organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[3-Bromo-2-(3-fluoro­benz­yl­oxy)phen­yl]boronic acid

aPhysical Chemistry Department, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
*Correspondence e-mail: ktom@ch.pw.edu.pl

(Received 18 August 2009; accepted 21 August 2009; online 26 August 2009)

In the title compound, C13H11BBrFO3, the dioxy­boron fragment is close to co-planar with the benzene ring to which the B atom is connected [dihedral angle = 8.96 (4)°]. The dihedral angle between the two benzene rings is 14.8 (2)°. One of the OH groups is engaged in an intra­molecular O—H⋯O hydrogen-bonding inter­action. The second OH group is involved in inter­molecular hydrogen bonding, forming a centrosymmetric dimer. The F atom and the corresponding meta-H atom are disordered over two positions in a 0.675 (6):0.325 (6) ratio.

Related literature

For general background to the applications of boronic acids and aryl-benzyl ethers, see: Bien et al. (1995[Bien, J. T., Shang, M. & Smith, B. D. (1995). J. Org. Chem. 60, 2147-2152.]); Dai et al. (2009[Dai, H. L., Liu, W. Q., Xu, H., Yang, L. M., Lv, M. & Zheng, Y. T. (2009). Chem. Pharm. Bull. 57, 84-86.]); Miyaura & Suzuki (1995[Miyaura, N. & Suzuki, A. (1995). Chem. Rev. 95, 2457-2483.]). For the structural characterization of a related boronic acid derivative, see: Serwatowski et al. (2006[Serwatowski, J., Klis, T. & Kacprzak, K. (2006). Acta Cryst. E62, o1308-o1309.]).

[Scheme 1]

Experimental

Crystal data
  • C13H11BBrFO3

  • Mr = 324.94

  • Monoclinic, P 21 /c

  • a = 14.913 (2) Å

  • b = 4.0214 (6) Å

  • c = 21.945 (3) Å

  • β = 101.572 (13)°

  • V = 1289.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.20 mm−1

  • T = 100 K

  • 0.18 × 0.16 × 0.08 mm

Data collection
  • Kuma KM-4-CCD diffractometer

  • Absorption correction: numerical (CrysAlis RED; Oxford Diffraction, 2001[Oxford Diffraction (2001). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Poland, Wrocław, Poland.]) Tmin = 0.588, Tmax = 0.892

  • 18281 measured reflections

  • 2263 independent reflections

  • 1487 reflections with I > 2σ(I)

  • Rint = 0.085

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.055

  • S = 0.95

  • 2263 reflections

  • 208 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O2i 0.84 1.97 2.797 (3) 169
O2—H2O⋯O3 0.84 2.03 2.753 (3) 143
Symmetry code: (i) -x+1, -y+2, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2001[Oxford Diffraction (2001). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Poland, Wrocław, Poland.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2001[Oxford Diffraction (2001). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Poland, Wrocław, Poland.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The high synthetic utility of boronic acids (Bien et al., 1995; Miyaura & Suzuki, 1995) enforces a continuous progress in the preparation and characterization of these compounds. The molecular structure of the title compound, C13H11BBrFO3 (I), is shown in Fig. 1. It is the second example of an arylboronic acid based on the aryl-benzyl ether structure containing an aryloxymethylene substituent. Aryl-benzyl ethers found recently a new application as human immunodeficiency virus-1 (HIV-1) inhibitors (Dai et al., 2009).

The molecular structure of (I) shows that the dioxyboron fragment formed by B, O1 and O2 atoms is essentially planar with the phenyl ring to which the boron atom is connected (C6—C5—B1—O2 = 3.6 (6)°). The hydrogen atom bonded to O2 is involved in an intramolecular O—H···O interaction with atom O3, forming a five-membered ring. The hydrogen atom bonded to O1 is involved in an intermolecular hydrogen bonding to form a centrosymmetric dimer (Fig. 2). The angle between planes formed by two phenyl rings in the same molecule is 14.8 (2)°.

For the structural characterization of a related boronic acid derivative, see: Serwatowski et al. (2006).

Related literature top

For general background to the applications of boronic acids and aryl-benzyl ethers, see: Bien et al. (1995); Dai et al. (2009); Miyaura & Suzuki (1995). For the structural characterization of a related boronic acid derivative, see: Serwatowski et al. (2006).

Experimental top

3-Bromo-2-(3-fluorobenzyloxy)phenylboronic acid was obtained from Aldrich and recrystallized from toluene.

Refinement top

The fluorine atom is disordered over two positions with site occupation factors of 0.325 (6) and 0.675 (6). Positions of most of the hydrogen atoms were refined freely with Uiso(H) = 1.2 or 1.5Ueq(C). The OH hydrogen atoms were refined with a constrained bond length of O—H = 0.84 Å. Hydrogen atoms that belong to the disordered part of the phenyl ring were not refined but added geometrically with a fixed bond length of 0.95 Å.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2001); cell refinement: CrysAlis RED (Oxford Diffraction, 2001); data reduction: CrysAlis RED (Oxford Diffraction, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom labelling scheme. Displacement ellipsoids for all non-H atoms are drawn at the 50% probability level. H atoms are given as spheres of arbitrary radius.
[Figure 2] Fig. 2. The hydrogen bonding pattern (dashed lines) for the title compound.
[3-Bromo-2-(3-fluorobenzyloxy)phenyl]boronic acid top
Crystal data top
C13H11BBrFO3F(000) = 648
Mr = 324.94Dx = 1.674 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 10000 reflections
a = 14.913 (2) Åθ = 1.5–29.7°
b = 4.0214 (6) ŵ = 3.20 mm1
c = 21.945 (3) ÅT = 100 K
β = 101.572 (13)°Plate, colourless
V = 1289.3 (3) Å30.18 × 0.16 × 0.08 mm
Z = 4
Data collection top
Kuma KM-4-CCD
diffractometer
2263 independent reflections
Radiation source: fine-focus sealed tube1487 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.085
Detector resolution: 8.6479 pixels mm-1θmax = 25.0°, θmin = 3.0°
ω scansh = 1717
Absorption correction: numerical
(CrysAlis RED; Oxford Diffraction, 2001)
k = 44
Tmin = 0.588, Tmax = 0.892l = 2626
18281 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.055H atoms treated by a mixture of independent and constrained refinement
S = 0.95 w = 1/[σ2(Fo2) + (0.0124P)2]
where P = (Fo2 + 2Fc2)/3
2263 reflections(Δ/σ)max = 0.001
208 parametersΔρmax = 0.41 e Å3
1 restraintΔρmin = 0.42 e Å3
Crystal data top
C13H11BBrFO3V = 1289.3 (3) Å3
Mr = 324.94Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.913 (2) ŵ = 3.20 mm1
b = 4.0214 (6) ÅT = 100 K
c = 21.945 (3) Å0.18 × 0.16 × 0.08 mm
β = 101.572 (13)°
Data collection top
Kuma KM-4-CCD
diffractometer
2263 independent reflections
Absorption correction: numerical
(CrysAlis RED; Oxford Diffraction, 2001)
1487 reflections with I > 2σ(I)
Tmin = 0.588, Tmax = 0.892Rint = 0.085
18281 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0391 restraint
wR(F2) = 0.055H atoms treated by a mixture of independent and constrained refinement
S = 0.95Δρmax = 0.41 e Å3
2263 reflectionsΔρmin = 0.42 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.96580 (3)1.14409 (10)0.67991 (2)0.04384 (17)
F1A0.8311 (4)1.4084 (19)0.8860 (3)0.053 (3)0.325 (6)
F1B0.5319 (2)1.0376 (7)0.82343 (17)0.0509 (15)0.675 (6)
O10.59426 (15)0.7687 (6)0.46913 (11)0.0312 (7)
H1O0.53810.81100.46390.047*
O20.59005 (15)1.0479 (6)0.56380 (11)0.0303 (7)
H2O0.62701.12870.59410.045*
O30.75692 (15)1.0863 (6)0.64438 (12)0.0274 (7)
C10.8937 (3)0.9636 (8)0.6059 (2)0.0298 (11)
C20.9361 (3)0.8402 (10)0.5612 (2)0.0371 (12)
C30.8850 (3)0.7134 (9)0.5063 (2)0.0343 (12)
C40.7900 (3)0.7262 (9)0.4969 (2)0.0281 (11)
C50.7446 (2)0.8543 (9)0.54136 (17)0.0216 (9)
C60.7993 (3)0.9652 (8)0.59737 (19)0.0254 (10)
C70.7527 (3)0.8354 (10)0.6923 (2)0.0340 (12)
C80.7268 (3)0.9918 (8)0.74709 (19)0.0277 (11)
C90.7913 (3)1.1548 (10)0.79215 (19)0.0279 (10)
C100.7665 (3)1.2884 (9)0.8437 (2)0.0363 (12)
H100.81111.40460.87300.044*0.675 (6)
C110.6793 (3)1.2605 (9)0.8545 (2)0.0371 (12)
C120.6166 (3)1.0960 (11)0.8101 (2)0.0432 (12)
H120.55571.07320.81640.052*0.325 (6)
C130.6380 (3)0.9641 (9)0.7575 (2)0.0392 (13)
B10.6376 (3)0.8885 (11)0.5250 (2)0.0242 (11)
H21.001 (2)0.854 (8)0.5647 (14)0.029*
H30.915 (2)0.627 (8)0.4740 (14)0.029*
H40.757 (2)0.661 (8)0.4593 (15)0.029*
H7A0.711 (2)0.663 (8)0.6717 (14)0.029*
H7B0.814 (2)0.734 (7)0.7016 (14)0.029*
H90.853 (2)1.172 (8)0.7849 (14)0.029*
H110.661 (2)1.346 (8)0.8908 (15)0.029*
H130.592 (2)0.846 (8)0.7247 (14)0.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0292 (2)0.0242 (2)0.0660 (3)0.0001 (2)0.0193 (2)0.0000 (3)
F1A0.042 (5)0.071 (6)0.041 (6)0.001 (4)0.005 (4)0.022 (4)
F1B0.023 (2)0.065 (3)0.061 (3)0.009 (2)0.0017 (17)0.003 (2)
O10.0186 (14)0.0417 (18)0.0310 (17)0.0012 (12)0.0005 (13)0.0128 (13)
O20.0221 (15)0.0386 (18)0.0260 (18)0.0020 (12)0.0048 (13)0.0083 (14)
O30.0284 (15)0.0150 (15)0.0336 (18)0.0036 (12)0.0063 (13)0.0002 (14)
C10.023 (2)0.015 (2)0.045 (3)0.0029 (17)0.012 (2)0.005 (2)
C20.015 (2)0.024 (2)0.069 (4)0.005 (2)0.002 (2)0.002 (3)
C30.026 (3)0.023 (2)0.058 (4)0.0020 (19)0.020 (2)0.005 (2)
C40.026 (3)0.022 (2)0.035 (3)0.0007 (18)0.003 (2)0.003 (2)
C50.024 (2)0.0085 (18)0.030 (3)0.0010 (19)0.0004 (19)0.001 (2)
C60.027 (2)0.013 (2)0.035 (3)0.0072 (17)0.003 (2)0.0028 (19)
C70.038 (3)0.016 (2)0.041 (3)0.002 (2)0.008 (2)0.000 (2)
C80.035 (3)0.011 (2)0.033 (3)0.0038 (18)0.003 (2)0.0024 (19)
C90.024 (2)0.022 (2)0.033 (3)0.002 (2)0.002 (2)0.005 (2)
C100.036 (3)0.026 (3)0.043 (3)0.004 (2)0.004 (3)0.001 (2)
C110.038 (3)0.029 (3)0.043 (3)0.013 (2)0.004 (3)0.004 (2)
C120.027 (3)0.037 (3)0.065 (4)0.007 (2)0.006 (3)0.003 (3)
C130.036 (3)0.023 (2)0.049 (4)0.001 (2)0.012 (3)0.007 (2)
B10.027 (3)0.014 (2)0.031 (3)0.003 (2)0.005 (2)0.004 (2)
Geometric parameters (Å, º) top
Br1—C11.902 (4)C5—B11.569 (5)
O1—B11.355 (5)C7—C81.476 (5)
O1—H1O0.8400C7—H7A0.98 (3)
O2—B11.371 (5)C7—H7B0.98 (3)
O2—H2O0.8400C8—C131.393 (5)
O3—C61.401 (4)C8—C91.397 (5)
O3—C71.467 (4)C9—C101.368 (5)
C1—C21.362 (5)C9—H90.96 (3)
C1—C61.384 (5)C10—C111.372 (5)
C2—C31.387 (5)C10—H100.9500
C2—H20.96 (3)C11—C121.376 (5)
C3—C41.392 (5)C11—H110.95 (3)
C3—H30.97 (3)C12—C131.365 (5)
C4—C51.394 (5)C12—H120.9500
C4—H40.91 (3)C13—H131.01 (3)
C5—C61.404 (5)
B1—O1—H1O109.5O3—C7—H7B105.2 (19)
B1—O2—H2O109.5C8—C7—H7B112.9 (19)
C6—O3—C7112.3 (3)H7A—C7—H7B106 (3)
C2—C1—C6120.7 (4)C13—C8—C9117.6 (4)
C2—C1—Br1119.3 (3)C13—C8—C7120.8 (4)
C6—C1—Br1119.9 (3)C9—C8—C7121.4 (4)
C1—C2—C3120.4 (4)C10—C9—C8120.4 (4)
C1—C2—H2122 (2)C10—C9—H9122 (2)
C3—C2—H2117 (2)C8—C9—H9117.4 (19)
C2—C3—C4118.8 (4)C9—C10—C11122.3 (4)
C2—C3—H3121.1 (19)C9—C10—H10118.9
C4—C3—H3120.1 (19)C11—C10—H10118.9
C3—C4—C5122.2 (4)C10—C11—C12116.7 (4)
C3—C4—H4118 (2)C10—C11—H11123 (2)
C5—C4—H4120 (2)C12—C11—H11120 (2)
C4—C5—C6116.9 (3)C13—C12—C11123.0 (5)
C4—C5—B1119.1 (3)C13—C12—H12118.5
C6—C5—B1123.9 (4)C11—C12—H12118.5
C1—C6—O3120.0 (4)C12—C13—C8119.9 (4)
C1—C6—C5120.9 (4)C12—C13—H13123.2 (19)
O3—C6—C5119.1 (3)C8—C13—H13116.9 (19)
O3—C7—C8110.3 (3)O1—B1—O2121.1 (3)
O3—C7—H7A105.8 (19)O1—B1—C5117.0 (4)
C8—C7—H7A115.6 (19)O2—B1—C5121.8 (4)
C6—C1—C2—C30.1 (6)C6—O3—C7—C8167.5 (3)
Br1—C1—C2—C3178.7 (3)O3—C7—C8—C13102.5 (4)
C1—C2—C3—C42.4 (6)O3—C7—C8—C981.5 (4)
C2—C3—C4—C51.7 (6)C13—C8—C9—C101.6 (5)
C3—C4—C5—C61.3 (5)C7—C8—C9—C10177.8 (4)
C3—C4—C5—B1174.8 (3)C8—C9—C10—C112.1 (6)
C2—C1—C6—O3178.6 (3)C9—C10—C11—C121.3 (6)
Br1—C1—C6—O32.8 (4)C10—C11—C12—C130.1 (6)
C2—C1—C6—C53.0 (5)C11—C12—C13—C80.3 (6)
Br1—C1—C6—C5175.6 (3)C9—C8—C13—C120.4 (5)
C7—O3—C6—C182.8 (4)C7—C8—C13—C12176.6 (4)
C7—O3—C6—C598.8 (3)C4—C5—B1—O14.4 (5)
C4—C5—C6—C13.6 (5)C6—C5—B1—O1179.9 (3)
B1—C5—C6—C1172.3 (3)C4—C5—B1—O2172.2 (3)
C4—C5—C6—O3178.0 (3)C6—C5—B1—O23.6 (6)
B1—C5—C6—O36.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O2i0.841.972.797 (3)169
O2—H2O···O30.842.032.753 (3)143
Symmetry code: (i) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC13H11BBrFO3
Mr324.94
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)14.913 (2), 4.0214 (6), 21.945 (3)
β (°) 101.572 (13)
V3)1289.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)3.20
Crystal size (mm)0.18 × 0.16 × 0.08
Data collection
DiffractometerKuma KM-4-CCD
diffractometer
Absorption correctionNumerical
(CrysAlis RED; Oxford Diffraction, 2001)
Tmin, Tmax0.588, 0.892
No. of measured, independent and
observed [I > 2σ(I)] reflections
18281, 2263, 1487
Rint0.085
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.055, 0.95
No. of reflections2263
No. of parameters208
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.42

Computer programs: CrysAlis CCD (Oxford Diffraction, 2001), CrysAlis RED (Oxford Diffraction, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O2i0.841.972.797 (3)168.6
O2—H2O···O30.842.032.753 (3)143.1
Symmetry code: (i) x+1, y+2, z+1.
 

Acknowledgements

This work was supported by Warsaw University of Technology and the Polish Ministry of Science and Higher Education (grant No. N N205 055633). The X-ray measurements were undertaken in the Crystallographic Unit of the Physical Chemistry Laboratory at the Chemistry Department of the University of Warsaw. We acknowledge the Aldrich Chemical Company for the donation of chemicals and equipment. We address our special thanks to Łukasz Dobrzycki from the University of Warsaw for many valuable suggestions regarding the data analysis.

References

First citationBien, J. T., Shang, M. & Smith, B. D. (1995). J. Org. Chem. 60, 2147–2152.  CSD CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDai, H. L., Liu, W. Q., Xu, H., Yang, L. M., Lv, M. & Zheng, Y. T. (2009). Chem. Pharm. Bull. 57, 84–86.  CrossRef PubMed CAS Google Scholar
First citationSerwatowski, J., Klis, T. & Kacprzak, K. (2006). Acta Cryst. E62, o1308-o1309.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMiyaura, N. & Suzuki, A. (1995). Chem. Rev. 95, 2457–2483.  Web of Science CrossRef CAS Google Scholar
First citationOxford Diffraction (2001). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Poland, Wrocław, Poland.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds