metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages m26-m27

Di­aqua-1κO,2κO-(2,2′-bi-1H-imidazole-1κ2N3,N3′)(oxalato-2κ2O1,O2)di-μ-oxido-κ4O:O-dioxido-1κO,2κO-dimolyb­denum(V) trihydrate

aAdvanced Material Institute of Research, Department of Chemistry and Chemical Engineering, ShanDong Institute of Education, Jinan, 250013, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, People's Republic of China
*Correspondence e-mail: xiutangzhang@yahoo.com.cn

(Received 23 November 2009; accepted 3 December 2009; online 9 December 2009)

In the title compound, [Mo2(C2O4)O4(C6H6N4)(H2O)2]·3H2O, the coordination polyhedra for both Mo(V) atoms consist of two bridging O atoms, two atoms of the chelating ligand (oxalate or diimidazole), a terminal O atom and one H2O mol­ecule. The two distorted octa­hedrally coordinated Mo(V) atoms are linked together via O—O edge-sharing and Mo—Mo inter­actions with a Mo—Mo bond length of 2.564 (5) Å. Uncoordinated water mol­ecules are situated in the voids of the crystal structure. N—H⋯O and O—H⋯O hydrogen bonding between the neutral mol­ecules and the water mol­ecules lead to a consolidation of the structure.

Related literature

For background to polyoxometalates, see: Pope & Müller (1991[Pope, M. T. & Müller, A. (1991). Angew. Chem. Int. Ed. 30, 34-38.]). For polyoxometalates modified with amines, see: Zhang, Dou et al. (2009[Zhang, X. T., Dou, J. M., Wei, P. H., Li, D. C., Li, B., Shi, C. W. & Hu, B. (2009). Inorg. Chim. Acta, 362, 3325-3332.]); Zhang, Wei et al. (2009[Zhang, X. T., Wei, P. H., Sun, D. F., Ni, Z. H., Dou, J. M., Li, B., Shi, C. W. & Hu, B. (2009). Cryst. Growth Des. 9, 4424-4428.]).

[Scheme 1]

Experimental

Crystal data
  • [Mo2(C2O4)O4(C6H6N4)(H2O)2]·3H2O

  • Mr = 568.13

  • Monoclinic, P 21 /c

  • a = 10.7509 (16) Å

  • b = 14.517 (2) Å

  • c = 11.3661 (17) Å

  • β = 92.306 (2)°

  • V = 1772.4 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.49 mm−1

  • T = 273 K

  • 0.12 × 0.10 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.841, Tmax = 0.890

  • 11601 measured reflections

  • 3099 independent reflections

  • 2820 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.059

  • S = 1.00

  • 3099 reflections

  • 275 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Selected bond lengths (Å)

Mo1—O8 1.68 (3)
Mo1—O7 1.94 (3)
Mo1—O6 1.94 (3)
Mo1—O1W 2.13 (3)
Mo1—N3 2.20 (4)
Mo1—N1 2.31 (4)
Mo2—O5 1.68 (3)
Mo2—O6 1.94 (3)
Mo2—O7 1.94 (3)
Mo2—O1 2.11 (3)
Mo2—O2W 2.16 (3)
Mo2—O4 2.23 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O4i 0.86 2.02 2.84 (5) 160
N4—H4A⋯O3i 0.86 1.90 2.76 (5) 172
O1W—H1W⋯O6ii 0.8 (5) 1.9 (4) 2.66 (5) 168
O1W—H2W⋯O4Wiii 0.8 (4) 1.8 (5) 2.56 (6) 170
O2W—H4W⋯O7iv 0.8 (4) 1.8 (5) 2.65 (5) 172
O3W—H5W⋯O2v 0.8 (4) 2.8 (7) 2.94 (7) 92
O5W—H9W⋯O3Wvi 0.9 (5) 2.1 (6) 2.93 (7) 158
O2W—H3W⋯O3W 0.8 (2) 1.9 (3) 2.69 (7) 160
Symmetry codes: (i) -x+1, -y+1, -z; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) x, y, z-1; (iv) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (v) -x, -y+1, -z; (vi) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The design and synthesis of polyoxometalates has attracted continuous research interest not only because of their appealing structural and topological novelties, but also due to their interesting optical, electronic, magnetic, and catalytic properties, as well as their potential medical applications (Pope et al., 1991). In our group, organic amines, such as 3-(2-pyridyl)pyrazole and pyrazine, are used to effectively modify polyoxomolybdates (Zhang, Dou et al., 2009); Zhang, Wei et al., 2009). Here, we describe the synthesis and structural characterization of the title compound.

As shown in Figure 1, the asymmetric unit contains two Mo(V) ions, one of which is chelated by one diimidazole ligand, and the other chelated by one oxalate anion. Both Mo(V) ions are coordinated by one associated water molecule and one terminal oxygen atom. The two Mo(V) ions are linked together by two µ-oxygen atoms and by Mo—Mo bonding (2.564 (5) Å). Moreover, three uncoordinated water molecules are found in the voids of the crystal packing. Hydrogen bonding interactions between the Mo-containing molecule and water molecules further consolidates the structure (Fig. 2; Table 2).

Related literature top

For background to polyoxometalates, see: Pope & Müller (1991). For polyoxometalates modified with amines, see: Zhang, Dou et al. (2009); Zhang, Wei et al. (2009).

Experimental top

A mixture of diimidazole (1 mmoL), molybdenum trioxide (1 mmoL), and oxalic acid (1 mmoL) in 10 ml distilled water were sealed in a 25 ml Teflon-lined stainless steel autoclave which was kept at 433 K for three days. Colorless crystals suitable for the X-ray diffraction study were obtained. Anal. Calc. for C8H14Mo2N4O13: C 16.96, H 2.47, N 9.89%; Found: C 16.85, H 2.40, N 9.78%.

Refinement top

All hydrogen atoms bound to C or N atoms were refined using a riding model with a distance C—H = 0.93 Å (N—H = 0.86 Å) and Uiso = 1.2Ueq (C, N). The H atoms of the water molecules were located from difference density maps and were refined with distance restraints of d(H–H) = 1.38 (2) Å, d(O—H) = 0.8 (2) Å, and with a fixed Uiso of 0.08 Å2.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level; H atoms are given as spheres of arbitrary radius.
[Figure 2] Fig. 2. The packing diagram of the title compound with hydrogen bonds (dashed lines).
Diaqua-1κO,2κO-(2,2'-bi-1H-imidazole- 1κ2N3,N3')(oxalato-2κ2O1,O2)di- µ-oxido-κ4O:O-dioxido-1κO,2κO-dimolybdenum(V) trihydrate top
Crystal data top
[Mo2(C2O4)O4(C6H6N4)(H2O)2]·3H2OF(000) = 1120
Mr = 568.13Dx = 2.129 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3099 reflections
a = 10.7509 (16) Åθ = 1.9–25.0°
b = 14.517 (2) ŵ = 1.49 mm1
c = 11.3661 (17) ÅT = 273 K
β = 92.306 (2)°Block, colorless
V = 1772.4 (5) Å30.12 × 0.10 × 0.08 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3099 independent reflections
Radiation source: fine-focus sealed tube2820 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
phi and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1212
Tmin = 0.841, Tmax = 0.890k = 1717
11601 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.059H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.036P)2 + 1.2494P]
where P = (Fo2 + 2Fc2)/3
3099 reflections(Δ/σ)max = 0.001
275 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
[Mo2(C2O4)O4(C6H6N4)(H2O)2]·3H2OV = 1772.4 (5) Å3
Mr = 568.13Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.7509 (16) ŵ = 1.49 mm1
b = 14.517 (2) ÅT = 273 K
c = 11.3661 (17) Å0.12 × 0.10 × 0.08 mm
β = 92.306 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
3099 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2820 reflections with I > 2σ(I)
Tmin = 0.841, Tmax = 0.890Rint = 0.020
11601 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0210 restraints
wR(F2) = 0.059H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.48 e Å3
3099 reflectionsΔρmin = 0.36 e Å3
275 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.4186 (3)0.2145 (3)0.0209 (3)0.0233 (14)
Mo20.2035 (4)0.2602 (3)0.0911 (3)0.0250 (14)
C10.659 (4)0.326 (3)0.056 (4)0.026 (10)
C20.591 (4)0.381 (3)0.030 (4)0.025 (10)
C30.436 (4)0.411 (3)0.151 (4)0.030 (10)
H30.35980.40760.19270.036*
C40.523 (5)0.478 (3)0.163 (4)0.033 (11)
H40.51680.52780.21460.040*
C50.788 (5)0.267 (4)0.188 (5)0.038 (12)
H50.85650.25860.23950.045*
C60.691 (4)0.208 (3)0.170 (4)0.033 (11)
H60.68190.15200.20780.040*
C70.108 (4)0.427 (3)0.044 (4)0.028 (10)
C80.007 (4)0.352 (3)0.060 (4)0.030 (10)
N10.479 (3)0.351 (3)0.066 (3)0.026 (8)
N20.620 (4)0.458 (3)0.087 (3)0.029 (9)
H20.68810.48890.07770.035*
N30.609 (4)0.246 (3)0.086 (3)0.028 (9)
N40.767 (3)0.341 (3)0.115 (3)0.031 (9)
H4A0.81370.38860.10910.038*
O10.028 (3)0.279 (2)0.004 (3)0.032 (8)
O20.084 (3)0.364 (3)0.125 (3)0.042 (9)
O30.100 (3)0.497 (2)0.103 (3)0.040 (8)
O40.195 (3)0.407 (2)0.032 (3)0.029 (7)
O50.161 (3)0.160 (2)0.149 (3)0.040 (8)
O60.370 (3)0.288 (2)0.154 (3)0.028 (7)
O70.261 (3)0.232 (2)0.065 (3)0.028 (7)
O80.431 (3)0.106 (2)0.070 (3)0.037 (8)
O1W0.488 (3)0.171 (3)0.143 (3)0.038 (8)
O2W0.135 (3)0.328 (2)0.245 (3)0.037 (8)
O3W0.078 (6)0.499 (4)0.315 (5)0.081 (16)
O4W0.678 (4)0.065 (3)0.860 (4)0.050 (10)
O5W0.905 (4)0.104 (3)0.965 (4)0.065 (12)
H1W0.46 (5)0.18 (5)0.21 (3)0.080*
H2W0.55 (4)0.14 (4)0.15 (5)0.080*
H3W0.12 (6)0.384 (14)0.25 (3)0.080*
H4W0.18 (6)0.31 (4)0.30 (4)0.080*
H7W0.65 (5)0.02 (3)0.89 (6)0.080*
H8W0.74 (4)0.08 (4)0.90 (5)0.080*
H9W0.93 (6)0.08 (5)1.03 (3)0.080*
H10W0.94 (6)0.08 (5)0.91 (3)0.080*
H5W0.15 (2)0.50 (6)0.29 (6)0.080*
H6W0.03 (5)0.52 (6)0.27 (5)0.1 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.028 (2)0.022 (2)0.020 (2)0.0018 (15)0.0015 (16)0.0013 (15)
Mo20.026 (2)0.027 (2)0.022 (2)0.0032 (15)0.0012 (16)0.0014 (15)
C10.03 (2)0.03 (2)0.02 (2)0.000 (19)0.001 (18)0.001 (19)
C20.03 (2)0.02 (2)0.02 (2)0.002 (18)0.001 (18)0.001 (18)
C30.03 (3)0.03 (2)0.03 (2)0.00 (2)0.01 (2)0.002 (19)
C40.04 (3)0.03 (2)0.03 (2)0.00 (2)0.00 (2)0.01 (2)
C50.03 (3)0.05 (3)0.04 (3)0.01 (2)0.01 (2)0.01 (2)
C60.03 (3)0.03 (3)0.03 (3)0.01 (2)0.00 (2)0.01 (2)
C70.03 (2)0.03 (3)0.02 (2)0.00 (2)0.002 (19)0.002 (19)
C80.03 (3)0.03 (3)0.03 (2)0.00 (2)0.00 (2)0.00 (2)
N10.03 (2)0.024 (19)0.024 (19)0.001 (16)0.002 (16)0.002 (15)
N20.03 (2)0.03 (2)0.03 (2)0.007 (17)0.001 (17)0.003 (16)
N30.03 (2)0.03 (2)0.03 (2)0.001 (16)0.001 (17)0.005 (16)
N40.03 (2)0.03 (2)0.03 (2)0.005 (17)0.003 (17)0.005 (18)
O10.027 (17)0.031 (18)0.038 (19)0.006 (14)0.003 (15)0.004 (15)
O20.038 (19)0.04 (2)0.05 (2)0.004 (16)0.019 (17)0.000 (17)
O30.04 (2)0.032 (19)0.04 (2)0.007 (16)0.008 (16)0.010 (16)
O40.027 (16)0.027 (17)0.031 (17)0.004 (13)0.005 (14)0.000 (14)
O50.04 (2)0.04 (2)0.04 (2)0.007 (16)0.004 (16)0.009 (17)
O60.028 (17)0.033 (18)0.024 (16)0.002 (14)0.002 (13)0.002 (13)
O70.031 (17)0.031 (17)0.022 (16)0.003 (14)0.003 (13)0.001 (13)
O80.04 (2)0.027 (18)0.038 (19)0.001 (15)0.001 (16)0.004 (15)
O1W0.05 (2)0.04 (2)0.024 (17)0.016 (17)0.002 (15)0.003 (16)
O2W0.04 (2)0.05 (2)0.025 (17)0.009 (17)0.000 (15)0.002 (15)
O3W0.12 (4)0.06 (3)0.06 (3)0.03 (3)0.02 (3)0.00 (3)
O4W0.04 (2)0.04 (2)0.07 (3)0.001 (18)0.01 (2)0.01 (2)
O5W0.06 (3)0.06 (3)0.07 (3)0.01 (2)0.01 (3)0.00 (3)
Geometric parameters (Å, º) top
Mo1—O81.68 (3)C5—C61.35 (7)
Mo1—O71.94 (3)C5—N41.37 (6)
Mo1—O61.94 (3)C5—H50.9300
Mo1—O1W2.13 (3)C6—N31.39 (6)
Mo1—N32.20 (4)C6—H60.9300
Mo1—N12.31 (4)C7—O31.22 (6)
Mo1—Mo22.564 (5)C7—O41.28 (5)
Mo2—O51.68 (3)C7—C81.55 (6)
Mo2—O61.94 (3)C8—O21.22 (6)
Mo2—O71.94 (3)C8—O11.29 (6)
Mo2—O12.11 (3)N2—H20.8600
Mo2—O2W2.16 (3)N4—H4A0.8600
Mo2—O42.23 (3)O1W—H1W0.8 (5)
C1—N31.33 (6)O1W—H2W0.8 (4)
C1—N41.34 (6)O2W—H3W0.82 (16)
C1—C21.44 (6)O2W—H4W0.8 (6)
C2—N11.33 (5)O3W—H5W0.8 (4)
C2—N21.33 (6)O3W—H6W0.8 (7)
C3—C41.35 (7)O4W—H7W0.8 (5)
C3—N11.37 (6)O4W—H8W0.8 (6)
C3—H30.9300O5W—H9W0.9 (5)
C4—N21.37 (6)O5W—H10W0.8 (5)
C4—H40.9300
O8—Mo1—O7110.2 (15)N4—C1—C2131 (4)
O8—Mo1—O6106.3 (15)N1—C2—N2111 (4)
O7—Mo1—O693.4 (13)N1—C2—C1117 (4)
O8—Mo1—O1W89.1 (16)N2—C2—C1132 (4)
O7—Mo1—O1W85.9 (13)C4—C3—N1109 (4)
O6—Mo1—O1W163.7 (14)C4—C3—H3125.7
O8—Mo1—N391.4 (15)N1—C3—H3125.7
O7—Mo1—N3158.0 (14)C3—C4—N2107 (4)
O6—Mo1—N384.3 (14)C3—C4—H4126.3
O1W—Mo1—N390.2 (14)N2—C4—H4126.3
O8—Mo1—N1157.9 (15)C6—C5—N4107 (4)
O7—Mo1—N185.8 (13)C6—C5—H5126.4
O6—Mo1—N187.1 (13)N4—C5—H5126.4
O1W—Mo1—N176.6 (14)C5—C6—N3109 (4)
N3—Mo1—N172.2 (13)C5—C6—H6125.7
O8—Mo1—Mo2101.5 (12)N3—C6—H6125.7
O7—Mo1—Mo248.7 (10)O3—C7—O4127 (4)
O6—Mo1—Mo248.6 (9)O3—C7—C8119 (4)
O1W—Mo1—Mo2134.5 (10)O4—C7—C8114 (4)
N3—Mo1—Mo2132.9 (10)O2—C8—O1125 (4)
N1—Mo1—Mo2100.5 (9)O2—C8—C7121 (4)
O5—Mo2—O6107.5 (15)O1—C8—C7114 (4)
O5—Mo2—O7106.2 (16)C2—N1—C3106 (4)
O6—Mo2—O793.4 (13)C2—N1—Mo1115 (3)
O5—Mo2—O192.7 (15)C3—N1—Mo1139 (3)
O6—Mo2—O1159.4 (13)C2—N2—C4107 (4)
O7—Mo2—O184.9 (13)C2—N2—H2126.5
O5—Mo2—O2W88.3 (16)C4—N2—H2126.5
O6—Mo2—O2W86.8 (13)C1—N3—C6106 (4)
O7—Mo2—O2W164.7 (13)C1—N3—Mo1118 (3)
O1—Mo2—O2W89.6 (13)C6—N3—Mo1135 (3)
O5—Mo2—O4160.2 (15)C1—N4—C5107 (4)
O6—Mo2—O486.4 (12)C1—N4—H4A126.3
O7—Mo2—O486.5 (12)C5—N4—H4A126.3
O1—Mo2—O473.0 (11)C8—O1—Mo2120 (3)
O2W—Mo2—O478.3 (12)C7—O4—Mo2116 (3)
O5—Mo2—Mo199.3 (12)Mo2—O6—Mo182.7 (12)
O6—Mo2—Mo148.7 (9)Mo1—O7—Mo282.7 (12)
O7—Mo2—Mo148.6 (9)H1W—O1W—H2W106.00
O1—Mo2—Mo1133.5 (10)H3W—O2W—H4W112.00
O2W—Mo2—Mo1135.2 (9)H5W—O3W—H6W112.00
O4—Mo2—Mo1100.4 (8)H7W—O4W—H8W107.00
N3—C1—N4111 (4)H9W—O5W—H10W111.00
N3—C1—C2118 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O4i0.862.022.84 (5)160
N4—H4A···O3i0.861.902.76 (5)172
O1W—H1W···O6ii0.8 (5)1.9 (4)2.66 (5)168
O1W—H2W···O4Wiii0.8 (4)1.8 (5)2.56 (6)170
O2W—H4W···O7iv0.8 (4)1.8 (5)2.65 (5)172
O3W—H5W···O2v0.8 (4)2.8 (7)2.94 (7)92
O5W—H9W···O3Wvi0.9 (5)2.1 (6)2.93 (7)158
O2W—H3W···O3W0.8 (2)1.9 (3)2.69 (7)160
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1/2, z1/2; (iii) x, y, z1; (iv) x, y+1/2, z+1/2; (v) x, y+1, z; (vi) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Mo2(C2O4)O4(C6H6N4)(H2O)2]·3H2O
Mr568.13
Crystal system, space groupMonoclinic, P21/c
Temperature (K)273
a, b, c (Å)10.7509 (16), 14.517 (2), 11.3661 (17)
β (°) 92.306 (2)
V3)1772.4 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.49
Crystal size (mm)0.12 × 0.10 × 0.08
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.841, 0.890
No. of measured, independent and
observed [I > 2σ(I)] reflections
11601, 3099, 2820
Rint0.020
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.059, 1.00
No. of reflections3099
No. of parameters275
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.48, 0.36

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Mo1—O81.68 (3)Mo2—O51.68 (3)
Mo1—O71.94 (3)Mo2—O61.94 (3)
Mo1—O61.94 (3)Mo2—O71.94 (3)
Mo1—O1W2.13 (3)Mo2—O12.11 (3)
Mo1—N32.20 (4)Mo2—O2W2.16 (3)
Mo1—N12.31 (4)Mo2—O42.23 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O4i0.862.022.84 (5)160.2
N4—H4A···O3i0.861.902.76 (5)172.2
O1W—H1W···O6ii0.8 (5)1.9 (4)2.66 (5)168.00
O1W—H2W···O4Wiii0.8 (4)1.8 (5)2.56 (6)170.00
O2W—H4W···O7iv0.8 (4)1.8 (5)2.65 (5)172.00
O3W—H5W···O2v0.8 (4)2.8 (7)2.94 (7)92.00
O5W—H9W···O3Wvi0.9 (5)2.1 (6)2.93 (7)158.00
O2W—H3W···O3W0.8 (2)1.9 (3)2.69 (7)160.00
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1/2, z1/2; (iii) x, y, z1; (iv) x, y+1/2, z+1/2; (v) x, y+1, z; (vi) x+1, y1/2, z+3/2.
 

Acknowledgements

Financial support from the 973 Key Program of the MOST (2006CB932904 and 2007CB815304), the National Natural Science Foundation of China (20873150, 20821061 and 50772113) , the Chinese Academy of Sciences (KJCX2-YW-M05), Shandong Provincial Education Department and Shandong Institute of Education are gratefully acknowledged.

References

First citationBruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationPope, M. T. & Müller, A. (1991). Angew. Chem. Int. Ed. 30, 34–38.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, X. T., Dou, J. M., Wei, P. H., Li, D. C., Li, B., Shi, C. W. & Hu, B. (2009). Inorg. Chim. Acta, 362, 3325–3332.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, X. T., Wei, P. H., Sun, D. F., Ni, Z. H., Dou, J. M., Li, B., Shi, C. W. & Hu, B. (2009). Cryst. Growth Des. 9, 4424–4428.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages m26-m27
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds