inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Monopotassium monosodium hexa­hydrogen α-hexa­molybdoplatinate(IV) undeca­hydrate

aDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea, and bDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 6 January 2010; accepted 18 January 2010; online 23 January 2010)

The title compound, KNa[H6PtMo6O24]·11H2O, contains a discrete hexa­molybdoplatinate(IV) [H6PtMo6O24]2− poly­anion (1 symmetry), which has the highest level of protonation. Five O atoms of the central PtO6 octa­hedron (μ3-atoms, Oc) and one O atom of an outer edge-sharing MoO6 octa­hedron (O bridging μ2-atom, Ob) are protonated. The polyanions are connected by almost linear O—H⋯O hydrogen bonds between protonated and unprotonated Ob atoms. Further consolidation of the crystal structure is accomplished by extensive O—H⋯O hydrogen bonding involving the uncoordinated water mol­ecules. The two independent K+ cations are equally disordered about a twofold rotation axis.

Related literature

For other crystal structures containing the [H6PtMo6O24]6− anion, see: Lee & Sasaki (1994[Lee, U. & Sasaki, Y. (1994). Bull. Korean Chem. Soc. 15, 37-45.]); Lee & Joo (2006a[Lee, U. & Joo, H.-C. (2006a). Acta Cryst. E62, i231-i233.],b[Lee, U. & Joo, H.-C. (2006b). Acta Cryst. E62, i241-i243.]). For background to the bond-valence method, see: Brown & Altermatt (1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]); Brese & O'Keeffe (1991[Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.]).

[Scheme 1]

Experimental

Crystal data
  • KNa[H6PtMo6O24]·11H2O

  • Mr = 1421.04

  • Monoclinic, C 2/c

  • a = 20.935 (2) Å

  • b = 18.535 (3) Å

  • c = 17.775 (3) Å

  • β = 114.30 (2)°

  • V = 6286.2 (18) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 7.02 mm−1

  • T = 298 K

  • 0.38 × 0.25 × 0.25 mm

Data collection
  • Stoe Stadi-4 diffractometer

  • Absorption correction: numerical (X-SHAPE; Stoe & Cie 1996[Stoe & Cie (1996). STADI4, X-RED and X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.]) Tmin = 0.300, Tmax = 0.422

  • 8235 measured reflections

  • 7237 independent reflections

  • 5972 reflections with I > 2σ(I)

  • Rint = 0.028

  • 3 standard reflections every 60 min intensity decay: 3.2%

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.082

  • S = 1.14

  • 7237 reflections

  • 490 parameters

  • 33 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.96 e Å−3

  • Δρmin = −1.26 e Å−3

Table 1
Selected geometric parameters (Å, °)

Pt—O1C 1.989 (4)
Pt—O2C 1.978 (4)
Pt—O3C 1.993 (4)
Pt—O4C 2.003 (4)
Pt—O5C 2.034 (4)
Pt—O6C 2.001 (4)
Mo1—O1C 2.327 (5)
Mo1—O6C 2.306 (5)
Mo1—O7B 1.954 (5)
Mo1—O12B 1.927 (5)
Mo2—O1C 2.317 (5)
Mo2—O2C 2.154 (4)
Mo2—O7B 1.894 (5)
Mo2—O8B 2.060 (5)
Mo3—O2C 2.163 (4)
Mo3—O3C 2.338 (4)
Mo3—O8B 2.047 (5)
Mo3—O9B 1.889 (5)
Mo4—O3C 2.323 (4)
Mo4—O4C 2.291 (4)
Mo4—O9B 1.979 (5)
Mo4—O10B 1.921 (5)
Mo5—O4C 2.328 (5)
Mo5—O5C 2.290 (5)
Mo5—O10B 1.935 (5)
Mo5—O11B 1.956 (4)
Mo6—O5C 2.302 (4)
Mo6—O6C 2.326 (5)
Mo6—O11B 1.946 (5)
Mo6—O12B 1.949 (5)
Mo2—O1C—Mo1 92.06 (17)
Mo2—O2C—Mo3 103.72 (16)
Mo4—O3C—Mo3 92.16 (16)
Mo4—O4C—Mo5 92.48 (16)
Mo5—O5C—Mo6 94.18 (16)
Mo1—O6C—Mo6 93.33 (17)
Mo2—O7B—Mo1 120.6 (2)
Mo3—O8B—Mo2 111.6 (2)
Mo3—O9B—Mo4 120.5 (2)
Mo4—O10B—Mo5 119.8 (2)
Mo6—O11B—Mo5 119.1 (2)
Mo1—O12B—Mo6 120.7 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1C—H1⋯O10Wi 0.74 (7) 1.89 (7) 2.620 (7) 174 (8)
O3C—H3⋯O7W 0.91 (8) 1.66 (8) 2.547 (7) 163 (7)
O4C—H4⋯O8W 0.79 (7) 1.82 (8) 2.594 (8) 166 (7)
O5C—H5⋯O9W 0.97 (6) 1.60 (6) 2.551 (8) 165 (7)
O6C—H6⋯O5Wii 0.83 (8) 1.75 (9) 2.576 (8) 179 (9)
O8B—H8⋯O11Biii 0.80 (7) 1.85 (7) 2.648 (6) 175 (7)
O1W—H1A⋯O2Cii 0.81 (8) 2.12 (8) 2.909 (8) 166 (13)
O1W—H1B⋯O9Biv 0.79 (8) 2.13 (9) 2.838 (8) 150 (14)
O2W—H2B⋯O24T 0.80 (8) 2.54 (14) 2.978 (9) 116 (13)
O3W—H3A⋯O18Tiv 0.88 (8) 2.54 (14) 2.975 (10) 111 (11)
O4W—H4B⋯O20Tv 0.85 (10) 2.3 (2) 2.792 (12) 113 (19)
O4W—H4A⋯O24T 0.82 (10) 2.39 (19) 2.957 (12) 127 (20)
O5W—H5B⋯O8Wii 0.96 2.08 2.958 (13) 151
O5W—H5A⋯O15Tvi 0.96 2.01 2.687 (8) 126
O6W—H6B⋯O19Tiv 0.88 (8) 2.09 (9) 2.921 (9) 158 (12)
O6W—H6A⋯O4W 0.98 (8) 1.90 (10) 2.788 (15) 148 (12)
O7W—H7B⋯O11W 0.75 (7) 2.03 (7) 2.730 (9) 155 (9)
O7W—H7A⋯O21Tiii 0.96 (7) 1.88 (7) 2.727 (7) 146 (7)
O8W—H8B⋯O10Wvii 0.80 (7) 2.05 (8) 2.840 (8) 167 (12)
O8W—H8A⋯O17Tviii 0.76 (7) 2.27 (10) 2.867 (9) 136 (12)
O9W—H9B⋯O12Bi 0.73 (8) 2.09 (10) 2.752 (8) 150 (14)
O9W—H9A⋯O6Wi 0.75 (8) 2.32 (11) 2.937 (10) 141 (13)
O10W—H10B⋯O7Wi 0.90 (7) 1.99 (7) 2.835 (8) 155 (9)
O10W—H10A⋯O23T 0.85 (7) 2.02 (7) 2.782 (8) 149 (9)
O11W—H11B⋯O10B 0.77 (8) 2.18 (9) 2.880 (8) 153 (14)
O11W—H11A⋯O18Tix 0.84 (7) 2.18 (8) 2.983 (8) 159 (12)
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) -x+1, -y+1, -z+1; (iii) [x, -y+1, z-{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (v) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vi) [-x+1, y, -z+{\script{1\over 2}}]; (vii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (viii) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ix) -x+2, -y+1, -z+1.

Data collection: STADI4 (Stoe & Cie, 1996[Stoe & Cie (1996). STADI4, X-RED and X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.]); cell refinement: STADI4; data reduction: X-RED (Stoe & Cie, 1996[Stoe & Cie (1996). STADI4, X-RED and X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR. Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In our previous studies we isolated the same polyanion, [H6PtMo6O24]2-, that is present in the title compound, (I), at various pH conditions; 1.60 (II; Lee & Joo, 2006b), 0.70 (III; Lee & Sasaki, 1994) and 0.48 (IV; Lee & Joo, 2006a). Structures (II, III) have the same space group, viz. C2/c, whereas the space group of (IV) is P1. The polyanions bear an inversion center in these three structures. The current study was carried out to confirm the presence of a highly protonated species that exists at very low pH.

The structure of the present crystals contains a crystallographically discrete [H6PMo6O24]2- polyanion (Fig. 1). All atoms in the polyanion are located in general positions and consequently the symmetry of the polyanion is C1. The O atoms of the polyoxometalate were designated as Ot (terminal MoO atom), Ob (O bridging µ2-O atom), and Oc3-O atom). The protonated O atoms in the polyanion were identified in difference Fourier maps and by using structural features as observed in the previously determined structures II & IV, viz. bond lengths of Mo–Oc(H) & Mo–Ob(H) units, bond angles of Mo–Oc(H)–Mo & Mo–Ob(H)–Mo units, and distances between Mo···Mo. As a result, the structure of (I) confirms the protonation of atoms O1c(H), O3c(H), O4c(H), O5c(H), O6c(H) and O8b(H).

The different bond-lengths and bond-angles in the [H6PtMo6O24]2- polyanion of protonated and unprotonated O atoms are compared in Table 1. The protonated O atoms of [H6PtMo6O24]2- in the structures (II), (III) and (IV) show the same protonation scheme, viz. four Oc(H) and two Ob(H) atoms are protonated. Therefore, the feature of the three-dimensional hydrogen bonding formation is very similar in the these polyanions, viz. the central PtO2(OH)4 polyhedron forms hydrogen bonds with neighbouring polyanions by four sets of Oc(H)···Ot and Ob(H)···Ot hydrogen bonds.

However, the protonation scheme of the polyanion in (I) is different, consisting of five Oc(H) and one Ob(H) protonated O atoms (Fig. 1). In contrast to the hydrogen bonding scheme in (II-IV), the protonated Oc atoms form various O–H···O hydrogen bonds with water molecules (Ow). Nevertheless, the polyanion is linearly connected by an O8b–H8···O11bi hydrogen bond (Fig.2 and Table 2).

The Na and K ions are coordinated by O atoms as [Na(Ow)5(Ot)]+ in the range 2.371 (7)-2.510 (9) Å, and [K1(Ot)4(Ow)2]+ and [K2(Ot)3(Ow)4]+ in the range 2.59 (1)-3.41 (1) Å. Bond valence sum calculations (BVS; Brown & Altermatt, 1985; Brese & O'Keeffe, 1991) for the K1 and K2 ions reveal a considerable undersaturation in terms of valence units which we ascribe to the disordered character of the metal positions.

Related literature top

For other crystal structures containing the [H6PtMo6O24]6- anion, see: Lee & Sasaki (1994); Lee & Joo (2006a,b). For background to the bond-valence method, see: Brown & Altermatt (1985); Brese & O'Keeffe (1991).

Experimental top

Crystals of the title compound were prepared by the reaction of Na2MoO4.2H2O and K2Pt(OH)6 at pH 0.20 as described in a previous report (Lee & Sasaki, 1994).

Refinement top

The Oc and Ob bound H atoms in the polyanion were located in difference Fourier maps and were freely refined except H5. H5 was refined with a distance restraint [O5c–H5 = 0.85 (10) Å]. All water molecules bound H atoms were located in difference Fourier maps and their positional parameters were refined with a distance restraint [O–H = 0.85 (10) Å, but O6w–6HA = 0.75 (10) Å] and an additional angle restraint; these H atoms were refined with an isotropic displacement parameter Uiso = 1.5Ueq(O). O5w bound H atoms were placed in calculated positions. They were included in the refinement using the riding-motion approximation, with Uiso(H) = 1.5 Ueq(O). K1 and K2 showed very large displacement parameters under consideration of full occupation. Refinement of the site occupation factors (s.o.f.) converged at values close to half-occupation. In the final refinement the s.o.f.'s were constrained to 0.5 and reasonable displacement parameters were eventually obtained.

Structure description top

In our previous studies we isolated the same polyanion, [H6PtMo6O24]2-, that is present in the title compound, (I), at various pH conditions; 1.60 (II; Lee & Joo, 2006b), 0.70 (III; Lee & Sasaki, 1994) and 0.48 (IV; Lee & Joo, 2006a). Structures (II, III) have the same space group, viz. C2/c, whereas the space group of (IV) is P1. The polyanions bear an inversion center in these three structures. The current study was carried out to confirm the presence of a highly protonated species that exists at very low pH.

The structure of the present crystals contains a crystallographically discrete [H6PMo6O24]2- polyanion (Fig. 1). All atoms in the polyanion are located in general positions and consequently the symmetry of the polyanion is C1. The O atoms of the polyoxometalate were designated as Ot (terminal MoO atom), Ob (O bridging µ2-O atom), and Oc3-O atom). The protonated O atoms in the polyanion were identified in difference Fourier maps and by using structural features as observed in the previously determined structures II & IV, viz. bond lengths of Mo–Oc(H) & Mo–Ob(H) units, bond angles of Mo–Oc(H)–Mo & Mo–Ob(H)–Mo units, and distances between Mo···Mo. As a result, the structure of (I) confirms the protonation of atoms O1c(H), O3c(H), O4c(H), O5c(H), O6c(H) and O8b(H).

The different bond-lengths and bond-angles in the [H6PtMo6O24]2- polyanion of protonated and unprotonated O atoms are compared in Table 1. The protonated O atoms of [H6PtMo6O24]2- in the structures (II), (III) and (IV) show the same protonation scheme, viz. four Oc(H) and two Ob(H) atoms are protonated. Therefore, the feature of the three-dimensional hydrogen bonding formation is very similar in the these polyanions, viz. the central PtO2(OH)4 polyhedron forms hydrogen bonds with neighbouring polyanions by four sets of Oc(H)···Ot and Ob(H)···Ot hydrogen bonds.

However, the protonation scheme of the polyanion in (I) is different, consisting of five Oc(H) and one Ob(H) protonated O atoms (Fig. 1). In contrast to the hydrogen bonding scheme in (II-IV), the protonated Oc atoms form various O–H···O hydrogen bonds with water molecules (Ow). Nevertheless, the polyanion is linearly connected by an O8b–H8···O11bi hydrogen bond (Fig.2 and Table 2).

The Na and K ions are coordinated by O atoms as [Na(Ow)5(Ot)]+ in the range 2.371 (7)-2.510 (9) Å, and [K1(Ot)4(Ow)2]+ and [K2(Ot)3(Ow)4]+ in the range 2.59 (1)-3.41 (1) Å. Bond valence sum calculations (BVS; Brown & Altermatt, 1985; Brese & O'Keeffe, 1991) for the K1 and K2 ions reveal a considerable undersaturation in terms of valence units which we ascribe to the disordered character of the metal positions.

For other crystal structures containing the [H6PtMo6O24]6- anion, see: Lee & Sasaki (1994); Lee & Joo (2006a,b). For background to the bond-valence method, see: Brown & Altermatt (1985); Brese & O'Keeffe (1991).

Computing details top

Data collection: STADI4 (Stoe & Cie, 1996); cell refinement: STADI4 (Stoe & Cie, 1996); data reduction: X-RED (Stoe & Cie, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the polyanion in compound (I). Displacement ellipsoids are drawn at the 50% probability level for all non-H atoms. The latter are displayed as spheres of arbitrary radius.
[Figure 2] Fig. 2. Polyhedral view of the Ob–H···Ob contact of the inter-anion hydrogen bond and OcH···Owhydrogen bonds shown as dashed lines. [Symmetry codes: (i) x, - y + 1, z - 1/2; (ii) - x + 1, - y + 1, - z + 1; (iii) - x + 3/2, - y + 3/2, - z + 1; (vi) x, - y + 1, z + 1/2.]
Monopotassium monosodium hexahydrogen α-hexamolybdoplatinate(IV) undecahydrate top
Crystal data top
KNa[H6PtMo6O24]·11H2OF(000) = 5344
Mr = 1421.04Dx = 3.003 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -C 2ycCell parameters from 25 reflections
a = 20.935 (2) Åθ = 9.6–10.3°
b = 18.535 (3) ŵ = 7.02 mm1
c = 17.775 (3) ÅT = 298 K
β = 114.30 (2)°Block, pale yellow
V = 6286.2 (18) Å30.38 × 0.25 × 0.25 mm
Z = 8
Data collection top
Stoe Stadi-4
diffractometer
5972 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.028
Graphite monochromatorθmax = 27.5°, θmin = 1.5°
ω/2–θ scansh = 227
Absorption correction: numerical
(X-SHAPE; Stoe & Cie 1996)
k = 2424
Tmin = 0.300, Tmax = 0.422l = 2321
8235 measured reflections3 standard reflections every 60 min
7237 independent reflections intensity decay: 3.2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: difference Fourier map
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.14 w = 1/[σ2(Fo2) + (0.0282P)2 + 43.9139P]
where P = (Fo2 + 2Fc2)/3
7237 reflections(Δ/σ)max = 0.001
490 parametersΔρmax = 0.96 e Å3
33 restraintsΔρmin = 1.26 e Å3
Crystal data top
KNa[H6PtMo6O24]·11H2OV = 6286.2 (18) Å3
Mr = 1421.04Z = 8
Monoclinic, C2/cMo Kα radiation
a = 20.935 (2) ŵ = 7.02 mm1
b = 18.535 (3) ÅT = 298 K
c = 17.775 (3) Å0.38 × 0.25 × 0.25 mm
β = 114.30 (2)°
Data collection top
Stoe Stadi-4
diffractometer
5972 reflections with I > 2σ(I)
Absorption correction: numerical
(X-SHAPE; Stoe & Cie 1996)
Rint = 0.028
Tmin = 0.300, Tmax = 0.4223 standard reflections every 60 min
8235 measured reflections intensity decay: 3.2%
7237 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03533 restraints
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.14 w = 1/[σ2(Fo2) + (0.0282P)2 + 43.9139P]
where P = (Fo2 + 2Fc2)/3
7237 reflectionsΔρmax = 0.96 e Å3
490 parametersΔρmin = 1.26 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pt0.755879 (11)0.504087 (12)0.501298 (14)0.01487 (6)
Mo10.60877 (3)0.60494 (3)0.40899 (4)0.02644 (13)
Mo20.64099 (3)0.46279 (3)0.31418 (3)0.02522 (13)
Mo30.78857 (3)0.36281 (3)0.40922 (4)0.02288 (12)
Mo40.90273 (3)0.40566 (3)0.60119 (4)0.02459 (13)
Mo50.86645 (3)0.54226 (3)0.69946 (3)0.02323 (12)
Mo60.71872 (3)0.63908 (3)0.60625 (4)0.02426 (13)
K10.4929 (4)0.7725 (2)0.2195 (4)0.092 (4)0.50
K20.5123 (4)0.7131 (4)0.7936 (5)0.114 (3)0.50
Na0.45373 (19)0.66261 (18)0.4760 (2)0.0478 (8)
O1C0.7062 (2)0.5568 (2)0.3956 (3)0.0209 (9)
H10.726 (4)0.583 (4)0.381 (5)0.02 (2)*
O2C0.7085 (2)0.4197 (2)0.4330 (3)0.0194 (9)
O3C0.8374 (2)0.4689 (2)0.4811 (3)0.0189 (9)
H30.866 (4)0.501 (4)0.471 (5)0.03 (2)*
O4C0.8038 (2)0.4515 (2)0.6085 (3)0.0185 (9)
H40.781 (4)0.429 (4)0.626 (4)0.022 (19)*
O5C0.8043 (2)0.5910 (2)0.5715 (3)0.0212 (9)
H50.830 (3)0.624 (4)0.551 (4)0.025 (19)*
O6C0.6747 (2)0.5377 (2)0.5240 (3)0.0215 (9)
H60.654 (4)0.509 (5)0.542 (5)0.04 (2)*
O7B0.5858 (2)0.5080 (3)0.3625 (3)0.0286 (10)
O8B0.7364 (2)0.4336 (3)0.3155 (3)0.0265 (10)
H80.747 (3)0.435 (4)0.277 (4)0.016 (17)*
O9B0.8324 (2)0.3398 (2)0.5227 (3)0.0264 (10)
O10B0.9231 (2)0.5009 (3)0.6477 (3)0.0279 (10)
O11B0.7729 (2)0.5689 (3)0.6895 (3)0.0258 (10)
O12B0.6770 (3)0.6662 (3)0.4900 (3)0.0310 (11)
O13T0.5397 (3)0.6145 (3)0.4351 (4)0.0463 (15)
O14T0.5911 (3)0.6567 (3)0.3234 (3)0.0448 (14)
O15T0.6253 (3)0.5154 (4)0.2295 (3)0.0504 (16)
O16T0.5949 (3)0.3850 (3)0.2793 (4)0.0476 (15)
O17T0.7403 (3)0.2868 (3)0.3706 (4)0.0409 (13)
O18T0.8564 (3)0.3585 (3)0.3792 (3)0.0365 (12)
O19T0.9696 (3)0.3948 (3)0.5710 (4)0.0408 (13)
O20T0.9220 (3)0.3524 (3)0.6861 (3)0.0433 (14)
O21T0.8880 (3)0.4880 (3)0.7839 (3)0.0403 (13)
O22T0.9118 (3)0.6211 (3)0.7340 (3)0.0398 (13)
O23T0.7642 (3)0.7167 (3)0.6445 (4)0.0423 (14)
O24T0.6480 (3)0.6418 (3)0.6303 (3)0.0419 (14)
O1W0.3734 (4)0.6928 (4)0.5338 (6)0.072 (2)
H1A0.357 (7)0.658 (5)0.547 (8)0.108*
H1B0.349 (6)0.727 (5)0.518 (9)0.108*
O2W0.5059 (4)0.5835 (6)0.5945 (5)0.089 (3)
H2A0.478 (6)0.607 (9)0.604 (9)0.133*
H2B0.541 (5)0.582 (8)0.636 (7)0.133*
O3W0.4069 (5)0.7211 (5)0.3363 (5)0.075 (2)
H3A0.394 (7)0.761 (5)0.306 (8)0.113*
H3B0.380 (7)0.692 (6)0.309 (8)0.113*
O4W0.6004 (9)0.7658 (7)0.6985 (7)0.151 (6)
H4A0.624 (11)0.729 (7)0.714 (14)0.227*
H4B0.624 (11)0.802 (8)0.726 (13)0.227*
O5W0.3899 (4)0.5535 (5)0.4228 (4)0.085 (3)
H5A0.41180.52700.39350.128*
H5B0.34270.56530.38590.128*
O6W0.5264 (4)0.7653 (4)0.5274 (6)0.071 (2)
H6A0.538 (7)0.755 (7)0.586 (5)0.106*
H6B0.501 (6)0.803 (5)0.526 (8)0.106*
O7W0.8968 (3)0.5657 (3)0.4306 (3)0.0335 (12)
H7A0.909 (4)0.560 (5)0.385 (4)0.050*
H7B0.929 (4)0.582 (5)0.465 (5)0.050*
O8W0.7388 (4)0.3605 (4)0.6632 (4)0.0536 (18)
H8A0.757 (6)0.335 (6)0.645 (7)0.080*
H8B0.749 (6)0.367 (6)0.711 (5)0.080*
O9W0.8666 (4)0.6922 (3)0.5311 (6)0.068 (2)
H9A0.904 (4)0.694 (7)0.537 (8)0.102*
H9B0.844 (6)0.723 (6)0.529 (9)0.102*
O10W0.7273 (3)0.8572 (3)0.6648 (3)0.0384 (13)
H10A0.729 (5)0.819 (4)0.639 (6)0.058*
H10B0.682 (4)0.870 (5)0.639 (6)0.058*
O11W0.9966 (3)0.5975 (5)0.5839 (4)0.065 (2)
H11A1.040 (4)0.599 (7)0.601 (7)0.098*
H11B0.982 (6)0.581 (7)0.613 (7)0.098*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt0.01848 (11)0.01434 (11)0.01480 (10)0.00019 (9)0.00989 (8)0.00024 (8)
Mo10.0277 (3)0.0272 (3)0.0253 (3)0.0088 (2)0.0118 (2)0.0026 (2)
Mo20.0240 (3)0.0335 (3)0.0178 (3)0.0001 (2)0.0084 (2)0.0043 (2)
Mo30.0284 (3)0.0189 (3)0.0263 (3)0.0011 (2)0.0163 (2)0.0031 (2)
Mo40.0230 (3)0.0280 (3)0.0255 (3)0.0061 (2)0.0128 (2)0.0037 (2)
Mo50.0232 (3)0.0303 (3)0.0176 (3)0.0037 (2)0.0098 (2)0.0032 (2)
Mo60.0325 (3)0.0199 (3)0.0252 (3)0.0021 (2)0.0168 (2)0.0031 (2)
K10.041 (4)0.039 (2)0.183 (10)0.008 (2)0.035 (6)0.025 (3)
K20.079 (4)0.102 (5)0.174 (8)0.040 (4)0.067 (6)0.056 (5)
Na0.055 (2)0.0396 (18)0.064 (2)0.0055 (16)0.0407 (18)0.0080 (17)
O1C0.026 (2)0.020 (2)0.019 (2)0.0016 (19)0.0117 (19)0.0037 (18)
O2C0.023 (2)0.020 (2)0.016 (2)0.0006 (17)0.0089 (17)0.0009 (17)
O3C0.021 (2)0.018 (2)0.024 (2)0.0002 (17)0.0147 (18)0.0002 (18)
O4C0.023 (2)0.020 (2)0.019 (2)0.0016 (18)0.0142 (18)0.0068 (18)
O5C0.027 (2)0.018 (2)0.024 (2)0.0026 (18)0.0154 (19)0.0044 (18)
O6C0.026 (2)0.021 (2)0.025 (2)0.0018 (19)0.0172 (19)0.0008 (19)
O7B0.022 (2)0.037 (3)0.027 (2)0.000 (2)0.0098 (19)0.003 (2)
O8B0.029 (2)0.036 (3)0.020 (2)0.002 (2)0.015 (2)0.002 (2)
O9B0.035 (3)0.017 (2)0.029 (2)0.0049 (19)0.016 (2)0.0032 (19)
O10B0.020 (2)0.038 (3)0.026 (2)0.009 (2)0.0107 (18)0.005 (2)
O11B0.032 (2)0.030 (3)0.022 (2)0.002 (2)0.017 (2)0.0037 (19)
O12B0.041 (3)0.022 (2)0.032 (3)0.007 (2)0.017 (2)0.006 (2)
O13T0.039 (3)0.054 (4)0.052 (4)0.012 (3)0.025 (3)0.008 (3)
O14T0.048 (3)0.042 (3)0.035 (3)0.010 (3)0.008 (3)0.012 (3)
O15T0.047 (3)0.081 (5)0.025 (3)0.026 (3)0.017 (3)0.015 (3)
O16T0.034 (3)0.059 (4)0.048 (3)0.015 (3)0.016 (3)0.029 (3)
O17T0.055 (4)0.024 (3)0.047 (3)0.008 (2)0.024 (3)0.012 (2)
O18T0.038 (3)0.042 (3)0.036 (3)0.008 (2)0.022 (2)0.001 (2)
O19T0.030 (3)0.047 (3)0.055 (3)0.006 (2)0.027 (3)0.005 (3)
O20T0.044 (3)0.049 (4)0.031 (3)0.011 (3)0.010 (2)0.015 (3)
O21T0.038 (3)0.060 (4)0.023 (2)0.010 (3)0.013 (2)0.012 (3)
O22T0.038 (3)0.044 (3)0.037 (3)0.018 (3)0.015 (2)0.016 (3)
O23T0.064 (4)0.020 (3)0.046 (3)0.008 (3)0.025 (3)0.009 (2)
O24T0.042 (3)0.054 (4)0.037 (3)0.012 (3)0.025 (3)0.001 (3)
O1W0.085 (5)0.031 (4)0.139 (7)0.015 (4)0.086 (6)0.021 (4)
O2W0.040 (4)0.134 (9)0.067 (5)0.022 (5)0.005 (4)0.044 (6)
O3W0.091 (6)0.064 (5)0.063 (5)0.017 (5)0.025 (5)0.004 (4)
O4W0.278 (19)0.086 (8)0.088 (8)0.070 (10)0.074 (10)0.009 (6)
O5W0.113 (6)0.110 (7)0.058 (4)0.082 (5)0.062 (5)0.047 (4)
O6W0.066 (5)0.045 (4)0.106 (6)0.000 (4)0.041 (5)0.011 (4)
O7W0.033 (3)0.040 (3)0.034 (3)0.012 (2)0.020 (2)0.003 (2)
O8W0.077 (5)0.052 (4)0.047 (4)0.028 (4)0.041 (4)0.012 (3)
O9W0.074 (5)0.030 (3)0.140 (7)0.012 (3)0.084 (6)0.022 (4)
O10W0.049 (3)0.034 (3)0.037 (3)0.002 (3)0.024 (3)0.003 (2)
O11W0.033 (3)0.113 (7)0.042 (4)0.021 (4)0.006 (3)0.020 (4)
Geometric parameters (Å, º) top
Mo1—Mo23.3426 (9)Mo4—O20T1.707 (5)
Mo1—Mo63.3690 (12)Mo5—O4C2.328 (5)
Mo2—Mo33.3968 (10)Mo5—O5C2.290 (5)
Mo3—Mo43.3577 (12)Mo5—O10B1.935 (5)
Mo4—Mo53.3363 (9)Mo5—O11B1.956 (4)
Mo5—Mo63.3635 (10)Mo5—O21T1.705 (5)
Pt—O1C1.989 (4)Mo5—O22T1.713 (5)
Pt—O2C1.978 (4)Mo6—O5C2.302 (4)
Pt—O3C1.993 (4)Mo6—O6C2.326 (5)
Pt—O4C2.003 (4)Mo6—O11B1.946 (5)
Pt—O5C2.034 (4)Mo6—O12B1.949 (5)
Pt—O6C2.001 (4)Mo6—O23T1.704 (5)
Mo1—O1C2.327 (5)Mo6—O24T1.702 (5)
Mo1—O6C2.306 (5)K1—O14Ti2.678 (8)
Mo1—O7B1.954 (5)K1—O14T3.020 (8)
Mo1—O12B1.927 (5)K1—O22Tii2.682 (9)
Mo1—O13T1.701 (5)K1—O22Tiii2.683 (8)
Mo1—O14T1.706 (5)K1—O9Wii3.368 (12)
Mo2—O1C2.317 (5)K1—O3W3.396 (14)
Mo2—O2C2.154 (4)K1—O3Wi2.831 (14)
Mo2—O7B1.894 (5)K2—O16Tiv2.594 (10)
Mo2—O8B2.060 (5)K2—O16Tv2.763 (8)
Mo2—O15T1.708 (6)K2—O20Tvi2.878 (9)
Mo2—O16T1.703 (6)K2—O20Tvii3.305 (10)
Mo3—O2C2.163 (4)K2—O1Wviii3.039 (13)
Mo3—O3C2.338 (4)K2—O2Wviii3.239 (14)
Mo3—O8B2.047 (5)K2—O4W3.13 (2)
Mo3—O9B1.889 (5)K2—O4Wviii2.61 (2)
Mo3—O17T1.705 (5)Na—O13T2.374 (6)
Mo3—O18T1.712 (5)Na—O1W2.371 (7)
Mo4—O3C2.323 (4)Na—O2W2.425 (9)
Mo4—O4C2.291 (4)Na—O3W2.510 (9)
Mo4—O9B1.979 (5)Na—O5W2.393 (7)
Mo4—O10B1.921 (5)Na—O6W2.373 (9)
Mo4—O19T1.706 (5)
Mo2—Mo1—Mo6118.66 (2)O12B—Mo6—O5C82.81 (18)
Mo1—Mo2—Mo3120.68 (3)O24T—Mo6—O6C91.2 (2)
Mo4—Mo3—Mo2119.85 (3)O23T—Mo6—O6C160.8 (2)
Mo5—Mo4—Mo3119.43 (2)O11B—Mo6—O6C83.89 (18)
Mo4—Mo5—Mo6120.55 (3)O12B—Mo6—O6C69.74 (18)
Mo5—Mo6—Mo1120.55 (3)O5C—Mo6—O6C70.70 (15)
O2C—Pt—O1C82.75 (18)Pt—O1C—Mo299.52 (19)
O2C—Pt—O3C83.14 (17)Pt—O1C—Mo1103.37 (19)
O1C—Pt—O3C98.28 (18)Pt—O2C—Mo2105.61 (19)
O2C—Pt—O6C96.73 (18)Pt—O2C—Mo3105.81 (18)
O1C—Pt—O6C83.14 (19)Pt—O3C—Mo4102.91 (17)
O3C—Pt—O6C178.53 (18)Pt—O3C—Mo399.17 (17)
O2C—Pt—O4C97.30 (17)Pt—O4C—Mo4103.71 (18)
O1C—Pt—O4C178.52 (18)Pt—O4C—Mo5103.15 (18)
O3C—Pt—O4C83.19 (17)Pt—O5C—Mo5103.48 (19)
O6C—Pt—O4C95.39 (18)Pt—O5C—Mo6102.98 (18)
O2C—Pt—O5C179.86 (18)Pt—O6C—Mo1103.74 (19)
O1C—Pt—O5C97.20 (19)Pt—O6C—Mo6103.20 (19)
O3C—Pt—O5C97.00 (17)Mo2—O1C—Mo192.06 (17)
O6C—Pt—O5C83.13 (18)Mo2—O2C—Mo3103.72 (16)
O4C—Pt—O5C82.74 (18)Mo4—O3C—Mo392.16 (16)
O13T—Mo1—O14T106.8 (3)Mo4—O4C—Mo592.48 (16)
O13T—Mo1—O12B100.7 (3)Mo5—O5C—Mo694.18 (16)
O14T—Mo1—O12B99.0 (3)Mo1—O6C—Mo693.33 (17)
O13T—Mo1—O7B97.1 (3)Mo2—O7B—Mo1120.6 (2)
O14T—Mo1—O7B102.4 (3)Mo3—O8B—Mo2111.6 (2)
O12B—Mo1—O7B146.8 (2)Mo3—O9B—Mo4120.5 (2)
O13T—Mo1—O6C94.6 (2)Mo4—O10B—Mo5119.8 (2)
O14T—Mo1—O6C157.8 (2)Mo6—O11B—Mo5119.1 (2)
O12B—Mo1—O6C70.55 (18)Mo1—O12B—Mo6120.7 (2)
O7B—Mo1—O6C80.28 (18)H1A—O1W—H1B118 (10)
O13T—Mo1—O1C161.4 (2)H2A—O2W—H2B107 (10)
O14T—Mo1—O1C90.1 (2)H3A—O3W—H3B103 (10)
O12B—Mo1—O1C83.76 (19)H4A—O4W—H4B110 (10)
O7B—Mo1—O1C71.17 (18)H5A—O5W—H5B109.5
O6C—Mo1—O1C69.71 (15)H6A—O6W—H6B93 (8)
O16T—Mo2—O15T106.7 (3)H7A—O7W—H7B106 (7)
O16T—Mo2—O7B100.3 (2)H8A—O8W—H8B126 (10)
O15T—Mo2—O7B102.4 (2)H9A—O9W—H9B126 (10)
O16T—Mo2—O8B100.5 (2)H10A—O10W—H10B103 (7)
O15T—Mo2—O8B89.7 (2)H11A—O11W—H11B117 (10)
O7B—Mo2—O8B151.67 (19)O14Ti—K1—O22Tii104.4 (4)
O16T—Mo2—O2C95.1 (2)O14Ti—K1—O22Tiii174.0 (4)
O15T—Mo2—O2C152.4 (2)O22Tii—K1—O22Tiii81.4 (3)
O7B—Mo2—O2C89.79 (18)O14Ti—K1—O3Wi97.1 (3)
O8B—Mo2—O2C69.47 (17)O22Tii—K1—O3Wi150.6 (4)
O16T—Mo2—O1C164.6 (2)O22Tiii—K1—O3Wi77.9 (3)
O15T—Mo2—O1C88.4 (3)O14Ti—K1—O14T78.8 (3)
O7B—Mo2—O1C72.37 (18)O22Tii—K1—O14T139.7 (3)
O8B—Mo2—O1C82.60 (18)O22Tiii—K1—O14T95.8 (3)
O2C—Mo2—O1C71.70 (16)O3Wi—K1—O14T63.8 (3)
O17T—Mo3—O18T105.4 (3)O14Ti—K1—O9Wii73.6 (2)
O17T—Mo3—O9B100.9 (2)O22Tii—K1—O9Wii71.6 (2)
O18T—Mo3—O9B102.8 (2)O22Tiii—K1—O9Wii110.1 (3)
O17T—Mo3—O8B99.9 (2)O3Wi—K1—O9Wii96.2 (3)
O18T—Mo3—O8B90.6 (2)O14T—K1—O9Wii143.5 (2)
O9B—Mo3—O8B151.14 (19)O14Ti—K1—O3W59.9 (3)
O17T—Mo3—O2C95.9 (2)O22Tii—K1—O3W68.4 (3)
O18T—Mo3—O2C153.2 (2)O22Tiii—K1—O3W122.2 (3)
O9B—Mo3—O2C88.67 (18)O3Wi—K1—O3W140.8 (4)
O8B—Mo3—O2C69.52 (17)O14T—K1—O3W80.0 (2)
O17T—Mo3—O3C165.5 (2)O9Wii—K1—O3W105.4 (3)
O18T—Mo3—O3C88.7 (2)O16Tiv—K2—O4Wviii157.2 (4)
O9B—Mo3—O3C72.29 (18)O16Tiv—K2—O16Tv86.4 (3)
O8B—Mo3—O3C82.70 (18)O4Wviii—K2—O16Tv72.2 (3)
O2C—Mo3—O3C71.54 (15)O16Tiv—K2—O20Tvi109.7 (3)
O19T—Mo4—O20T106.5 (3)O4Wviii—K2—O20Tvi93.1 (3)
O19T—Mo4—O10B100.3 (2)O16Tv—K2—O20Tvi154.7 (4)
O20T—Mo4—O10B102.8 (3)O16Tiv—K2—O1Wviii74.5 (3)
O19T—Mo4—O9B100.0 (2)O4Wviii—K2—O1Wviii110.2 (4)
O20T—Mo4—O9B95.9 (2)O16Tv—K2—O1Wviii122.8 (3)
O10B—Mo4—O9B147.10 (19)O20Tvi—K2—O1Wviii81.2 (2)
O19T—Mo4—O4C160.1 (2)O16Tiv—K2—O4W66.4 (3)
O20T—Mo4—O4C93.1 (2)O4Wviii—K2—O4W131.3 (5)
O10B—Mo4—O4C71.40 (17)O16Tv—K2—O4W119.9 (4)
O9B—Mo4—O4C80.87 (17)O20Tvi—K2—O4W55.2 (3)
O19T—Mo4—O3C91.1 (2)O1Wviii—K2—O4W100.9 (3)
O20T—Mo4—O3C160.0 (2)O16Tiv—K2—O2Wviii78.0 (3)
O10B—Mo4—O3C82.77 (18)O4Wviii—K2—O2Wviii84.7 (3)
O9B—Mo4—O3C71.18 (17)O16Tv—K2—O2Wviii61.4 (2)
O4C—Mo4—O3C70.19 (14)O20Tvi—K2—O2Wviii139.4 (3)
O21T—Mo5—O22T106.3 (3)O1Wviii—K2—O2Wviii62.0 (2)
O21T—Mo5—O10B101.2 (2)O4W—K2—O2Wviii143.9 (4)
O22T—Mo5—O10B98.7 (2)O16Tiv—K2—O20Tvii137.5 (3)
O21T—Mo5—O11B96.9 (2)O4Wviii—K2—O20Tvii54.8 (3)
O22T—Mo5—O11B101.8 (2)O16Tv—K2—O20Tvii94.7 (3)
O10B—Mo5—O11B147.60 (19)O20Tvi—K2—O20Tvii60.1 (3)
O21T—Mo5—O5C160.5 (2)O1Wviii—K2—O20Tvii134.9 (3)
O22T—Mo5—O5C91.4 (2)O4W—K2—O20Tvii76.6 (3)
O10B—Mo5—O5C83.82 (18)O2Wviii—K2—O20Tvii138.6 (3)
O11B—Mo5—O5C70.87 (17)O1W—Na—O6W95.8 (3)
O21T—Mo5—O4C93.1 (2)O1W—Na—O13T169.6 (3)
O22T—Mo5—O4C159.4 (2)O6W—Na—O13T88.4 (3)
O10B—Mo5—O4C70.36 (17)O1W—Na—O5W89.5 (3)
O11B—Mo5—O4C82.08 (18)O6W—Na—O5W174.4 (3)
O5C—Mo5—O4C70.60 (15)O13T—Na—O5W86.1 (3)
O24T—Mo6—O23T106.0 (3)O1W—Na—O2W85.0 (3)
O24T—Mo6—O11B97.1 (2)O6W—Na—O2W99.4 (4)
O23T—Mo6—O11B101.9 (2)O13T—Na—O2W85.0 (3)
O24T—Mo6—O12B101.6 (2)O5W—Na—O2W79.1 (3)
O23T—Mo6—O12B97.9 (2)O1W—Na—O3W105.6 (3)
O11B—Mo6—O12B147.71 (19)O6W—Na—O3W87.8 (3)
O24T—Mo6—O5C158.8 (2)O13T—Na—O3W84.0 (3)
O23T—Mo6—O5C93.7 (2)O5W—Na—O3W92.7 (3)
O11B—Mo6—O5C70.77 (17)O2W—Na—O3W166.7 (4)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x1/2, y+3/2, z1/2; (iii) x+3/2, y+3/2, z+1; (iv) x, y+1, z+1/2; (v) x+1, y+1, z+1; (vi) x+3/2, y+1/2, z+3/2; (vii) x1/2, y+1/2, z; (viii) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1C—H1···O10Wiii0.74 (7)1.89 (7)2.620 (7)174 (8)
O3C—H3···O7W0.91 (8)1.66 (8)2.547 (7)163 (7)
O4C—H4···O8W0.79 (7)1.82 (8)2.594 (8)166 (7)
O5C—H5···O9W0.97 (6)1.60 (6)2.551 (8)165 (7)
O6C—H6···O5Wv0.83 (8)1.75 (9)2.576 (8)179 (9)
O8B—H8···O11Bix0.80 (7)1.85 (7)2.648 (6)175 (7)
O1W—H1A···O2Cv0.81 (8)2.12 (8)2.909 (8)166 (13)
O1W—H1B···O9Bvii0.79 (8)2.13 (9)2.838 (8)150 (14)
O2W—H2B···O24T0.80 (8)2.54 (14)2.978 (9)116 (13)
O3W—H3A···O18Tvii0.88 (8)2.54 (14)2.975 (10)111 (11)
O4W—H4B···O20Tvi0.85 (10)2.3 (2)2.792 (12)113 (19)
O4W—H4A···O24T0.82 (10)2.39 (19)2.957 (12)127 (20)
O5W—H5B···O8Wv0.962.082.958 (13)151
O5W—H5A···O15Ti0.962.012.687 (8)126
O6W—H6B···O19Tvii0.88 (8)2.09 (9)2.921 (9)158 (12)
O6W—H6A···O4W0.98 (8)1.90 (10)2.788 (15)148 (12)
O7W—H7B···O11W0.75 (7)2.03 (7)2.730 (9)155 (9)
O7W—H7A···O21Tix0.96 (7)1.88 (7)2.727 (7)146 (7)
O8W—H8B···O10Wx0.80 (7)2.05 (8)2.840 (8)167 (12)
O8W—H8A···O17Txi0.76 (7)2.27 (10)2.867 (9)136 (12)
O9W—H9B···O12Biii0.73 (8)2.09 (10)2.752 (8)150 (14)
O9W—H9A···O6Wiii0.75 (8)2.32 (11)2.937 (10)141 (13)
O10W—H10B···O7Wiii0.90 (7)1.99 (7)2.835 (8)155 (9)
O10W—H10A···O23T0.85 (7)2.02 (7)2.782 (8)149 (9)
O11W—H11B···O10B0.77 (8)2.18 (9)2.880 (8)153 (14)
O11W—H11A···O18Txii0.84 (7)2.18 (8)2.983 (8)159 (12)
Symmetry codes: (i) x+1, y, z+1/2; (iii) x+3/2, y+3/2, z+1; (v) x+1, y+1, z+1; (vi) x+3/2, y+1/2, z+3/2; (vii) x1/2, y+1/2, z; (ix) x, y+1, z1/2; (x) x+3/2, y1/2, z+3/2; (xi) x+3/2, y+1/2, z+1; (xii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaKNa[H6PtMo6O24]·11H2O
Mr1421.04
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)20.935 (2), 18.535 (3), 17.775 (3)
β (°) 114.30 (2)
V3)6286.2 (18)
Z8
Radiation typeMo Kα
µ (mm1)7.02
Crystal size (mm)0.38 × 0.25 × 0.25
Data collection
DiffractometerStoe Stadi-4
Absorption correctionNumerical
(X-SHAPE; Stoe & Cie 1996)
Tmin, Tmax0.300, 0.422
No. of measured, independent and
observed [I > 2σ(I)] reflections
8235, 7237, 5972
Rint0.028
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.082, 1.14
No. of reflections7237
No. of parameters490
No. of restraints33
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.0282P)2 + 43.9139P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.96, 1.26

Computer programs: STADI4 (Stoe & Cie, 1996), X-RED (Stoe & Cie, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Selected geometric parameters (Å, º) top
Pt—O1C1.989 (4)Mo3—O3C2.338 (4)
Pt—O2C1.978 (4)Mo3—O8B2.047 (5)
Pt—O3C1.993 (4)Mo3—O9B1.889 (5)
Pt—O4C2.003 (4)Mo4—O3C2.323 (4)
Pt—O5C2.034 (4)Mo4—O4C2.291 (4)
Pt—O6C2.001 (4)Mo4—O9B1.979 (5)
Mo1—O1C2.327 (5)Mo4—O10B1.921 (5)
Mo1—O6C2.306 (5)Mo5—O4C2.328 (5)
Mo1—O7B1.954 (5)Mo5—O5C2.290 (5)
Mo1—O12B1.927 (5)Mo5—O10B1.935 (5)
Mo2—O1C2.317 (5)Mo5—O11B1.956 (4)
Mo2—O2C2.154 (4)Mo6—O5C2.302 (4)
Mo2—O7B1.894 (5)Mo6—O6C2.326 (5)
Mo2—O8B2.060 (5)Mo6—O11B1.946 (5)
Mo3—O2C2.163 (4)Mo6—O12B1.949 (5)
Mo2—O1C—Mo192.06 (17)Mo2—O7B—Mo1120.6 (2)
Mo2—O2C—Mo3103.72 (16)Mo3—O8B—Mo2111.6 (2)
Mo4—O3C—Mo392.16 (16)Mo3—O9B—Mo4120.5 (2)
Mo4—O4C—Mo592.48 (16)Mo4—O10B—Mo5119.8 (2)
Mo5—O5C—Mo694.18 (16)Mo6—O11B—Mo5119.1 (2)
Mo1—O6C—Mo693.33 (17)Mo1—O12B—Mo6120.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1C—H1···O10Wi0.74 (7)1.89 (7)2.620 (7)174 (8)
O3C—H3···O7W0.91 (8)1.66 (8)2.547 (7)163 (7)
O4C—H4···O8W0.79 (7)1.82 (8)2.594 (8)166 (7)
O5C—H5···O9W0.97 (6)1.60 (6)2.551 (8)165 (7)
O6C—H6···O5Wii0.83 (8)1.75 (9)2.576 (8)179 (9)
O8B—H8···O11Biii0.80 (7)1.85 (7)2.648 (6)175 (7)
O1W—H1A···O2Cii0.81 (8)2.12 (8)2.909 (8)166 (13)
O1W—H1B···O9Biv0.79 (8)2.13 (9)2.838 (8)150 (14)
O2W—H2B···O24T0.80 (8)2.54 (14)2.978 (9)116 (13)
O3W—H3A···O18Tiv0.88 (8)2.54 (14)2.975 (10)111 (11)
O4W—H4B···O20Tv0.85 (10)2.3 (2)2.792 (12)113 (19)
O4W—H4A···O24T0.82 (10)2.39 (19)2.957 (12)127 (20)
O5W—H5B···O8Wii0.962.082.958 (13)150.8
O5W—H5A···O15Tvi0.962.012.687 (8)126.1
O6W—H6B···O19Tiv0.88 (8)2.09 (9)2.921 (9)158 (12)
O6W—H6A···O4W0.98 (8)1.90 (10)2.788 (15)148 (12)
O7W—H7B···O11W0.75 (7)2.03 (7)2.730 (9)155 (9)
O7W—H7A···O21Tiii0.96 (7)1.88 (7)2.727 (7)146 (7)
O8W—H8B···O10Wvii0.80 (7)2.05 (8)2.840 (8)167 (12)
O8W—H8A···O17Tviii0.76 (7)2.27 (10)2.867 (9)136 (12)
O9W—H9B···O12Bi0.73 (8)2.09 (10)2.752 (8)150 (14)
O9W—H9A···O6Wi0.75 (8)2.32 (11)2.937 (10)141 (13)
O10W—H10B···O7Wi0.90 (7)1.99 (7)2.835 (8)155 (9)
O10W—H10A···O23T0.85 (7)2.02 (7)2.782 (8)149 (9)
O11W—H11B···O10B0.77 (8)2.18 (9)2.880 (8)153 (14)
O11W—H11A···O18Tix0.84 (7)2.18 (8)2.983 (8)159 (12)
Symmetry codes: (i) x+3/2, y+3/2, z+1; (ii) x+1, y+1, z+1; (iii) x, y+1, z1/2; (iv) x1/2, y+1/2, z; (v) x+3/2, y+1/2, z+3/2; (vi) x+1, y, z+1/2; (vii) x+3/2, y1/2, z+3/2; (viii) x+3/2, y+1/2, z+1; (ix) x+2, y+1, z+1.
 

Acknowledgements

This work was supported by the Pukyong National University Research Fund in 2008 (PK–2008–018).

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR. Bonn, Germany.  Google Scholar
First citationBrese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLee, U. & Joo, H.-C. (2006a). Acta Cryst. E62, i231–i233.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLee, U. & Joo, H.-C. (2006b). Acta Cryst. E62, i241–i243.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLee, U. & Sasaki, Y. (1994). Bull. Korean Chem. Soc. 15, 37–45.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1996). STADI4, X-RED and X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds