inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Holmium dodeca­iodidoiron-octa­hedro-hexa­holmium, {FeHo6}I12Ho

aInstitut für Anorganische Chemie, Universität zu Köln, Greinstrasse 6, D-50939 Köln, Germany
*Correspondence e-mail: gerd.meyer@uni-koeln.de

(Received 6 January 2009; accepted 13 January 2009; online 23 January 2009)

Single crystals of {FeHo6}I12Ho were obtained during the reaction of HoI3 with metallic holmium and iron in a sealed tantalum container. The crystal structure consists of isolated holmium clusters encapsulating a single Fe atom, {FeHo6} ([\overline{3}] symmetry). The rare earth metal atoms are surrounded by 12 edge-capping and six terminal iodide ligands that either connect the clusters to each other directly or via HoI6 octa­hedra ([\overline{3}] symmetry).

Related literature

Reduced rare earth metal halides without and with metal clusters have been reviewed several times, see, for example: Corbett (1973[Corbett, J. D. (1973). Rev. Chim. Miner. 10, 239-257.], 1996[Corbett, J. D. (1996). J. Chem. Soc. Dalton Trans. pp. 575-587.], 2000[Corbett, J. D. (2000). Inorg. Chem. 39, 5178-5191.], 2006[Corbett, J. D. (2006). J. Alloys Compds, 418, 1-20.]); Hughbanks & Corbett (1988[Hughbanks, T. & Corbett, J. D. (1988). Inorg. Chem. 27, 2022-2026.]); Meyer (1988[Meyer, G. (1988). Chem. Rev. 88, 93-107.], 2007[Meyer, G. (2007). Z. Anorg. Allg. Chem. 633, 2537-2552.]); Meyer & Wickleder (2000[Meyer, G. & Wickleder, M. S. (2000). Handbook on the Physics and Chemistry of Rare Earths, Vol. 28, edited by K. A. Gscheidner Jr. & L. Eyring, pp. 53-129. Elsevier: Amsterdam.]); Simon (1981[Simon, A. (1981). Angew. Chem. Int. Ed. Engl. 20, 1-22.]); Simon et al. (1991[Simon, A., Mattausch, Hj., Miller, G. J., Bauhofer, W. & Kremer, R. (1991). Handbook on the Physics and Chemistry of Rare Earths, Vol. 15, edited by K. A. Gschneidner Jr. & L. Eyring, pp. 191-285. Elsevier: Amsterdam.]); Wiglusz et al. (2007[Wiglusz, R., Pantenburg, I. & Meyer, G. (2007). Z. Anorg. Allg. Chem. 633, 1317-1319.]). For the synthesis of the starting material HoI3, see: Meyer (1991[Meyer, G. (1991). Synthesis of Lanthanide and Actinide Compounds, edited by G. Meyer & L. R. Morss, pp. 135-144. Kluwer: Dordrecht.]). Isotypic structures have been reported by Hohnstedt (1993[Hohnstedt, C. (1993). Dissertation, Universität Hannover, Germany.]), {CHo6}I12Ho, and Palasyuk et al. (2006[Palasyuk, A., Pantenburg, I. & Meyer, G. (2006). Acta Cryst. E62, i61-i63.]), {FePr6}I12Pr.

Experimental

Crystal data
  • FeHo7I12

  • Mr = 2733.16

  • Trigonal, [R \overline 3]

  • a = 15.2973 (17) Å

  • c = 10.6252 (16) Å

  • V = 2153.3 (5) Å3

  • Z = 3

  • Mo Kα radiation

  • μ = 32.43 mm−1

  • T = 293 (2) K

  • 0.2 × 0.2 × 0.2 mm

Data collection
  • Stoe IPDS-II diffractometer

  • Absorption correction: numerical [X-RED (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]) and X-SHAPE (Stoe & Cie, 1999[Stoe & Cie (1999). X-SHAPE. Stoe & Cie, Darmstadt, Germany.])] Tmin = 0.027, Tmax = 0.071

  • 6920 measured reflections

  • 1166 independent reflections

  • 861 reflections with I > 2σ(I)

  • Rint = 0.115

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.096

  • S = 0.97

  • 1166 reflections

  • 32 parameters

  • Δρmax = 2.36 e Å−3

  • Δρmin = −2.44 e Å−3

Data collection: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2005[Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Rare earth cluster compounds of the general formula {Z(RE)6}I12RE, where Z is an interstitial transition metal or main group element and RE is a rare earth element, have been well explored by Hughbanks and Corbett (1988) for RE = Sc, Y, Pr and Gd. Additionally, compounds of the formula {Z(RE)6}I12+yAx, where A is an alkali metal (Rb or Cs) with x = 1–4 and y = 0–1 and Z = C, C2, are known for the rare earth elements Pr and Er that were compiled and studied by Meyer & Wickleder (2000) and Wiglusz et al. (2007). With {FeHo6}I12Ho we were able to extend the knowledge of this structure type to the element holmium, where only {CHo6}I12Ho had been synthesized previously by Hohnstedt (1993). Other reviews of reduced rare earth metal halides without and with metal clusters were given, for example, by Corbett (1973, 1996, 2000, 2006), Meyer (1988, 2007), Meyer & Wickleder (2000), Simon (1981) and Simon et al. (1991).

The structure of {FeHo6}I12Ho is isotypic with {FePr6}I12Pr (Palasyuk et al., 2006) and consists of isolated {FeHo6} clusters, i.e. the metal atoms are not shared with other clusters. The {FeHo6} cluster core is surrounded by twelve edge-capping and six terminal iodide ligands that either connect the clusters to each other directly or via HoI6 octahedra (Fig. 1). In {FeHo6}I12Ho, the {FeHo6} octahedra have 3 symmetry, only slightly deviating from ideal octahedral symmetry. The Ho—Ho distances range from 3.6394 (11) to 3.7297 (12) Å. The Ho—I distances vary between 3.0106 (9) and 3.3116 (12) Å.

Related literature top

Reduced rare earth metal halides without and with metal clusters have been reviewed several times, see, for example: Corbett (1973, 1996, 2000, 2006); Hughbanks & Corbett (1988); Meyer (1988, 2007); Meyer & Wickleder (2000); Simon (1981); Simon et al. (1991); Wiglusz et al. (2007). For the synthesis of the starting material HoI3, see: Meyer (1991). Isotypic structures have been reported by Hohnstedt (1993), {CHo6}I12Ho, and Palasyuk et al. (2006), {FePr6}I12Pr).

Experimental top

Black, almost cubic crystals of {FeHo6}I12Ho were obtained by the reaction of HoI3 (200 mg) with holmium powder (84 mg, Chempur, 99.9%) and iron powder (10 mg, Merck, p.a.) in a tantalum container at 1273 K for 200 h. HoI3 had been synthesized from stoichiometric amounts of holmium and iodine, followed by sublimation in high vacuum for purification (Meyer, 1991). Due to air and moisture sensitivity of both reagents and products, all handlings were carried out in an argon-filled glove box (M. Braun, Garching, Germany).

Refinement top

The displacement parameter for the Fe atom was refined isotropically. The highest peak (2.36 e Å-3) in the final difference Fourier map is 1.20 Å from atom Ho1 and the deepest hole (-2.44 e Å-3) is 2.40 Å from the same atom.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : {FeHo6} clusters connected via HoI6 units, drawn with displacement ellipsoids at the 90% probability level [Symmetry codes: (i) 1 + y, 1 - x + y, 1 - z; (ii) 1 - y, -1 + x-y, z; (iii) -x + 8/3, -y + 1/3, -z + 4/3; (iv) x-y, -1 + x, 1 - z; v) 2 - x, -y, 1 - z; vi) 2 - x + y, 1 - x, z.]
Iron heptadysprosium dodecaiodide top
Crystal data top
FeHo7I12Dx = 6.323 Mg m3
Mr = 2733.16Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3Cell parameters from 1775 reflections
Hall symbol: -R 3θ = 1.9–28.2°
a = 15.2973 (17) ŵ = 32.43 mm1
c = 10.6252 (16) ÅT = 293 K
V = 2153.3 (5) Å3Cubic, black
Z = 30.2 × 0.2 × 0.2 mm
F(000) = 3393
Data collection top
Stoe IPDS-II
diffractometer
1166 independent reflections
Radiation source: fine-focus sealed tube861 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.115
ω scansθmax = 28.1°, θmin = 2.5°
Absorption correction: numerical
[X-RED (Stoe & Cie, 2001) and X-SHAPE (Stoe & Cie, 1999)]
h = 2019
Tmin = 0.027, Tmax = 0.071k = 1920
6920 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.047P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.096(Δ/σ)max = 0.001
S = 0.97Δρmax = 2.36 e Å3
1166 reflectionsΔρmin = 2.44 e Å3
32 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00035 (3)
Crystal data top
FeHo7I12Z = 3
Mr = 2733.16Mo Kα radiation
Trigonal, R3µ = 32.43 mm1
a = 15.2973 (17) ÅT = 293 K
c = 10.6252 (16) Å0.2 × 0.2 × 0.2 mm
V = 2153.3 (5) Å3
Data collection top
Stoe IPDS-II
diffractometer
1166 independent reflections
Absorption correction: numerical
[X-RED (Stoe & Cie, 2001) and X-SHAPE (Stoe & Cie, 1999)]
861 reflections with I > 2σ(I)
Tmin = 0.027, Tmax = 0.071Rint = 0.115
6920 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03932 parameters
wR(F2) = 0.0960 restraints
S = 0.97Δρmax = 2.36 e Å3
1166 reflectionsΔρmin = 2.44 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ho11.15739 (5)0.04355 (5)0.63807 (6)0.0153 (2)
Ho21.00000.00001.00000.0213 (4)
I11.05135 (6)0.13025 (7)0.83941 (7)0.0190 (2)
I21.31674 (7)0.23705 (7)0.50663 (8)0.0242 (3)
Fe11.00000.00000.50000.0132 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ho10.0155 (3)0.0161 (3)0.0147 (3)0.0083 (3)0.0004 (2)0.0002 (2)
Ho20.0223 (5)0.0223 (5)0.0194 (7)0.0111 (3)0.0000.000
I10.0202 (5)0.0195 (5)0.0183 (4)0.0106 (4)0.0006 (3)0.0010 (3)
I20.0167 (5)0.0233 (5)0.0260 (5)0.0050 (4)0.0030 (3)0.0060 (3)
Geometric parameters (Å, º) top
Ho1—Fe12.6056 (7)Ho2—I1vii3.0106 (9)
Ho1—I23.0722 (11)Ho2—I13.0106 (9)
Ho1—I2i3.1144 (11)Ho2—I1ii3.0106 (9)
Ho1—I13.1565 (11)Ho2—I1viii3.0106 (9)
Ho1—I1ii3.1758 (11)I1—Ho1v3.1758 (11)
Ho1—I2iii3.3116 (11)I2—Ho1iv3.1144 (11)
Ho1—Ho1i3.6394 (11)I2—Ho1iii3.3116 (11)
Ho1—Ho1iv3.6394 (11)Fe1—Ho1ix2.6056 (7)
Ho1—Ho1v3.7297 (12)Fe1—Ho1iv2.6056 (7)
Ho1—Ho1ii3.7297 (12)Fe1—Ho1ii2.6056 (7)
Ho2—I1v3.0106 (9)Fe1—Ho1i2.6056 (7)
Ho2—I1vi3.0106 (9)Fe1—Ho1v2.6056 (7)
Fe1—Ho1—I2100.19 (3)I2iii—Ho1—Ho1ii133.68 (2)
Fe1—Ho1—I2i99.12 (3)Ho1i—Ho1—Ho1ii90.0
I2—Ho1—I2i89.813 (17)Ho1iv—Ho1—Ho1ii59.176 (12)
Fe1—Ho1—I198.41 (3)Ho1v—Ho1—Ho1ii60.0
I2—Ho1—I1161.02 (3)I1v—Ho2—I1vi180.0
I2i—Ho1—I190.95 (3)I1v—Ho2—I1vii88.96 (2)
Fe1—Ho1—I1ii97.93 (3)I1vi—Ho2—I1vii91.04 (2)
I2—Ho1—I1ii88.28 (3)I1v—Ho2—I191.04 (2)
I2i—Ho1—I1ii162.91 (3)I1vi—Ho2—I188.96 (2)
I1—Ho1—I1ii85.44 (4)I1vii—Ho2—I1180.0
Fe1—Ho1—I2iii177.02 (3)I1v—Ho2—I1ii91.04 (2)
I2—Ho1—I2iii81.94 (3)I1vi—Ho2—I1ii88.96 (2)
I2i—Ho1—I2iii82.92 (3)I1vii—Ho2—I1ii88.96 (2)
I1—Ho1—I2iii79.33 (3)I1—Ho2—I1ii91.04 (2)
I1ii—Ho1—I2iii80.00 (3)I1v—Ho2—I1viii88.96 (2)
Fe1—Ho1—Ho1i45.702 (10)I1vi—Ho2—I1viii91.04 (2)
I2—Ho1—Ho1i99.07 (3)I1vii—Ho2—I1viii91.04 (2)
I2i—Ho1—Ho1i53.43 (2)I1—Ho2—I1viii88.96 (2)
I1—Ho1—Ho1i96.59 (2)I1ii—Ho2—I1viii180.00 (3)
I1ii—Ho1—Ho1i143.57 (2)Ho2—I1—Ho191.20 (3)
I2iii—Ho1—Ho1i136.24 (3)Ho2—I1—Ho1v90.83 (3)
Fe1—Ho1—Ho1iv45.702 (10)Ho1—I1—Ho1v72.17 (3)
I2—Ho1—Ho1iv54.50 (2)Ho1—I2—Ho1iv72.07 (3)
I2i—Ho1—Ho1iv96.45 (3)Ho1—I2—Ho1iii98.06 (3)
I1—Ho1—Ho1iv144.05 (2)Ho1iv—I2—Ho1iii170.08 (3)
I1ii—Ho1—Ho1iv96.25 (2)Ho1ix—Fe1—Ho1180.00 (2)
I2iii—Ho1—Ho1iv136.44 (2)Ho1ix—Fe1—Ho1iv91.403 (19)
Ho1i—Ho1—Ho1iv61.65 (2)Ho1—Fe1—Ho1iv88.597 (19)
Fe1—Ho1—Ho1v44.298 (10)Ho1ix—Fe1—Ho1ii88.597 (19)
I2—Ho1—Ho1v144.47 (2)Ho1—Fe1—Ho1ii91.403 (19)
I2i—Ho1—Ho1v96.42 (3)Ho1iv—Fe1—Ho1ii88.597 (19)
I1—Ho1—Ho1v54.16 (2)Ho1ix—Fe1—Ho1i91.403 (19)
I1ii—Ho1—Ho1v94.97 (2)Ho1—Fe1—Ho1i88.597 (19)
I2iii—Ho1—Ho1v133.49 (2)Ho1iv—Fe1—Ho1i91.403 (19)
Ho1i—Ho1—Ho1v59.176 (12)Ho1ii—Fe1—Ho1i180.0
Ho1iv—Ho1—Ho1v90.0Ho1ix—Fe1—Ho1v88.597 (19)
Fe1—Ho1—Ho1ii44.298 (10)Ho1—Fe1—Ho1v91.403 (19)
I2—Ho1—Ho1ii95.36 (3)Ho1iv—Fe1—Ho1v180.00 (3)
I2i—Ho1—Ho1ii143.40 (2)Ho1ii—Fe1—Ho1v91.404 (19)
I1—Ho1—Ho1ii95.30 (2)Ho1i—Fe1—Ho1v88.597 (19)
I1ii—Ho1—Ho1ii53.68 (2)
Symmetry codes: (i) y+1, x+y+1, z+1; (ii) y+1, xy1, z; (iii) x+8/3, y+1/3, z+4/3; (iv) xy, x1, z+1; (v) x+y+2, x+1, z; (vi) xy, x1, z+2; (vii) x+2, y, z+2; (viii) y+1, x+y+1, z+2; (ix) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaFeHo7I12
Mr2733.16
Crystal system, space groupTrigonal, R3
Temperature (K)293
a, c (Å)15.2973 (17), 10.6252 (16)
V3)2153.3 (5)
Z3
Radiation typeMo Kα
µ (mm1)32.43
Crystal size (mm)0.2 × 0.2 × 0.2
Data collection
DiffractometerStoe IPDS-II
diffractometer
Absorption correctionNumerical
[X-RED (Stoe & Cie, 2001) and X-SHAPE (Stoe & Cie, 1999)]
Tmin, Tmax0.027, 0.071
No. of measured, independent and
observed [I > 2σ(I)] reflections
6920, 1166, 861
Rint0.115
(sin θ/λ)max1)0.663
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.096, 0.97
No. of reflections1166
No. of parameters32
Δρmax, Δρmin (e Å3)2.36, 2.44

Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2005).

 

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (DFG), SFB 608 (Complex transition metal compounds with spin and charge degrees of freedom and disorder) and the Fonds der Chemischen Industrie.

References

First citationBrandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCorbett, J. D. (1973). Rev. Chim. Miner. 10, 239–257.  CAS Google Scholar
First citationCorbett, J. D. (1996). J. Chem. Soc. Dalton Trans. pp. 575–587.  CrossRef Web of Science Google Scholar
First citationCorbett, J. D. (2000). Inorg. Chem. 39, 5178–5191.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCorbett, J. D. (2006). J. Alloys Compds, 418, 1–20.  Web of Science CrossRef CAS Google Scholar
First citationHohnstedt, C. (1993). Dissertation, Universität Hannover, Germany.  Google Scholar
First citationHughbanks, T. & Corbett, J. D. (1988). Inorg. Chem. 27, 2022–2026.  CrossRef CAS Web of Science Google Scholar
First citationMeyer, G. (1988). Chem. Rev. 88, 93–107.  CrossRef CAS Web of Science Google Scholar
First citationMeyer, G. (1991). Synthesis of Lanthanide and Actinide Compounds, edited by G. Meyer & L. R. Morss, pp. 135–144. Kluwer: Dordrecht.  Google Scholar
First citationMeyer, G. (2007). Z. Anorg. Allg. Chem. 633, 2537–2552.  Web of Science CrossRef CAS Google Scholar
First citationMeyer, G. & Wickleder, M. S. (2000). Handbook on the Physics and Chemistry of Rare Earths, Vol. 28, edited by K. A. Gscheidner Jr. & L. Eyring, pp. 53–129. Elsevier: Amsterdam.  Google Scholar
First citationPalasyuk, A., Pantenburg, I. & Meyer, G. (2006). Acta Cryst. E62, i61–i63.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSimon, A. (1981). Angew. Chem. Int. Ed. Engl. 20, 1–22.  CrossRef Web of Science Google Scholar
First citationSimon, A., Mattausch, Hj., Miller, G. J., Bauhofer, W. & Kremer, R. (1991). Handbook on the Physics and Chemistry of Rare Earths, Vol. 15, edited by K. A. Gschneidner Jr. & L. Eyring, pp. 191–285. Elsevier: Amsterdam.  Google Scholar
First citationStoe & Cie (1999). X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationStoe & Cie (2001). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWiglusz, R., Pantenburg, I. & Meyer, G. (2007). Z. Anorg. Allg. Chem. 633, 1317–1319.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds