+ cation is surrounded in a slightly distorted octa­hedral coordination by six N atoms from three 3-(2-pyrid­yl)-1H-pyrazole ligands. N—H⋯O hydrogen bonding between the cations and anions leads to a consolidation of the structure.

Related literature

For general background to polyoxometalates, see: Pope & Müller (1991[Pope, M. T. & Müller, A. (1991). Angew. Chem. Int. Ed. 30, 34-38.]). For polyoxometalates modified with amines, see: Zhang, Dou et al. (2009[Zhang, X. T., Dou, J. M., Wei, P. H., Li, D. C., Li, B., Shi, C. W. & Hu, B. (2009). Inorg. Chim. Acta, 362, 3325-3332.]); Zhang, Wei, Shi et al. (2010a[Zhang, X., Wei, P., Shi, C., Li, B. & Hu, B. (2010a). Acta Cryst. E66, m26-m27.],b[Zhang, X., Wei, P., Shi, C., Li, B. & Hu, B. (2010b). Acta Cryst. E66, m174-m175.]); Zhang, Wei, Sun et al. (2009[Zhang, X. T., Wei, P. H., Sun, D. F., Ni, Z. H., Dou, J. M., Li, B., Shi, C. W. & Hu, B. (2009). Cryst. Growth Des. 9, 4424-4428.]); Zhang, Wei, Zhu et al. (2010[Zhang, X., Wei, P., Zhu, W., Li, B. & Hu, B. (2010). Acta Cryst. E66, m127-m128.]); Zhang, Yuan et al. (2010[Zhang, X., Yuan, D., Wei, P., Li, B. & Hu, B. (2010). Acta Cryst. E66, m152-m153.]). For another structure containing the α-Keggin-type derivative [SiMo14O44]4−, see: Dolbecq et al. (1999[Dolbecq, A., Cadot, E., Eisner, D. & Secheresse, F. (1999). Inorg. Chem. 38, 4127-4134.]). For background to the bond-valence method, see: Brese & O'Keeffe (1991[Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.]). For the role of amines in hydro­thermal synthesis, see: Yang et al. (2003[Yang, W. B., Lu, C. Z., Wu, C. D. & Zhuang, H. H. (2003). Chin. J. Struct. Chem. 22, 137-142.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C8H7N3)3]2[SiMo14O44]

  • Mr = 3057.95

  • Monoclinic, P 21 /c

  • a = 13.055 (3) Å

  • b = 16.931 (3) Å

  • c = 18.562 (4) Å

  • β = 102.69 (3)°

  • V = 4002.6 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.58 mm−1

  • T = 293 K

  • 0.12 × 0.10 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.747, Tmax = 0.820

  • 27223 measured reflections

  • 7026 independent reflections

  • 4730 reflections with I > 2σ(I)

  • Rint = 0.076

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.157

  • S = 1.00

  • 7026 reflections

  • 638 parameters

  • 444 restraints

  • H-atom parameters constrained

  • Δρmax = 1.47 e Å−3

  • Δρmin = −1.52 e Å−3

Table 1
Selected bond lengths (Å)

Si1—O17A 1.606 (13)
Si1—O18A 1.648 (13)
Si1—O18B 1.670 (13)
Si1—O17B 1.684 (13)
Fe1—N2 2.105 (11)
Fe1—N8 2.119 (11)
Fe1—N5 2.153 (11)
Fe1—N3 2.173 (11)
Fe1—N9 2.186 (12)
Fe1—N6 2.206 (11)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯O13i 0.86 2.15 2.973 (17) 159
N1—H1A⋯O21Aii 0.86 2.17 2.96 (3) 152
N1—H1A⋯O21ii 0.86 2.05 2.844 (19) 153
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The design and synthesis of polyoxometalates has attracted continuous research interest not only because of their appealing structural and topological novelties, but also due to their interesting optical, electronic, magnetic, and catalytic properties, as well as their potential medical applications (Pope & Müller, 1991). In our research group, organic amines, such as 3-(2-pyridyl)pyrazole and pyrazine, are used to effectively modify polyoxomolybdates under hydrothermal condictions (Zhang, Dou et al., 2009; Zhang, Wei, Shi et al., 2010a,b; Zhang, Wei, Sun et al., 2009; Zhang, Wei, Zhu et al., 2010; Zhang, Yuan et al., 2010). Here, we describe the synthesis and structural characterization of the title compound.

As shown in Figure 1, the title compound consists of two subunits, viz. of a complex caion [Fe(C8H7N3)3]2+ and a derivative of the α-Keggin-type anion with overall composition [SiMo14O44]4-. The iron(II) ion is in a distorted octahedral coordination by six N atoms from two 3-(2-pyridyl)pyrazole ligands. The Fe—N bond lengths are in the range of 2.105 (11)—2.206 (11) Å. The anion [SiMo14O44]4- can be described as a derivative of an α-Keggin-type core capped on two oppositely disposed tetragonal faces by (MoO2) subunits (Dolbecq et al., 1999). The molybdenum atoms of the disordered capping unit have a highly distorted coordination environment with short Mo—Ot bonds [1.70 (15)–1.84 (3) Å] and longer Mo—O bridging bonds [1.998 (16)–2.174 (15) Å].

The formula sum of the title compound reveals that the valence of some metal atoms in the title compound are (partly) reduced (part of Mo6+ to Mo5+; Fe3+ to Fe2+). The employed organic ligand appears to adjust the pH value, and additionally supplies reducing electrons, which is a commonly observed feature of hydrothermal syntheses when organic amines are used to prepare various hybrid materials, zeolites or metal phosphates (Yang et al., 2003). The oxidation states of the metals are confirmed by bond valence sum calculations (Brese & O'Keeffe, 1991). For the Mo and Fe atoms in the title compound the bond valence sums equal to 5.93, 4.95, 5.83, 6.17, 5.81, 6.18, 5.24, and 2.01.

N—H···O hydrogen bonding between the cations and anions leads to a consolidation of the structure (Fig. 2; Table 2).

Related literature top

For general background to polyoxometalates, see: Pope & Müller (1991). For polyoxometalates modified with amines, see: Zhang, Dou et al. (2009); Zhang, Wei, Shi et al. (2010a,b); Zhang, Wei, Sun et al. (2009); Zhang, Wei, Zhu et al. (2010); Zhang, Yuan et al. (2010). For another structure containing the α-Keggin-type derivative [SiMo14O44]4-, see: Dolbecq et al. (1999). For background to the bond-valence method, see: Brese & O'Keeffe (1991). For the role of amines in hydrothermal synthesis, see: Yang et al. (2003).

Experimental top

A mixture of 3-(2-pyridyl)pyrazole (1 mmoL 0.14 g), sodium molybdate (2 mmoL, 0.48 g), sodium silicate nonahydrate (0.2 mmoL, 0.05 g) and iron(III) chloride hexahydrate (0.25 mmol, 0.06 g) in 10 ml distilled water was sealed in a 25 ml Teflon-lined stainless steel autoclave and was kept at 433 K for three days. Brown crystals suitable for the X-ray experiment were obtained. Anal. C48H42Fe2Mo14N18O44Si: C, 18.85; H, 1.38; N, 8.25. Found: C, 18.75; H, 1.12; N, 8.15%.

The TGA measure,ent shows that the release of organic liangds takes place above ca 623 K. The overall thermal decomposition process can be described by the following equation: C48H42Fe2Mo14N18O44Si + 84O2 = 21H2O + 48CO2 + 9N2O5 + Fe2O3 + SiO2 + 14MoO3 Eq.(1). IR bands appear at the following wavelengths (cm-1): 3303, 3117, 1697, 1604, 1550, 1485, 1355, 1300, 1171, 1088, 1051, 903, 765, 664, 507, 451, 414.

Refinement top

All hydrogen atoms bound to aromatic carbon atoms were refined in calculated positions using a riding model with a C—H distance of 0.93 Å and Uiso = 1.2Ueq(C). Hydrogen atoms attached to aromatic N atoms were refined with a N—H distance of 0.86 Å and Uiso = 1.2Ueq(N). In the SiO4 unit, the two oxygen atoms (O17 and O18) are equally disordered about the inversion centre. Four O atoms (O11, O16, O20, O21) are also disordered and were refined with split positions and an occupancy ratio of 1:1 (O 11, 16) and 3:1 (O20, 21). In the final difference Fourier map the highest peak is 1.25 Å from atom O20A and the deepest hole is 0.67 Å from atom Mo3. The highest peak is located in the voids of the crystal structure and may be associated with an additional water molecule. However, refinement of this position did not result in a reasonable model. Hence this position was also excluded from the final refinement.

Structure description top

The design and synthesis of polyoxometalates has attracted continuous research interest not only because of their appealing structural and topological novelties, but also due to their interesting optical, electronic, magnetic, and catalytic properties, as well as their potential medical applications (Pope & Müller, 1991). In our research group, organic amines, such as 3-(2-pyridyl)pyrazole and pyrazine, are used to effectively modify polyoxomolybdates under hydrothermal condictions (Zhang, Dou et al., 2009; Zhang, Wei, Shi et al., 2010a,b; Zhang, Wei, Sun et al., 2009; Zhang, Wei, Zhu et al., 2010; Zhang, Yuan et al., 2010). Here, we describe the synthesis and structural characterization of the title compound.

As shown in Figure 1, the title compound consists of two subunits, viz. of a complex caion [Fe(C8H7N3)3]2+ and a derivative of the α-Keggin-type anion with overall composition [SiMo14O44]4-. The iron(II) ion is in a distorted octahedral coordination by six N atoms from two 3-(2-pyridyl)pyrazole ligands. The Fe—N bond lengths are in the range of 2.105 (11)—2.206 (11) Å. The anion [SiMo14O44]4- can be described as a derivative of an α-Keggin-type core capped on two oppositely disposed tetragonal faces by (MoO2) subunits (Dolbecq et al., 1999). The molybdenum atoms of the disordered capping unit have a highly distorted coordination environment with short Mo—Ot bonds [1.70 (15)–1.84 (3) Å] and longer Mo—O bridging bonds [1.998 (16)–2.174 (15) Å].

The formula sum of the title compound reveals that the valence of some metal atoms in the title compound are (partly) reduced (part of Mo6+ to Mo5+; Fe3+ to Fe2+). The employed organic ligand appears to adjust the pH value, and additionally supplies reducing electrons, which is a commonly observed feature of hydrothermal syntheses when organic amines are used to prepare various hybrid materials, zeolites or metal phosphates (Yang et al., 2003). The oxidation states of the metals are confirmed by bond valence sum calculations (Brese & O'Keeffe, 1991). For the Mo and Fe atoms in the title compound the bond valence sums equal to 5.93, 4.95, 5.83, 6.17, 5.81, 6.18, 5.24, and 2.01.

N—H···O hydrogen bonding between the cations and anions leads to a consolidation of the structure (Fig. 2; Table 2).

For general background to polyoxometalates, see: Pope & Müller (1991). For polyoxometalates modified with amines, see: Zhang, Dou et al. (2009); Zhang, Wei, Shi et al. (2010a,b); Zhang, Wei, Sun et al. (2009); Zhang, Wei, Zhu et al. (2010); Zhang, Yuan et al. (2010). For another structure containing the α-Keggin-type derivative [SiMo14O44]4-, see: Dolbecq et al. (1999). For background to the bond-valence method, see: Brese & O'Keeffe (1991). For the role of amines in hydrothermal synthesis, see: Yang et al. (2003).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The building blocks of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level; H atoms are given as spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing of the title compound, displayed with hydrogen bonds as dashed lines.
Bis{tris[3-(2-pyridyl)-1H-pyrazole]iron(II)} tetradecamolybdo(V,VI)silicate top
Crystal data top
[Fe(C8H7N3)3]2[SiMo14O44]F(000) = 2924
Mr = 3057.95Dx = 2.537 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7026 reflections
a = 13.055 (3) Åθ = 1.7–25.0°
b = 16.931 (3) ŵ = 2.58 mm1
c = 18.562 (4) ÅT = 293 K
β = 102.69 (3)°Block, brown
V = 4002.6 (14) Å30.12 × 0.10 × 0.08 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
7026 independent reflections
Radiation source: fine-focus sealed tube4730 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.076
phi and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1515
Tmin = 0.747, Tmax = 0.820k = 2020
27223 measured reflectionsl = 2122
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.058P)2 + 47.4341P]
where P = (Fo2 + 2Fc2)/3
7026 reflections(Δ/σ)max = 0.001
638 parametersΔρmax = 1.47 e Å3
444 restraintsΔρmin = 1.52 e Å3
Crystal data top
[Fe(C8H7N3)3]2[SiMo14O44]V = 4002.6 (14) Å3
Mr = 3057.95Z = 2
Monoclinic, P21/cMo Kα radiation
a = 13.055 (3) ŵ = 2.58 mm1
b = 16.931 (3) ÅT = 293 K
c = 18.562 (4) Å0.12 × 0.10 × 0.08 mm
β = 102.69 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
7026 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
4730 reflections with I > 2σ(I)
Tmin = 0.747, Tmax = 0.820Rint = 0.076
27223 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.059444 restraints
wR(F2) = 0.157H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.058P)2 + 47.4341P]
where P = (Fo2 + 2Fc2)/3
7026 reflectionsΔρmax = 1.47 e Å3
638 parametersΔρmin = 1.52 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Si10.00000.50000.50000.0193 (8)
Fe10.36074 (14)0.58896 (11)0.17093 (11)0.0497 (5)
Mo10.20889 (7)0.55765 (6)0.41647 (5)0.0364 (3)
Mo20.00697 (9)0.46521 (7)0.30342 (6)0.0431 (3)
Mo30.33482 (8)0.44820 (7)0.54989 (6)0.0464 (3)
Mo40.21554 (8)0.59444 (6)0.61448 (6)0.0408 (3)
Mo50.05628 (8)0.70722 (6)0.47289 (6)0.0389 (3)
Mo60.16040 (7)0.61555 (6)0.35957 (6)0.0378 (3)
Mo70.14918 (7)0.65270 (6)0.55885 (5)0.0339 (3)
C10.5226 (13)0.7541 (10)0.3320 (9)0.080 (5)
H10.58070.78070.35920.096*
C20.4230 (13)0.7709 (10)0.3329 (9)0.074 (4)
H20.39750.80840.36110.088*
C30.3659 (11)0.7178 (8)0.2806 (7)0.055 (3)
C40.2536 (10)0.7064 (8)0.2539 (7)0.048 (3)
C50.1772 (11)0.7481 (9)0.2789 (8)0.060 (4)
H50.19560.78670.31510.072*
C60.0709 (12)0.7310 (10)0.2481 (9)0.069 (4)
H60.01820.75760.26480.082*
C70.0462 (12)0.6771 (10)0.1956 (9)0.070 (4)
H70.02400.66610.17520.084*
C80.1236 (11)0.6369 (9)0.1708 (8)0.063 (4)
H80.10440.59950.13360.076*
C90.4257 (14)0.7723 (10)0.0181 (9)0.079 (5)
H90.41530.81940.00840.095*
C100.5155 (13)0.7282 (10)0.0337 (8)0.072 (4)
H100.57740.73770.01810.086*
C110.4943 (11)0.6643 (8)0.0791 (7)0.053 (3)
C120.5598 (10)0.6004 (8)0.1139 (7)0.048 (3)
C130.6664 (12)0.5936 (10)0.1094 (8)0.072 (4)
H130.69710.63110.08430.087*
C140.7234 (15)0.5302 (12)0.1431 (10)0.095 (6)
H140.79220.52180.13880.114*
C150.6750 (13)0.4797 (10)0.1834 (9)0.076 (5)
H150.71260.43730.20770.091*
C160.5731 (12)0.4904 (9)0.1886 (8)0.067 (4)
H160.54300.45530.21640.081*
C170.3580 (12)0.3850 (9)0.3102 (9)0.065 (4)
H170.37730.35530.35320.078*
C180.2902 (12)0.3614 (9)0.2482 (8)0.066 (4)
H180.25350.31410.23910.079*
C190.2886 (10)0.4280 (8)0.1993 (8)0.054 (3)
C200.2335 (10)0.4416 (8)0.1235 (7)0.052 (3)
C210.1621 (13)0.3881 (10)0.0809 (10)0.081 (5)
H210.14940.33870.09890.098*
C220.1117 (13)0.4130 (11)0.0105 (9)0.081 (5)
H220.06370.37950.01910.097*
C230.1311 (13)0.4857 (10)0.0161 (9)0.075 (4)
H230.09380.50250.06210.090*
C240.2060 (11)0.5332 (9)0.0258 (8)0.059 (4)
H240.22310.58070.00620.070*
N10.3925 (9)0.4562 (7)0.3005 (6)0.060 (3)
H1A0.43680.48130.33380.072*
N20.3507 (8)0.4859 (6)0.2324 (6)0.051 (3)
N30.2551 (9)0.5129 (7)0.0943 (6)0.057 (3)
N40.3541 (10)0.7337 (7)0.0492 (7)0.072 (4)
H40.29020.74900.04490.087*
N50.3958 (9)0.6673 (6)0.0883 (6)0.055 (3)
N60.5155 (8)0.5512 (6)0.1541 (6)0.052 (3)
N70.5271 (10)0.6937 (8)0.2864 (7)0.072 (4)
H7A0.58390.67250.27930.086*
N80.4298 (8)0.6712 (7)0.2534 (6)0.052 (3)
N90.2279 (9)0.6507 (7)0.1994 (6)0.058 (3)
O10.0848 (7)0.8012 (5)0.4612 (5)0.058 (2)
O20.2484 (7)0.6655 (6)0.2974 (5)0.061 (2)
O30.3156 (7)0.5797 (6)0.3861 (5)0.061 (2)
O40.3275 (6)0.6295 (5)0.6651 (5)0.052 (2)
O50.0141 (7)0.4491 (5)0.2150 (5)0.054 (2)
O60.0494 (8)0.7163 (6)0.5323 (5)0.071 (3)
O70.1182 (8)0.5280 (6)0.3314 (5)0.074 (3)
O80.0581 (7)0.6902 (6)0.3890 (5)0.071 (3)
O90.2306 (7)0.7206 (6)0.5792 (5)0.066 (3)
O100.2238 (9)0.3640 (6)0.5498 (5)0.080 (3)
O11A0.2488 (15)0.5526 (11)0.5273 (10)0.040 (5)0.50
O11B0.2997 (13)0.5646 (10)0.5258 (9)0.033 (4)0.50
O120.0731 (8)0.6245 (6)0.6494 (5)0.076 (3)
O130.1592 (8)0.6844 (6)0.5658 (5)0.077 (3)
O140.2189 (12)0.4826 (9)0.6113 (9)0.033 (4)0.50
O14A0.2767 (14)0.4726 (10)0.6443 (9)0.043 (4)0.50
O150.0919 (9)0.5605 (6)0.2994 (7)0.090 (3)
O160.2659 (13)0.4376 (10)0.4430 (9)0.036 (4)0.50
O16B0.2127 (12)0.4516 (9)0.4492 (8)0.028 (4)0.50
O17A0.0469 (10)0.5874 (8)0.4826 (7)0.029 (3)0.50
O17B0.0747 (10)0.4992 (8)0.4136 (7)0.028 (3)0.50
O18A0.0684 (10)0.4742 (8)0.4390 (7)0.027 (3)0.50
O18B0.0905 (10)0.4306 (8)0.5014 (7)0.028 (3)0.50
O190.1508 (9)0.6552 (7)0.4225 (6)0.087 (3)
O200.4195 (13)0.4254 (10)0.4906 (10)0.104 (5)0.75
O20A0.412 (2)0.3654 (19)0.5690 (16)0.041 (8)0.25
O21A0.449 (2)0.5140 (17)0.5616 (15)0.034 (7)0.25
O210.4286 (12)0.4547 (10)0.6293 (9)0.100 (5)0.75
O220.1328 (8)0.5930 (6)0.6805 (7)0.085 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.0201 (18)0.0165 (19)0.0221 (18)0.0002 (15)0.0064 (15)0.0006 (15)
Fe10.0472 (11)0.0411 (11)0.0604 (12)0.0018 (9)0.0109 (9)0.0033 (9)
Mo10.0292 (5)0.0435 (6)0.0374 (6)0.0003 (4)0.0090 (4)0.0018 (5)
Mo20.0549 (7)0.0418 (7)0.0353 (6)0.0056 (5)0.0162 (5)0.0055 (5)
Mo30.0418 (6)0.0427 (7)0.0500 (7)0.0061 (5)0.0001 (5)0.0015 (5)
Mo40.0297 (5)0.0392 (6)0.0513 (7)0.0034 (4)0.0043 (4)0.0140 (5)
Mo50.0460 (6)0.0235 (5)0.0442 (6)0.0013 (4)0.0036 (5)0.0015 (5)
Mo60.0300 (5)0.0322 (6)0.0487 (6)0.0053 (4)0.0030 (4)0.0082 (5)
Mo70.0296 (5)0.0275 (5)0.0440 (6)0.0044 (4)0.0071 (4)0.0050 (4)
C10.075 (8)0.079 (8)0.079 (8)0.011 (7)0.001 (7)0.005 (7)
C20.080 (8)0.072 (8)0.072 (8)0.004 (7)0.024 (7)0.010 (7)
C30.053 (7)0.053 (7)0.058 (7)0.000 (6)0.007 (6)0.011 (6)
C40.051 (6)0.045 (6)0.051 (6)0.010 (5)0.017 (5)0.015 (5)
C50.072 (7)0.053 (7)0.056 (7)0.005 (6)0.019 (6)0.015 (6)
C60.064 (7)0.072 (8)0.074 (8)0.014 (6)0.025 (6)0.023 (7)
C70.060 (7)0.078 (8)0.071 (8)0.003 (7)0.013 (6)0.024 (7)
C80.055 (7)0.068 (8)0.064 (7)0.000 (6)0.006 (6)0.006 (6)
C90.093 (8)0.062 (8)0.080 (8)0.006 (7)0.012 (7)0.019 (7)
C100.067 (8)0.075 (8)0.069 (7)0.003 (7)0.008 (6)0.005 (7)
C110.059 (7)0.046 (7)0.049 (6)0.007 (6)0.003 (5)0.001 (5)
C120.048 (6)0.051 (7)0.046 (6)0.004 (5)0.010 (5)0.001 (5)
C130.070 (8)0.080 (8)0.067 (8)0.002 (7)0.015 (6)0.014 (7)
C140.090 (9)0.108 (10)0.093 (9)0.014 (8)0.035 (8)0.011 (8)
C150.081 (8)0.077 (8)0.072 (8)0.022 (7)0.023 (7)0.005 (7)
C160.076 (8)0.063 (8)0.066 (7)0.015 (6)0.023 (6)0.016 (6)
C170.072 (7)0.061 (8)0.063 (7)0.011 (6)0.016 (6)0.008 (6)
C180.075 (8)0.059 (7)0.067 (7)0.008 (6)0.022 (6)0.000 (6)
C190.053 (7)0.053 (7)0.057 (7)0.010 (6)0.015 (6)0.006 (6)
C200.040 (6)0.058 (7)0.059 (7)0.007 (5)0.016 (5)0.010 (6)
C210.078 (8)0.074 (8)0.090 (9)0.024 (7)0.013 (7)0.005 (7)
C220.078 (8)0.087 (9)0.071 (8)0.022 (7)0.004 (7)0.007 (7)
C230.076 (8)0.084 (8)0.067 (8)0.005 (7)0.018 (6)0.004 (7)
C240.055 (7)0.062 (7)0.058 (7)0.006 (6)0.010 (6)0.001 (6)
N10.055 (6)0.062 (7)0.063 (6)0.004 (5)0.014 (5)0.004 (5)
N20.050 (5)0.050 (6)0.052 (6)0.000 (5)0.011 (5)0.007 (5)
N30.062 (6)0.055 (6)0.055 (6)0.006 (5)0.016 (5)0.002 (5)
N40.073 (7)0.058 (7)0.077 (7)0.015 (6)0.002 (6)0.007 (6)
N50.059 (6)0.046 (6)0.056 (6)0.010 (5)0.000 (5)0.003 (5)
N60.057 (6)0.042 (6)0.055 (6)0.010 (5)0.011 (5)0.004 (5)
N70.060 (6)0.078 (7)0.075 (7)0.001 (6)0.010 (6)0.006 (6)
N80.040 (5)0.061 (6)0.053 (6)0.004 (5)0.004 (5)0.006 (5)
N90.056 (6)0.058 (6)0.060 (6)0.003 (5)0.012 (5)0.010 (5)
O10.058 (3)0.057 (3)0.058 (3)0.0004 (10)0.0125 (11)0.0000 (10)
O20.061 (3)0.062 (3)0.061 (3)0.0006 (10)0.0132 (11)0.0009 (10)
O30.061 (3)0.061 (3)0.062 (3)0.0001 (10)0.0139 (11)0.0009 (10)
O40.051 (2)0.052 (2)0.052 (2)0.0003 (10)0.0108 (11)0.0007 (10)
O50.055 (2)0.054 (2)0.053 (2)0.0001 (10)0.0118 (11)0.0002 (10)
O60.072 (6)0.092 (6)0.053 (5)0.038 (5)0.019 (4)0.017 (5)
O70.086 (6)0.056 (5)0.061 (5)0.020 (5)0.026 (5)0.019 (4)
O80.070 (5)0.101 (6)0.044 (5)0.038 (5)0.017 (4)0.002 (5)
O90.066 (3)0.066 (3)0.067 (3)0.0009 (10)0.0142 (11)0.0014 (10)
O100.105 (7)0.073 (6)0.062 (6)0.049 (5)0.018 (5)0.014 (5)
O11A0.041 (8)0.035 (8)0.043 (8)0.001 (7)0.010 (7)0.005 (6)
O11B0.028 (7)0.030 (7)0.038 (7)0.003 (6)0.000 (6)0.002 (6)
O120.087 (6)0.052 (5)0.070 (6)0.028 (5)0.026 (5)0.013 (5)
O130.092 (6)0.076 (6)0.053 (5)0.050 (5)0.005 (5)0.017 (5)
O140.033 (7)0.031 (7)0.036 (7)0.003 (6)0.007 (6)0.007 (6)
O14A0.042 (7)0.039 (8)0.044 (8)0.003 (6)0.002 (6)0.003 (6)
O150.093 (6)0.059 (6)0.138 (8)0.002 (5)0.069 (6)0.010 (6)
O160.035 (7)0.038 (8)0.036 (7)0.008 (7)0.009 (6)0.000 (6)
O16B0.023 (7)0.033 (7)0.029 (7)0.004 (6)0.008 (6)0.008 (6)
O17A0.025 (6)0.028 (6)0.033 (6)0.003 (5)0.004 (5)0.000 (5)
O17B0.030 (6)0.024 (6)0.034 (6)0.008 (5)0.013 (5)0.005 (5)
O18A0.027 (6)0.027 (6)0.023 (6)0.003 (5)0.000 (5)0.003 (5)
O18B0.030 (6)0.023 (6)0.028 (6)0.001 (5)0.001 (5)0.011 (5)
O190.101 (6)0.094 (6)0.060 (5)0.044 (5)0.006 (5)0.001 (5)
O200.096 (8)0.105 (9)0.114 (9)0.008 (7)0.031 (7)0.007 (7)
O20A0.040 (11)0.048 (11)0.036 (11)0.020 (9)0.007 (8)0.000 (9)
O21A0.024 (9)0.043 (10)0.031 (10)0.008 (8)0.001 (8)0.005 (8)
O210.079 (8)0.096 (9)0.111 (9)0.003 (7)0.008 (7)0.001 (7)
O220.086 (6)0.051 (6)0.136 (7)0.005 (5)0.062 (6)0.020 (5)
Geometric parameters (Å, º) top
Si1—O17Ai1.606 (13)C1—H10.9300
Si1—O17A1.606 (13)C2—C31.410 (19)
Si1—O18A1.648 (13)C2—H20.9300
Si1—O18Ai1.648 (13)C3—N81.325 (16)
Si1—O18B1.670 (13)C3—C41.455 (18)
Si1—O18Bi1.670 (13)C4—N91.370 (16)
Si1—O17B1.684 (13)C4—C51.383 (18)
Si1—O17Bi1.684 (13)C5—C61.409 (19)
Fe1—N22.105 (11)C5—H50.9300
Fe1—N82.119 (11)C6—C71.32 (2)
Fe1—N52.153 (11)C6—H60.9300
Fe1—N32.173 (11)C7—C81.38 (2)
Fe1—N92.186 (12)C7—H70.9300
Fe1—N62.206 (11)C8—N91.369 (17)
Mo1—O31.657 (9)C8—H80.9300
Mo1—O71.823 (9)C9—C101.37 (2)
Mo1—O191.832 (11)C9—N41.368 (19)
Mo1—O16B1.892 (16)C9—H90.9300
Mo1—O11A2.010 (19)C10—C111.435 (19)
Mo1—O11B2.117 (17)C10—H100.9300
Mo1—O162.183 (17)C11—N51.335 (16)
Mo1—O18Bi2.406 (13)C11—C121.440 (18)
Mo1—O18A2.423 (13)C12—N61.332 (16)
Mo2—O51.646 (9)C12—C131.417 (19)
Mo2—O71.923 (9)C13—C141.38 (2)
Mo2—O12i1.940 (10)C13—H130.9300
Mo2—O151.950 (11)C14—C151.38 (2)
Mo2—O22i1.993 (10)C14—H140.9300
Mo2—O17B2.468 (13)C15—C161.37 (2)
Mo2—O18A2.498 (12)C15—H150.9300
Mo3—O211.700 (15)C16—N61.351 (17)
Mo3—O20A1.72 (3)C16—H160.9300
Mo3—O201.765 (17)C17—N11.313 (17)
Mo3—O21A1.84 (3)C17—C181.349 (19)
Mo3—O161.998 (16)C17—H170.9300
Mo3—O102.033 (9)C18—C191.444 (19)
Mo3—O11B2.051 (17)C18—H180.9300
Mo3—O11A2.086 (19)C19—N21.333 (16)
Mo3—O14A2.099 (16)C19—C201.452 (18)
Mo3—O142.164 (15)C20—N31.378 (16)
Mo3—O16B2.174 (15)C20—C211.411 (19)
Mo4—O41.663 (8)C21—C221.39 (2)
Mo4—O221.803 (10)C21—H210.9300
Mo4—O131.839 (9)C22—C231.37 (2)
Mo4—O141.895 (15)C22—H220.9300
Mo4—O11A1.903 (19)C23—C241.37 (2)
Mo4—O11B2.228 (18)C23—H230.9300
Mo4—O14A2.237 (17)C24—N31.335 (16)
Mo4—O17Bi2.397 (14)C24—H240.9300
Mo4—O18Bi2.435 (13)N1—N21.359 (14)
Mo5—O11.659 (9)N1—H1A0.8600
Mo5—O191.918 (11)N4—N51.382 (15)
Mo5—O81.928 (9)N4—H40.8600
Mo5—O61.952 (9)N7—N81.339 (14)
Mo5—O131.978 (9)N7—H7A0.8600
Mo5—O18Bi2.404 (13)O10—Mo7i2.058 (10)
Mo5—O17A2.463 (14)O10—Mo6i2.061 (11)
Mo6—O21.668 (9)O11A—O11B0.701 (18)
Mo6—O81.833 (9)O12—Mo2i1.940 (10)
Mo6—O151.832 (10)O14—O14A0.878 (17)
Mo6—O14i1.954 (15)O14—Mo6i1.954 (15)
Mo6—O10i2.061 (11)O14A—Mo6i2.119 (17)
Mo6—O14Ai2.119 (17)O16—O16B0.766 (16)
Mo6—O17B2.375 (13)O16—Mo7i2.154 (17)
Mo6—O17A2.480 (13)O16B—Mo7i1.943 (16)
Mo7—O91.664 (10)O17A—O18Bi1.778 (18)
Mo7—O121.818 (9)O17B—Mo4i2.397 (14)
Mo7—O61.840 (9)O18A—Mo7i2.389 (13)
Mo7—O16Bi1.943 (16)O18B—O17Ai1.778 (18)
Mo7—O10i2.058 (10)O18B—Mo5i2.404 (13)
Mo7—O16i2.154 (17)O18B—Mo1i2.406 (13)
Mo7—O18Ai2.389 (13)O18B—Mo4i2.435 (13)
Mo7—O17A2.417 (13)O20—O20A1.79 (4)
C1—C21.34 (2)O21A—O211.68 (3)
C1—N71.337 (19)O22—Mo2i1.993 (10)
O17Ai—Si1—O17A180.0 (10)O14i—Mo6—O14Ai24.5 (5)
O17Ai—Si1—O18A69.8 (7)O10i—Mo6—O14Ai74.5 (5)
O17A—Si1—O18A110.2 (7)O2—Mo6—O17B154.3 (5)
O17Ai—Si1—O18Ai110.2 (7)O8—Mo6—O17B101.6 (5)
O17A—Si1—O18Ai69.8 (7)O15—Mo6—O17B65.6 (5)
O18A—Si1—O18Ai180.000 (3)O14i—Mo6—O17B49.8 (6)
O17Ai—Si1—O18B65.7 (6)O10i—Mo6—O17B91.8 (4)
O17A—Si1—O18B114.3 (6)O14Ai—Mo6—O17B72.4 (6)
O18A—Si1—O18B108.4 (6)O2—Mo6—O17A156.3 (4)
O18Ai—Si1—O18B71.6 (6)O8—Mo6—O17A67.0 (4)
O17Ai—Si1—O18Bi114.3 (6)O15—Mo6—O17A101.0 (5)
O17A—Si1—O18Bi65.7 (6)O14i—Mo6—O17A76.8 (6)
O18A—Si1—O18Bi71.6 (6)O10i—Mo6—O17A63.1 (4)
O18Ai—Si1—O18Bi108.4 (6)O14Ai—Mo6—O17A100.1 (6)
O18B—Si1—O18Bi180.0 (6)O17B—Mo6—O17A47.2 (5)
O17Ai—Si1—O17B107.4 (7)O9—Mo7—O12102.6 (5)
O17A—Si1—O17B72.6 (7)O9—Mo7—O6100.4 (5)
O18A—Si1—O17B68.4 (6)O12—Mo7—O697.2 (4)
O18Ai—Si1—O17B111.6 (6)O9—Mo7—O16Bi111.2 (6)
O18B—Si1—O17B75.3 (6)O12—Mo7—O16Bi88.3 (5)
O18Bi—Si1—O17B104.7 (6)O6—Mo7—O16Bi145.8 (6)
O17Ai—Si1—O17Bi72.6 (7)O9—Mo7—O10i97.4 (5)
O17A—Si1—O17Bi107.4 (7)O12—Mo7—O10i156.2 (5)
O18A—Si1—O17Bi111.6 (6)O6—Mo7—O10i91.6 (4)
O18Ai—Si1—O17Bi68.4 (6)O16Bi—Mo7—O10i72.4 (5)
O18B—Si1—O17Bi104.7 (6)O9—Mo7—O16i90.5 (6)
O18Bi—Si1—O17Bi75.3 (6)O12—Mo7—O16i94.0 (5)
O17B—Si1—O17Bi180.000 (3)O6—Mo7—O16i162.2 (5)
N2—Fe1—N8102.7 (4)O16Bi—Mo7—O16i20.7 (5)
N2—Fe1—N5161.1 (4)O10i—Mo7—O16i72.9 (5)
N8—Fe1—N589.3 (4)O9—Mo7—O18Ai156.7 (5)
N2—Fe1—N376.0 (4)O12—Mo7—O18Ai66.4 (5)
N8—Fe1—N3166.1 (4)O6—Mo7—O18Ai101.3 (5)
N5—Fe1—N395.8 (4)O16Bi—Mo7—O18Ai50.4 (6)
N2—Fe1—N996.8 (4)O10i—Mo7—O18Ai90.3 (4)
N8—Fe1—N975.2 (4)O16i—Mo7—O18Ai70.7 (5)
N5—Fe1—N9100.5 (4)O9—Mo7—O17A155.7 (5)
N3—Fe1—N991.1 (4)O12—Mo7—O17A99.3 (5)
N2—Fe1—N690.3 (4)O6—Mo7—O17A66.2 (5)
N8—Fe1—N692.0 (4)O16Bi—Mo7—O17A79.6 (6)
N5—Fe1—N674.5 (4)O10i—Mo7—O17A64.3 (5)
N3—Fe1—N6101.8 (4)O16i—Mo7—O17A98.4 (6)
N9—Fe1—N6166.5 (4)O18Ai—Mo7—O17A45.6 (4)
O3—Mo1—O7101.6 (5)C2—C1—N7110.5 (15)
O3—Mo1—O19102.0 (5)C2—C1—H1124.7
O7—Mo1—O1995.9 (5)N7—C1—H1124.8
O3—Mo1—O16B111.0 (6)C1—C2—C3102.9 (15)
O7—Mo1—O16B89.0 (5)C1—C2—H2128.5
O19—Mo1—O16B144.9 (6)C3—C2—H2128.6
O3—Mo1—O11A108.1 (6)N8—C3—C2111.1 (13)
O7—Mo1—O11A147.9 (6)N8—C3—C4117.5 (13)
O19—Mo1—O11A89.7 (6)C2—C3—C4131.4 (14)
O16B—Mo1—O11A69.4 (7)N9—C4—C5121.5 (13)
O3—Mo1—O11B88.8 (6)N9—C4—C3114.1 (12)
O7—Mo1—O11B165.0 (6)C5—C4—C3124.4 (13)
O19—Mo1—O11B92.5 (6)C4—C5—C6118.5 (14)
O16B—Mo1—O11B77.0 (6)C4—C5—H5120.7
O11A—Mo1—O11B19.3 (5)C6—C5—H5120.8
O3—Mo1—O1690.9 (6)C7—C6—C5119.9 (15)
O7—Mo1—O1693.6 (5)C7—C6—H6120.1
O19—Mo1—O16162.0 (6)C5—C6—H6120.0
O16B—Mo1—O1620.1 (5)C6—C7—C8120.6 (16)
O11A—Mo1—O1674.4 (7)C6—C7—H7119.6
O11B—Mo1—O1675.2 (6)C8—C7—H7119.8
O3—Mo1—O18Bi154.5 (4)N9—C8—C7121.8 (15)
O7—Mo1—O18Bi100.7 (5)N9—C8—H8119.1
O19—Mo1—O18Bi63.6 (5)C7—C8—H8119.1
O16B—Mo1—O18Bi81.4 (6)C10—C9—N4106.4 (14)
O11A—Mo1—O18Bi54.1 (6)C10—C9—H9126.8
O11B—Mo1—O18Bi71.9 (6)N4—C9—H9126.7
O16—Mo1—O18Bi99.7 (5)C9—C10—C11105.6 (14)
O3—Mo1—O18A156.2 (5)C9—C10—H10127.1
O7—Mo1—O18A67.5 (4)C11—C10—H10127.2
O19—Mo1—O18A100.2 (5)N5—C11—C10111.2 (13)
O16B—Mo1—O18A50.1 (6)N5—C11—C12117.7 (12)
O11A—Mo1—O18A80.4 (6)C10—C11—C12131.1 (13)
O11B—Mo1—O18A98.8 (6)N6—C12—C13122.3 (13)
O16—Mo1—O18A69.6 (5)N6—C12—C11115.7 (11)
O18Bi—Mo1—O18A47.4 (4)C13—C12—C11121.9 (13)
O5—Mo2—O7102.7 (4)C14—C13—C12118.5 (16)
O5—Mo2—O12i103.1 (4)C14—C13—H13120.7
O7—Mo2—O12i88.3 (4)C12—C13—H13120.7
O5—Mo2—O15101.1 (5)C13—C14—C15117.6 (17)
O7—Mo2—O1589.7 (5)C13—C14—H14121.1
O12i—Mo2—O15155.6 (5)C15—C14—H14121.3
O5—Mo2—O22i101.5 (5)C16—C15—C14121.8 (17)
O7—Mo2—O22i155.8 (5)C16—C15—H15119.2
O12i—Mo2—O22i85.7 (4)C14—C15—H15119.1
O15—Mo2—O22i86.2 (4)N6—C16—C15121.1 (15)
O5—Mo2—O17B155.9 (4)N6—C16—H16119.5
O7—Mo2—O17B94.9 (5)C15—C16—H16119.4
O12i—Mo2—O17B93.7 (4)N1—C17—C18109.6 (14)
O15—Mo2—O17B62.2 (5)N1—C17—H17125.2
O22i—Mo2—O17B62.2 (4)C18—C17—H17125.2
O5—Mo2—O18A159.8 (4)C17—C18—C19102.8 (14)
O7—Mo2—O18A64.6 (4)C17—C18—H18128.7
O12i—Mo2—O18A62.6 (4)C19—C18—H18128.5
O15—Mo2—O18A94.8 (5)N2—C19—C18111.2 (12)
O22i—Mo2—O18A92.0 (5)N2—C19—C20116.9 (12)
O17B—Mo2—O18A44.3 (4)C18—C19—C20131.9 (13)
O21—Mo3—O20A66.1 (11)N3—C20—C21120.6 (13)
O21—Mo3—O2097.1 (8)N3—C20—C19114.9 (11)
O20A—Mo3—O2061.9 (12)C21—C20—C19124.5 (14)
O21—Mo3—O21A56.4 (10)C22—C21—C20116.7 (16)
O20A—Mo3—O21A92.6 (14)C22—C21—H21121.6
O20—Mo3—O21A66.6 (11)C20—C21—H21121.8
O21—Mo3—O16161.4 (8)C23—C22—C21121.5 (16)
O20A—Mo3—O16104.3 (11)C23—C22—H22119.2
O20—Mo3—O1664.5 (7)C21—C22—H22119.2
O21A—Mo3—O16110.4 (10)C24—C23—C22119.2 (16)
O21—Mo3—O10115.0 (7)C24—C23—H23120.4
O20A—Mo3—O1079.4 (11)C22—C23—H23120.4
O20—Mo3—O10113.0 (7)N3—C24—C23121.5 (14)
O21A—Mo3—O10170.5 (9)N3—C24—H24119.2
O16—Mo3—O1076.8 (6)C23—C24—H24119.2
O21—Mo3—O11B102.1 (7)C17—N1—N2112.8 (12)
O20A—Mo3—O11B157.2 (12)C17—N1—H1A123.5
O20—Mo3—O11B102.4 (8)N2—N1—H1A123.7
O21A—Mo3—O11B65.1 (10)C19—N2—N1103.6 (11)
O16—Mo3—O11B80.8 (7)C19—N2—Fe1117.6 (9)
O10—Mo3—O11B123.3 (6)N1—N2—Fe1138.7 (9)
O21—Mo3—O11A111.9 (8)C24—N3—C20120.2 (12)
O20A—Mo3—O11A176.6 (12)C24—N3—Fe1125.0 (10)
O20—Mo3—O11A116.3 (8)C20—N3—Fe1114.6 (8)
O21A—Mo3—O11A84.1 (10)C9—N4—N5112.5 (13)
O16—Mo3—O11A76.8 (7)C9—N4—H4123.8
O10—Mo3—O11A104.0 (6)N5—N4—H4123.7
O11B—Mo3—O11A19.5 (5)C11—N5—N4104.1 (12)
O21—Mo3—O14A65.6 (8)C11—N5—Fe1115.4 (9)
O20A—Mo3—O14A107.0 (11)N4—N5—Fe1138.9 (10)
O20—Mo3—O14A162.7 (7)C12—N6—C16118.5 (12)
O21A—Mo3—O14A102.4 (10)C12—N6—Fe1114.9 (8)
O16—Mo3—O14A132.9 (7)C16—N6—Fe1125.8 (10)
O10—Mo3—O14A75.5 (5)C1—N7—N8109.7 (13)
O11B—Mo3—O14A83.6 (7)C1—N7—H7A125.1
O11A—Mo3—O14A74.0 (7)N8—N7—H7A125.2
O21—Mo3—O1488.8 (7)C3—N8—N7105.7 (12)
O20A—Mo3—O14124.0 (11)C3—N8—Fe1117.6 (9)
O20—Mo3—O14173.2 (7)N7—N8—Fe1136.6 (10)
O21A—Mo3—O14114.7 (10)C8—N9—C4117.6 (12)
O16—Mo3—O14109.4 (7)C8—N9—Fe1126.9 (10)
O10—Mo3—O1466.9 (5)C4—N9—Fe1115.4 (8)
O11B—Mo3—O1473.0 (6)Mo7—O6—Mo5137.3 (6)
O11A—Mo3—O1458.0 (6)Mo1—O7—Mo2137.5 (6)
O14A—Mo3—O1423.7 (5)Mo6—O8—Mo5136.7 (5)
O21—Mo3—O16B174.7 (7)Mo3—O10—Mo7i106.3 (4)
O20A—Mo3—O16B119.1 (11)Mo3—O10—Mo6i107.2 (4)
O20—Mo3—O16B84.9 (7)Mo7i—O10—Mo6i129.4 (6)
O21A—Mo3—O16B120.5 (9)O11B—O11A—Mo4109 (3)
O16—Mo3—O16B20.6 (5)O11B—O11A—Mo189 (3)
O10—Mo3—O16B68.3 (5)Mo4—O11A—Mo1143.0 (10)
O11B—Mo3—O16B72.6 (6)O11B—O11A—Mo377 (2)
O11A—Mo3—O16B62.9 (7)Mo4—O11A—Mo3111.0 (9)
O14A—Mo3—O16B112.4 (6)Mo1—O11A—Mo3104.4 (8)
O14—Mo3—O16B88.8 (6)O11A—O11B—Mo383 (2)
O4—Mo4—O22101.8 (5)O11A—O11B—Mo172 (2)
O4—Mo4—O13100.9 (5)Mo3—O11B—Mo1101.9 (7)
O22—Mo4—O1396.4 (5)O11A—O11B—Mo454 (2)
O4—Mo4—O14110.5 (6)Mo3—O11B—Mo4100.4 (7)
O22—Mo4—O1491.7 (6)Mo1—O11B—Mo4117.2 (7)
O13—Mo4—O14145.2 (6)Mo7—O12—Mo2i138.9 (6)
O4—Mo4—O11A106.1 (6)Mo4—O13—Mo5135.4 (6)
O22—Mo4—O11A148.9 (7)O14A—O14—Mo4101.1 (17)
O13—Mo4—O11A91.8 (6)O14A—O14—Mo6i88.3 (16)
O14—Mo4—O11A65.8 (7)Mo4—O14—Mo6i145.8 (9)
O4—Mo4—O11B89.0 (5)O14A—O14—Mo373.9 (15)
O22—Mo4—O11B164.8 (6)Mo4—O14—Mo3108.0 (7)
O13—Mo4—O11B91.9 (5)Mo6i—O14—Mo3106.1 (7)
O14—Mo4—O11B74.4 (6)O14—O14A—Mo382.4 (16)
O11A—Mo4—O11B17.4 (6)O14—O14A—Mo6i67.2 (15)
O4—Mo4—O14A88.1 (5)Mo3—O14A—Mo6i102.7 (7)
O22—Mo4—O14A93.1 (5)O14—O14A—Mo456.2 (15)
O13—Mo4—O14A165.3 (5)Mo3—O14A—Mo498.6 (7)
O14—Mo4—O14A22.7 (5)Mo6i—O14A—Mo4115.3 (8)
O11A—Mo4—O14A74.4 (7)Mo6—O15—Mo2138.4 (7)
O11B—Mo4—O14A76.5 (6)O16B—O16—Mo392.8 (19)
O4—Mo4—O17Bi153.6 (4)O16B—O16—Mo7i63.9 (19)
O22—Mo4—O17Bi66.0 (5)Mo3—O16—Mo7i104.0 (7)
O13—Mo4—O17Bi103.7 (5)O16B—O16—Mo158.0 (18)
O14—Mo4—O17Bi49.8 (6)Mo3—O16—Mo1101.4 (7)
O11A—Mo4—O17Bi82.9 (6)Mo7i—O16—Mo1116.9 (8)
O11B—Mo4—O17Bi99.7 (5)O16—O16B—Mo1102 (2)
O14A—Mo4—O17Bi70.0 (5)O16—O16B—Mo7i95 (2)
O4—Mo4—O18Bi153.7 (4)Mo1—O16B—Mo7i149.0 (9)
O22—Mo4—O18Bi102.3 (5)O16—O16B—Mo366.6 (18)
O13—Mo4—O18Bi66.0 (4)Mo1—O16B—Mo3105.3 (7)
O14—Mo4—O18Bi79.3 (6)Mo7i—O16B—Mo3105.2 (7)
O11A—Mo4—O18Bi54.4 (6)Si1—O17A—O18Bi58.9 (6)
O11B—Mo4—O18Bi69.6 (5)Si1—O17A—Mo7122.6 (7)
O14A—Mo4—O18Bi101.0 (5)O18Bi—O17A—Mo7130.3 (8)
O17Bi—Mo4—O18Bi50.1 (5)Si1—O17A—Mo5125.7 (7)
O1—Mo5—O19100.9 (5)O18Bi—O17A—Mo566.8 (6)
O1—Mo5—O8101.2 (4)Mo7—O17A—Mo592.7 (5)
O19—Mo5—O890.3 (4)Si1—O17A—Mo6119.1 (7)
O1—Mo5—O6101.8 (4)O18Bi—O17A—Mo6124.3 (8)
O19—Mo5—O6157.2 (5)Mo7—O17A—Mo699.0 (5)
O8—Mo5—O687.2 (4)Mo5—O17A—Mo690.0 (4)
O1—Mo5—O1399.9 (4)Si1—O17B—Mo6121.1 (7)
O19—Mo5—O1387.1 (4)Si1—O17B—Mo4i117.9 (6)
O8—Mo5—O13158.8 (4)Mo6—O17B—Mo4i100.9 (5)
O6—Mo5—O1387.2 (4)Si1—O17B—Mo2123.6 (6)
O1—Mo5—O18Bi156.9 (4)Mo6—O17B—Mo293.7 (4)
O19—Mo5—O18Bi62.6 (5)Mo4i—O17B—Mo293.6 (5)
O8—Mo5—O18Bi95.3 (4)Si1—O18A—Mo7i122.1 (7)
O6—Mo5—O18Bi95.0 (5)Si1—O18A—Mo1120.6 (7)
O13—Mo5—O18Bi64.9 (4)Mo7i—O18A—Mo1100.3 (5)
O1—Mo5—O17A160.3 (4)Si1—O18A—Mo2123.7 (6)
O19—Mo5—O17A94.5 (5)Mo7i—O18A—Mo292.1 (4)
O8—Mo5—O17A66.2 (4)Mo1—O18A—Mo290.4 (4)
O6—Mo5—O17A63.8 (4)Si1—O18B—O17Ai55.4 (6)
O13—Mo5—O17A93.0 (5)Si1—O18B—Mo5i125.8 (7)
O18Bi—Mo5—O17A42.8 (4)O17Ai—O18B—Mo5i70.4 (6)
O2—Mo6—O8101.7 (5)Si1—O18B—Mo1i120.5 (6)
O2—Mo6—O15101.0 (5)O17Ai—O18B—Mo1i132.3 (8)
O8—Mo6—O1596.4 (5)Mo5i—O18B—Mo1i94.1 (5)
O2—Mo6—O14i111.8 (6)Si1—O18B—Mo4i116.6 (7)
O8—Mo6—O14i143.8 (6)O17Ai—O18B—Mo4i125.0 (8)
O15—Mo6—O14i90.5 (6)Mo5i—O18B—Mo4i93.7 (4)
O2—Mo6—O10i98.0 (5)Mo1i—O18B—Mo4i100.1 (5)
O8—Mo6—O10i92.2 (4)Mo1—O19—Mo5139.7 (7)
O15—Mo6—O10i157.0 (5)Mo3—O20—O20A57.8 (11)
O14i—Mo6—O10i70.5 (5)Mo3—O20A—O2060.3 (11)
O2—Mo6—O14Ai87.4 (6)O21—O21A—Mo357.7 (10)
O8—Mo6—O14Ai165.0 (5)O21A—O21—Mo365.9 (11)
O15—Mo6—O14Ai93.6 (6)Mo4—O22—Mo2i138.2 (6)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O13ii0.862.152.973 (17)159
N1—H1A···O21Aiii0.862.172.96 (3)152
N1—H1A···O21iii0.862.052.844 (19)153
Symmetry codes: (ii) x, y+3/2, z1/2; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Fe(C8H7N3)3]2[SiMo14O44]
Mr3057.95
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)13.055 (3), 16.931 (3), 18.562 (4)
β (°) 102.69 (3)
V3)4002.6 (14)
Z2
Radiation typeMo Kα
µ (mm1)2.58
Crystal size (mm)0.12 × 0.10 × 0.08
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.747, 0.820
No. of measured, independent and
observed [I > 2σ(I)] reflections
27223, 7026, 4730
Rint0.076
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.157, 1.00
No. of reflections7026
No. of parameters638
No. of restraints444
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.058P)2 + 47.4341P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.47, 1.52

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Si1—O17A1.606 (13)Fe1—N82.119 (11)
Si1—O18A1.648 (13)Fe1—N52.153 (11)
Si1—O18B1.670 (13)Fe1—N32.173 (11)
Si1—O17B1.684 (13)Fe1—N92.186 (12)
Fe1—N22.105 (11)Fe1—N62.206 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O13i0.862.152.973 (17)159.0
N1—H1A···O21Aii0.862.172.96 (3)151.7
N1—H1A···O21ii0.862.052.844 (19)153.3
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y+1, z+1.
 

Acknowledgements

Financial support from the Chinese Academy of Sciences (`Hundred Talents Program') and the Ministry of Science and Technology of China (grant No. 2007CB607608), Shandong Provincial Education Department and Shandong Institute of Education are gratefully acknowledged.

References

First citationBrese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolbecq, A., Cadot, E., Eisner, D. & Secheresse, F. (1999). Inorg. Chem. 38, 4127–4134.  Web of Science CSD CrossRef Google Scholar
First citationPope, M. T. & Müller, A. (1991). Angew. Chem. Int. Ed. 30, 34–38.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, W. B., Lu, C. Z., Wu, C. D. & Zhuang, H. H. (2003). Chin. J. Struct. Chem. 22, 137–142.  CAS Google Scholar
First citationZhang, X. T., Dou, J. M., Wei, P. H., Li, D. C., Li, B., Shi, C. W. & Hu, B. (2009). Inorg. Chim. Acta, 362, 3325–3332.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, X., Wei, P., Shi, C., Li, B. & Hu, B. (2010a). Acta Cryst. E66, m26–m27.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, X., Wei, P., Shi, C., Li, B. & Hu, B. (2010b). Acta Cryst. E66, m174–m175.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, X. T., Wei, P. H., Sun, D. F., Ni, Z. H., Dou, J. M., Li, B., Shi, C. W. & Hu, B. (2009). Cryst. Growth Des. 9, 4424–4428.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, X., Wei, P., Zhu, W., Li, B. & Hu, B. (2010). Acta Cryst. E66, m127–m128.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, X., Yuan, D., Wei, P., Li, B. & Hu, B. (2010). Acta Cryst. E66, m152–m153.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds