metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages m184-m185

catena-Poly[[[aqua­(1,10-phenan­throline)cadmium(II)]-μ-benzene-1,4-di­carboxyl­ato] benzene-1,4-di­carboxylic acid hemisolvate]

aSchool of Chemistry and Materials Science, Shaanxi Normal University, Xi'an 710062, People's Republic of China
*Correspondence e-mail: liuzh@snnu.edu.cn

(Received 9 December 2008; accepted 8 January 2009; online 14 January 2009)

A new cadmium(II) coordination polymer, {[Cd(C8H4O4)(C12H8N2)(H2O)]·0.5C8H6O4}n, has been synthesized under hydro­thermal conditions. The asymmetric unit contains one CdII atom, one benzene-1,4-dicarboxyl­ate anion, one 1,10-phenanthroline ligand, one coordinated water mol­ecule and half of an uncoordinated benzene-1,4-dicaboxylic acid solvent mol­ecule. The CdII atom is in the centre of a monocapped distorted octa­hedron made up of four O atoms of two chelating benzene-1,4-dicarboxyl­ate anions, one water O atom and two 1,10-phenanthroline N atoms. The metal centres are connected via bis-chelating benzene-1,4-dicarboxyl­ate anions into a zigzag chain structure along [001]. These chains are further connected by O—H⋯O hydrogen bonds between the water mol­ecules and adjacent carboxyl­ate O atoms. Additional O—H⋯O hydrogen bonding between the uncoordinated benzene-1,4-dicaboxylic acid mol­ecules along [010] consolidates the structure.

Related literature

For background to coordination polymers, see: Liang et al. (2002[Liang, Y. C., Hong, M. C., Liu, J. C. & Cao, R. (2002). Inorg. Chim. Acta, 328, 152-158.]); McGarrah et al. (2001[McGarrah, J. E., Kim, Y.-J., Hissler, M. & Eisenberg, R. (2001). Inorg. Chem. 40, 4510-4511.]); Moulton et al. (2002[Moulton, B., Lu, J., Hajndl, R., Hariharan, S. & Zaworotko, M. J. (2002). Angew. Chem. Int. Ed. 41, 2821-2824.]); Wu et al. (2007[Wu, G., Wang, Y., Wang, X. F. Kawaguchi, H. & Sun, W. Y. (2007). J. Chem. Cryst. 37, 199-205.]). Zheng et al. (2004[Zheng, S. L., Yang, J. H., Yu, X. L., Chen, X. M. & Wong, W. T. (2004). Inorg. Chem. 43, 830-836.]). For related structures, see: Shi et al. (2004[Shi, X., Zhu, G. S., Fang, Q. R., Wu, G., Tian, G., Wang, R. W., Zhang, D. L., Xue, M. & Qiu, S. L. (2004). Eur. J. Inorg. Chem. pp. 185-191.]); Wang et al. (2004[Wang, X. L., Qin, C., Wang, E. B., Xu, L., Su, M. & Hu, C. W. (2004). Angew. Chem. Int. Ed. 43, 5036-5040.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C8H4O4)(C12H8N2)(H2O)]·0.5C8H6O4

  • Mr = 557.80

  • Monoclinic, C 2/c

  • a = 26.108 (2) Å

  • b = 9.6928 (10) Å

  • c = 21.161 (2) Å

  • β = 126.494 (2)°

  • V = 4304.9 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.07 mm−1

  • T = 298 (2) K

  • 0.42 × 0.18 × 0.02 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.663, Tmax = 0.984

  • 10895 measured reflections

  • 3793 independent reflections

  • 3061 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.062

  • S = 1.07

  • 3793 reflections

  • 309 parameters

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Selected bond lengths (Å)

Cd1—O1 2.284 (3)
Cd1—O3 2.357 (2)
Cd1—N2 2.358 (2)
Cd1—N1 2.362 (2)
Cd1—O7 2.375 (2)
Cd1—O4 2.377 (2)
Cd1—O2 2.601 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O6i 0.82 1.92 2.728 (3) 167
O7—H7A⋯O2ii 0.85 1.88 2.665 (3) 154
O7—H7B⋯O4ii 0.85 2.28 3.019 (3) 146
Symmetry codes: (i) x, y+1, z; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Carboxylic acid coordination polymers have an important position in coordination chemistry due to their interesting topologies and their potential applications in functional materials (Wu et al., 2007). The coordination ability of the 1,10-phenanthroline ligand stems from its chelate effect which frequently results in the formation of low-dimensional coordination polymers because of its terminal-group effect (Moulton et al., 2002). In this work, we report a new cadmium coordination polymer with a one-dimensional zigzag chain, {[Cd(C8H4O4)(C12H8N2)(H2O)]2(C8H6O4)}n, (I), that was synthesized from benzene-1,4-dicarboxylic acid, 1,10-phenanthroline and cadmium nitrate under hydrothermal conditions.

Each [Cd(C8H4O4)(C12H8N2)(H2O)]2(C8H6O4)] unit is composed of two Cd2+ ions, two 1,10-phenanthroline ligands, two benzene-1,4-dicarboxylate anions, two coordinated water molecules, and one uncoordinated neutral benzene-1,4-dicaboxylic acid solvent molecule. The Cd2+ ion in the complex is seven-coordinated with four oxygen atoms (O1, O2, O3 and O4) of two chelating bidentate carboxyl groups from two deprotonated benzene-1,4-dicaboxylic acid ligands, one O atom (O7) of a water molecule, and two nitrogen atoms (N1 and N2) from the chelating 1,10-phenanthroline ligand (Fig. 1). The Cd—O bond distances are between 2.284 (2) Å and 2.601 (2) Å, while the Cd—N bond distances are 2.358 (2) Å and 2.362 (2) Å, which all are in agreement with those of other reported Cd—O and Cd—N bond lengths (Wang et al., 2004; Shi et al., 2004). One Cd2+ ion connects two benzene-1,4-dicarboxylate ligands, and one benzene-1,4-dicarboxylic acid ligand also connects two Cd2+ ions, leading to a zigzag chain along [001], as shown in Fig. 2. These chains are further connected through O—H···O hydrogen bonding interactions between the water molecules and the oxygen atoms of the coordinated carboxyl groups of benzene-1,4-dicarboxylate ligands in neighboring chains to give an extended supramolecular two-dimensional layer structure, as illustrated in Fig. 3. Additional O—H···O hydrogen bonding between the uncoordinated benzene-1,4-dicaboxylic acid molecules along [010] consolidates the structure.

Related literature top

For background to coordination polymers, see: Liang et al. (2002); McGarrah et al. (2001); Moulton et al. (2002); Wu et al. (2007). Zheng et al. (2004). For related structures, see: Shi et al. (2004); Wang et al. (2004);

Experimental top

All regents used in the synthesis were of analytic grade and were used without further purification. A mixture of Cd(NO3)2.6H2O (0.3085 g), 1,10-phenanthroline (0.099 g), benzene-1,4-dicarboxylic acid (0.083 g) and water (20 mL) was sealed in a 40 mL stainless steel reactor with a Teflon inlay after adjustment of the pH to 7 by addition of a dilute NaOH solution. The autoclave was heated to 448 K for 6 d, and then cooled to room temperature. Colorless hexagonal-prismatic crystals were obtained. Elemental analysis, calculated: C, 51.68, H, 3.07, N 5.02; found: C, 50.87, H, 3.22, N 4.96.

The title compoud was further characterized by FT-IR spectroscopy (recorded over the 400 to 4000 cm-1 region on a Nicolet NEXUS 670 spectrometer with KBr pellets at room temperature); by thermogravimetric analysis (TGA) (performed on a Universal V4.1D TA-SDT Q600 thermal analyzer in N2 atmosphere with a heating rate of 10 °/min) and by its luminescent properties of the solid state under room temperature.

The FT-IR spectrum of the title compound exhibited the following absorption bands that were assigned referring to literature (Liang et al., 2002). A broad band at 3199 cm-1 corresponds to the O-H stretching vibration of the coordinated water molecule. The peak at 1682 cm-1 is attributed to the C=O stretching vibration of the carboxylate group, and the peak at 1380 cm-1 is due to the C-O stretching vibration of carboxylate group. A typical TG curve is shown in Figure 4. It shows that this compound has two steps of mass loss between 55 and 635 °C. The first step is completed at 376 °C, accompanied with 18.05 % mass loss, which is in good agreement with the theoretical mass loss of 18.12 %, corresponding to the evaporation of two water molecules and an uncoordinated neutral 1,4-benzenedecaboxylic acid molecule. In the second step, the mass loss is 70.31 % from 376 to 635 °C, which corresponds to the decomposition of two 1,10-phenanthroline and two deprotonated 1,4-benzenedecaboxylic acid ligands and can be compared with the calculated value of 70.37 %. After the two steps of mass loss, the mass fraction of the residue is 11.44 %, which is in agreement with the calculated mass summation of the remaining CdO (11.51 %). Previous studies have shown that coordination polymers containing zinc and cadmium ions exhibit photoluminescent properties (McGarrah et al., 2001). As shown in Figure 5, upon excitation of the solid sample at 370 nm, it exhibited strong cyan fluorescent emission bands at 504 nm. It is probably due to the (π*-π) transitions changing into the (π*-n) transitions after forming the coordination polymer (Zheng et al., 2004).

Refinement top

H atoms were positioned in calculated positions (O–H = 0.82 Å and 0.82 Å, C–H = 0.93 Å) and were refined using the riding model approximation with Uiso(H) = 1.2Ueq of the parent atom.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit in the structure of compound (I). Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of a one-dimensional zigzag chain in the structure of compound (I). The uncoordinated 1,4-benzenedecaboxylic acid solvent molecules were omitted for clarity.
[Figure 3] Fig. 3. The layered structure of compound (I), constructed by H-bonding.
[Figure 4] Fig. 4. The TG-curve of the thermal decomposition of the title compound (I).
[Figure 5] Fig. 5. Solid-state emission spectra of the title complex (I) at room temperature.
catena-Poly[[[aqua(1,10-phenanthroline)cadmium(II)]-µ-benzene-1,4- dicarboxylato] benzene-1,4-dicarboxylic acid hemisolvate] top
Crystal data top
[Cd(C8H4O4)(C12H8N2)(H2O)]·0.5C8H6O4F(000) = 2232
Mr = 557.80Dx = 1.721 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5356 reflections
a = 26.108 (2) Åθ = 2.4–27.4°
b = 9.6928 (10) ŵ = 1.07 mm1
c = 21.161 (2) ÅT = 298 K
β = 126.494 (2)°Prism, colourless
V = 4304.9 (7) Å30.42 × 0.18 × 0.02 mm
Z = 8
Data collection top
Bruker SMART CCD
diffractometer
3793 independent reflections
Radiation source: fine-focus sealed tube3061 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 3030
Tmin = 0.663, Tmax = 0.984k = 1110
10895 measured reflectionsl = 1825
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.062H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0233P)2 + 5.6765P]
where P = (Fo2 + 2Fc2)/3
3793 reflections(Δ/σ)max = 0.001
309 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
[Cd(C8H4O4)(C12H8N2)(H2O)]·0.5C8H6O4V = 4304.9 (7) Å3
Mr = 557.80Z = 8
Monoclinic, C2/cMo Kα radiation
a = 26.108 (2) ŵ = 1.07 mm1
b = 9.6928 (10) ÅT = 298 K
c = 21.161 (2) Å0.42 × 0.18 × 0.02 mm
β = 126.494 (2)°
Data collection top
Bruker SMART CCD
diffractometer
3793 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
3061 reflections with I > 2σ(I)
Tmin = 0.663, Tmax = 0.984Rint = 0.021
10895 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.062H-atom parameters constrained
S = 1.07Δρmax = 0.57 e Å3
3793 reflectionsΔρmin = 0.28 e Å3
309 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cd10.163966 (9)0.80224 (2)0.186508 (12)0.03638 (8)
N10.05395 (11)0.8470 (2)0.11727 (14)0.0355 (5)
N20.10891 (11)0.5924 (2)0.15983 (14)0.0415 (6)
O10.18828 (13)0.8727 (3)0.30445 (14)0.0762 (8)
O20.23664 (13)0.6773 (4)0.32126 (16)0.0928 (10)
O30.14899 (10)0.7998 (2)0.06513 (12)0.0509 (6)
O40.24360 (10)0.7435 (2)0.16977 (12)0.0502 (6)
O50.05219 (11)1.1134 (2)0.28343 (16)0.0729 (8)
H50.04601.19690.27940.109*0.50
O60.05277 (11)0.3946 (2)0.28845 (15)0.0701 (7)
H60.04670.31110.28400.105*0.50
O70.18243 (10)1.0437 (2)0.19469 (12)0.0504 (6)
H7A0.20761.06250.18290.061*
H7B0.19881.07250.24100.061*
C10.22048 (16)0.7708 (4)0.3456 (2)0.0569 (10)
C20.23658 (13)0.7594 (3)0.42642 (17)0.0382 (7)
C30.23231 (15)0.8742 (3)0.46128 (19)0.0478 (8)
H30.22020.95850.43510.057*
C40.25404 (15)0.6350 (3)0.46504 (19)0.0477 (8)
H40.25670.55700.44150.057*
C50.20622 (14)0.7676 (3)0.09733 (18)0.0373 (7)
C60.22902 (13)0.7568 (3)0.04736 (17)0.0332 (6)
C70.18645 (13)0.7628 (3)0.03373 (18)0.0425 (7)
H70.14320.77180.05710.051*
C80.29305 (14)0.7441 (3)0.08069 (18)0.0428 (7)
H80.32260.74030.13510.051*
C90.00001.0513 (4)0.25000.0443 (11)
C100.00000.8973 (4)0.25000.0390 (10)
C110.05674 (14)0.8252 (3)0.28751 (19)0.0479 (8)
H110.09510.87300.31270.058*
C120.05684 (15)0.6829 (3)0.2878 (2)0.0500 (8)
H120.09520.63520.31340.060*
C130.00000.6107 (4)0.25000.0400 (10)
C140.00000.4565 (5)0.25000.0452 (11)
C150.02751 (15)0.9707 (3)0.09881 (19)0.0470 (8)
H150.05391.04780.11750.056*
C160.03804 (15)0.9903 (4)0.0527 (2)0.0538 (9)
H160.05491.07900.04090.065*
C170.07692 (15)0.8796 (4)0.0251 (2)0.0547 (9)
H170.12090.89180.00670.066*
C180.05130 (14)0.7468 (3)0.04402 (19)0.0452 (8)
C190.01571 (13)0.7355 (3)0.09130 (16)0.0344 (6)
C200.04452 (14)0.6005 (3)0.11358 (17)0.0390 (7)
C210.00562 (16)0.4833 (3)0.0881 (2)0.0520 (8)
C220.0362 (2)0.3557 (4)0.1137 (3)0.0774 (12)
H220.01200.27540.09810.093*
C230.1001 (2)0.3473 (4)0.1607 (3)0.0796 (13)
H230.12040.26220.17810.096*
C240.13532 (18)0.4689 (4)0.1827 (2)0.0626 (10)
H240.17950.46280.21520.075*
C250.08894 (16)0.6240 (4)0.0181 (2)0.0647 (10)
H250.13310.63130.01420.078*
C260.06213 (18)0.4987 (4)0.0391 (2)0.0692 (11)
H260.08790.42070.02170.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.03152 (12)0.04161 (13)0.03571 (13)0.00181 (10)0.01983 (10)0.00116 (11)
N10.0354 (13)0.0350 (13)0.0368 (14)0.0012 (11)0.0219 (12)0.0022 (11)
N20.0383 (14)0.0368 (14)0.0448 (15)0.0046 (11)0.0223 (13)0.0005 (12)
O10.085 (2)0.091 (2)0.0430 (15)0.0133 (17)0.0329 (15)0.0057 (15)
O20.0747 (19)0.157 (3)0.0568 (17)0.0122 (19)0.0443 (16)0.0235 (19)
O30.0394 (12)0.0742 (15)0.0446 (12)0.0144 (11)0.0280 (11)0.0073 (12)
O40.0433 (12)0.0731 (15)0.0366 (13)0.0063 (11)0.0251 (11)0.0046 (11)
O50.0487 (14)0.0436 (15)0.101 (2)0.0060 (12)0.0307 (15)0.0069 (14)
O60.0583 (16)0.0435 (14)0.0852 (19)0.0088 (12)0.0300 (15)0.0008 (14)
O70.0564 (13)0.0473 (13)0.0485 (13)0.0114 (11)0.0317 (12)0.0060 (11)
C10.0359 (18)0.091 (3)0.044 (2)0.0160 (19)0.0237 (17)0.012 (2)
C20.0297 (15)0.0521 (18)0.0326 (16)0.0034 (13)0.0185 (14)0.0059 (15)
C30.0518 (19)0.0381 (18)0.0470 (19)0.0049 (15)0.0260 (17)0.0044 (15)
C40.0513 (19)0.0443 (19)0.049 (2)0.0033 (15)0.0302 (17)0.0118 (17)
C50.0387 (17)0.0345 (16)0.0414 (18)0.0001 (13)0.0253 (15)0.0002 (13)
C60.0339 (15)0.0303 (14)0.0367 (16)0.0003 (12)0.0217 (14)0.0008 (13)
C70.0277 (15)0.059 (2)0.0396 (18)0.0030 (14)0.0196 (14)0.0025 (15)
C80.0337 (16)0.0604 (19)0.0299 (16)0.0016 (14)0.0166 (14)0.0007 (15)
C90.046 (3)0.042 (3)0.040 (3)0.0000.023 (2)0.000
C100.042 (2)0.040 (2)0.034 (2)0.0000.023 (2)0.000
C110.0376 (17)0.044 (2)0.055 (2)0.0039 (14)0.0236 (16)0.0058 (16)
C120.0386 (18)0.046 (2)0.057 (2)0.0050 (15)0.0235 (17)0.0006 (16)
C130.043 (2)0.039 (3)0.038 (2)0.0000.024 (2)0.000
C140.048 (3)0.044 (3)0.041 (3)0.0000.025 (2)0.000
C150.0451 (19)0.0393 (18)0.058 (2)0.0037 (14)0.0311 (17)0.0069 (16)
C160.0446 (19)0.047 (2)0.066 (2)0.0145 (16)0.0312 (19)0.0146 (18)
C170.0318 (17)0.072 (3)0.053 (2)0.0116 (17)0.0216 (16)0.0107 (19)
C180.0329 (16)0.0537 (19)0.0446 (19)0.0028 (14)0.0207 (15)0.0013 (16)
C190.0344 (15)0.0394 (17)0.0301 (15)0.0020 (13)0.0195 (13)0.0014 (13)
C200.0405 (17)0.0398 (17)0.0377 (17)0.0029 (13)0.0238 (15)0.0045 (14)
C210.054 (2)0.044 (2)0.057 (2)0.0094 (16)0.0331 (19)0.0105 (17)
C220.084 (3)0.039 (2)0.105 (4)0.011 (2)0.054 (3)0.013 (2)
C230.085 (3)0.034 (2)0.110 (4)0.007 (2)0.052 (3)0.001 (2)
C240.058 (2)0.045 (2)0.072 (3)0.0138 (18)0.031 (2)0.0034 (19)
C250.0352 (19)0.077 (3)0.065 (2)0.0120 (19)0.0211 (18)0.009 (2)
C260.056 (2)0.062 (3)0.082 (3)0.027 (2)0.037 (2)0.020 (2)
Geometric parameters (Å, º) top
Cd1—O12.284 (3)C8—C7ii1.382 (4)
Cd1—O32.357 (2)C8—H80.9300
Cd1—N22.358 (2)C9—O5iii1.254 (3)
Cd1—N12.362 (2)C9—C101.493 (6)
Cd1—O72.375 (2)C10—C11iii1.384 (4)
Cd1—O42.377 (2)C10—C111.384 (4)
Cd1—O22.601 (3)C11—C121.379 (4)
N1—C151.321 (4)C11—H110.9300
N1—C191.347 (4)C12—C131.385 (4)
N2—C241.321 (4)C12—H120.9300
N2—C201.354 (4)C13—C12iii1.385 (4)
O1—C11.253 (4)C13—C141.494 (6)
O2—C11.235 (4)C14—O6iii1.260 (3)
O3—C51.258 (3)C15—C161.390 (4)
O4—C51.256 (3)C15—H150.9300
O5—C91.254 (3)C16—C171.348 (5)
O5—H50.8200C16—H160.9300
O6—C141.260 (3)C17—C181.395 (5)
O6—H60.8200C17—H170.9300
O7—H7A0.8501C18—C191.411 (4)
O7—H7B0.8499C18—C251.429 (5)
C1—C21.503 (5)C19—C201.442 (4)
C2—C41.374 (4)C20—C211.400 (4)
C2—C31.376 (4)C21—C221.395 (5)
C3—C4i1.380 (5)C21—C261.430 (5)
C3—H30.9300C22—C231.345 (5)
C4—C3i1.380 (5)C22—H220.9300
C4—H40.9300C23—C241.393 (5)
C5—C61.494 (4)C23—H230.9300
C6—C81.380 (4)C24—H240.9300
C6—C71.384 (4)C25—C261.339 (5)
C7—C8ii1.382 (4)C25—H250.9300
C7—H70.9300C26—H260.9300
O1—Cd1—O3162.20 (9)C6—C8—C7ii120.4 (3)
O1—Cd1—N2104.69 (9)C6—C8—H8119.8
O3—Cd1—N292.75 (8)C7ii—C8—H8119.8
O1—Cd1—N193.90 (9)O5—C9—O5iii122.6 (4)
O3—Cd1—N188.48 (7)O5—C9—C10118.7 (2)
N2—Cd1—N170.53 (8)O5iii—C9—C10118.7 (2)
O1—Cd1—O773.32 (9)C11iii—C10—C11119.3 (4)
O3—Cd1—O789.10 (8)C11iii—C10—C9120.3 (2)
N2—Cd1—O7159.42 (8)C11—C10—C9120.3 (2)
N1—Cd1—O789.04 (8)C12—C11—C10120.4 (3)
O1—Cd1—O4122.37 (9)C12—C11—H11119.8
O3—Cd1—O455.12 (7)C10—C11—H11119.8
N2—Cd1—O4102.73 (8)C11—C12—C13120.3 (3)
N1—Cd1—O4143.17 (8)C11—C12—H12119.9
O7—Cd1—O495.13 (8)C13—C12—H12119.9
O1—Cd1—O252.68 (10)C12—C13—C12iii119.3 (4)
O3—Cd1—O2136.90 (8)C12—C13—C14120.3 (2)
N2—Cd1—O278.69 (10)C12iii—C13—C14120.3 (2)
N1—Cd1—O2126.21 (9)O6iii—C14—O6123.1 (4)
O7—Cd1—O2113.27 (9)O6iii—C14—C13118.5 (2)
O4—Cd1—O285.37 (8)O6—C14—C13118.5 (2)
C15—N1—C19118.5 (2)N1—C15—C16122.7 (3)
C15—N1—Cd1125.38 (19)N1—C15—H15118.6
C19—N1—Cd1115.99 (18)C16—C15—H15118.6
C24—N2—C20118.1 (3)C17—C16—C15119.4 (3)
C24—N2—Cd1125.7 (2)C17—C16—H16120.3
C20—N2—Cd1116.18 (19)C15—C16—H16120.3
C1—O1—Cd199.2 (2)C16—C17—C18120.1 (3)
C1—O2—Cd184.7 (2)C16—C17—H17120.0
C5—O3—Cd192.19 (18)C18—C17—H17120.0
C5—O4—Cd191.35 (17)C17—C18—C19117.1 (3)
C9—O5—H5109.5C17—C18—C25123.7 (3)
C14—O6—H6109.5C19—C18—C25119.1 (3)
Cd1—O7—H7A110.4N1—C19—C18122.2 (3)
Cd1—O7—H7B110.4N1—C19—C20118.6 (2)
H7A—O7—H7B108.7C18—C19—C20119.2 (3)
O2—C1—O1122.9 (4)N2—C20—C21122.4 (3)
O2—C1—C2119.2 (4)N2—C20—C19118.1 (3)
O1—C1—C2117.8 (3)C21—C20—C19119.5 (3)
C4—C2—C3119.7 (3)C22—C21—C20117.0 (3)
C4—C2—C1120.7 (3)C22—C21—C26123.3 (3)
C3—C2—C1119.6 (3)C20—C21—C26119.7 (3)
C2—C3—C4i120.3 (3)C23—C22—C21120.8 (4)
C2—C3—H3119.9C23—C22—H22119.6
C4i—C3—H3119.9C21—C22—H22119.6
C2—C4—C3i120.0 (3)C22—C23—C24118.6 (4)
C2—C4—H4120.0C22—C23—H23120.7
C3i—C4—H4120.0C24—C23—H23120.7
O4—C5—O3121.2 (3)N2—C24—C23123.2 (3)
O4—C5—C6120.2 (3)N2—C24—H24118.4
O3—C5—C6118.6 (3)C23—C24—H24118.4
C8—C6—C7118.2 (3)C26—C25—C18121.6 (3)
C8—C6—C5121.1 (3)C26—C25—H25119.2
C7—C6—C5120.7 (3)C18—C25—H25119.2
C8ii—C7—C6121.4 (3)C25—C26—C21120.8 (3)
C8ii—C7—H7119.3C25—C26—H26119.6
C6—C7—H7119.3C21—C26—H26119.6
O1—Cd1—N1—C1573.5 (3)Cd1—O4—C5—C6176.8 (2)
O3—Cd1—N1—C1588.8 (3)Cd1—O3—C5—O44.1 (3)
N2—Cd1—N1—C15177.7 (3)Cd1—O3—C5—C6176.7 (2)
O7—Cd1—N1—C150.3 (3)O4—C5—C6—C811.4 (4)
O4—Cd1—N1—C1597.0 (3)O3—C5—C6—C8169.4 (3)
O2—Cd1—N1—C15118.8 (2)O4—C5—C6—C7170.3 (3)
O1—Cd1—N1—C19110.4 (2)O3—C5—C6—C78.9 (4)
O3—Cd1—N1—C1987.2 (2)C8—C6—C7—C8ii0.3 (5)
N2—Cd1—N1—C196.22 (19)C5—C6—C7—C8ii178.6 (3)
O7—Cd1—N1—C19176.4 (2)C7—C6—C8—C7ii0.3 (5)
O4—Cd1—N1—C1979.1 (2)C5—C6—C8—C7ii178.6 (3)
O2—Cd1—N1—C1965.1 (2)O5—C9—C10—C11iii178.8 (2)
O1—Cd1—N2—C2488.3 (3)O5iii—C9—C10—C11iii1.2 (2)
O3—Cd1—N2—C2495.3 (3)O5—C9—C10—C111.2 (2)
N1—Cd1—N2—C24177.3 (3)O5iii—C9—C10—C11178.8 (2)
O7—Cd1—N2—C24169.9 (3)C11iii—C10—C11—C120.2 (2)
O4—Cd1—N2—C2440.5 (3)C9—C10—C11—C12179.8 (2)
O2—Cd1—N2—C2442.1 (3)C10—C11—C12—C130.4 (5)
O1—Cd1—N2—C2095.2 (2)C11—C12—C13—C12iii0.2 (2)
O3—Cd1—N2—C2081.1 (2)C11—C12—C13—C14179.8 (2)
N1—Cd1—N2—C206.3 (2)C12—C13—C14—O6iii176.3 (2)
O7—Cd1—N2—C2013.6 (4)C12iii—C13—C14—O6iii3.7 (2)
O4—Cd1—N2—C20136.0 (2)C12—C13—C14—O63.7 (2)
O2—Cd1—N2—C20141.5 (2)C12iii—C13—C14—O6176.3 (2)
O3—Cd1—O1—C1133.0 (3)C19—N1—C15—C161.1 (5)
N2—Cd1—O1—C158.9 (2)Cd1—N1—C15—C16174.8 (2)
N1—Cd1—O1—C1129.8 (2)N1—C15—C16—C170.1 (5)
O7—Cd1—O1—C1142.3 (2)C15—C16—C17—C181.1 (5)
O4—Cd1—O1—C156.9 (2)C16—C17—C18—C191.0 (5)
O2—Cd1—O1—C14.0 (2)C16—C17—C18—C25179.3 (3)
O1—Cd1—O2—C14.0 (2)C15—N1—C19—C181.3 (4)
O3—Cd1—O2—C1163.68 (19)Cd1—N1—C19—C18175.1 (2)
N2—Cd1—O2—C1114.5 (2)C15—N1—C19—C20177.9 (3)
N1—Cd1—O2—C159.1 (3)Cd1—N1—C19—C205.7 (3)
O7—Cd1—O2—C147.9 (2)C17—C18—C19—N10.2 (5)
O4—Cd1—O2—C1141.5 (2)C25—C18—C19—N1179.5 (3)
O1—Cd1—O3—C585.7 (3)C17—C18—C19—C20179.0 (3)
N2—Cd1—O3—C5105.85 (18)C25—C18—C19—C201.3 (5)
N1—Cd1—O3—C5176.28 (18)C24—N2—C20—C211.6 (5)
O7—Cd1—O3—C594.65 (18)Cd1—N2—C20—C21175.1 (2)
O4—Cd1—O3—C52.24 (16)C24—N2—C20—C19177.4 (3)
O2—Cd1—O3—C529.5 (2)Cd1—N2—C20—C195.9 (3)
O1—Cd1—O4—C5156.55 (18)N1—C19—C20—N20.1 (4)
O3—Cd1—O4—C52.24 (16)C18—C19—C20—N2179.1 (3)
N2—Cd1—O4—C586.65 (18)N1—C19—C20—C21179.2 (3)
N1—Cd1—O4—C512.2 (2)C18—C19—C20—C210.1 (4)
O7—Cd1—O4—C583.06 (18)N2—C20—C21—C221.2 (5)
O2—Cd1—O4—C5163.94 (19)C19—C20—C21—C22177.8 (3)
Cd1—O2—C1—O17.0 (3)N2—C20—C21—C26179.9 (3)
Cd1—O2—C1—C2169.4 (3)C19—C20—C21—C261.1 (5)
Cd1—O1—C1—O28.0 (4)C20—C21—C22—C230.1 (6)
Cd1—O1—C1—C2168.4 (2)C26—C21—C22—C23179.0 (4)
O2—C1—C2—C416.4 (5)C21—C22—C23—C240.5 (7)
O1—C1—C2—C4160.2 (3)C20—N2—C24—C230.9 (6)
O2—C1—C2—C3165.2 (3)Cd1—N2—C24—C23175.4 (3)
O1—C1—C2—C318.3 (4)C22—C23—C24—N20.1 (7)
C4—C2—C3—C4i0.5 (5)C17—C18—C25—C26178.6 (4)
C1—C2—C3—C4i179.0 (3)C19—C18—C25—C261.7 (6)
C3—C2—C4—C3i0.5 (5)C18—C25—C26—C210.6 (6)
C1—C2—C4—C3i179.0 (3)C22—C21—C26—C25178.0 (4)
Cd1—O4—C5—O34.0 (3)C20—C21—C26—C250.8 (6)
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1/2, y+3/2, z; (iii) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O6iv0.821.922.728 (3)167
O7—H7A···O2v0.851.882.665 (3)154
O7—H7B···O4v0.852.283.019 (3)146
Symmetry codes: (iv) x, y+1, z; (v) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cd(C8H4O4)(C12H8N2)(H2O)]·0.5C8H6O4
Mr557.80
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)26.108 (2), 9.6928 (10), 21.161 (2)
β (°) 126.494 (2)
V3)4304.9 (7)
Z8
Radiation typeMo Kα
µ (mm1)1.07
Crystal size (mm)0.42 × 0.18 × 0.02
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.663, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
10895, 3793, 3061
Rint0.021
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.062, 1.07
No. of reflections3793
No. of parameters309
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.28

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cd1—O12.284 (3)Cd1—O72.375 (2)
Cd1—O32.357 (2)Cd1—O42.377 (2)
Cd1—N22.358 (2)Cd1—O22.601 (3)
Cd1—N12.362 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O6i0.821.922.728 (3)166.5
O7—H7A···O2ii0.851.882.665 (3)153.9
O7—H7B···O4ii0.852.283.019 (3)145.7
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y+1/2, z+1/2.
 

References

First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLiang, Y. C., Hong, M. C., Liu, J. C. & Cao, R. (2002). Inorg. Chim. Acta, 328, 152-158.  Web of Science CSD CrossRef CAS Google Scholar
First citationMcGarrah, J. E., Kim, Y.-J., Hissler, M. & Eisenberg, R. (2001). Inorg. Chem. 40, 4510-4511.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMoulton, B., Lu, J., Hajndl, R., Hariharan, S. & Zaworotko, M. J. (2002). Angew. Chem. Int. Ed. 41, 2821-2824.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, X., Zhu, G. S., Fang, Q. R., Wu, G., Tian, G., Wang, R. W., Zhang, D. L., Xue, M. & Qiu, S. L. (2004). Eur. J. Inorg. Chem. pp. 185-191.  Web of Science CSD CrossRef Google Scholar
First citationWang, X. L., Qin, C., Wang, E. B., Xu, L., Su, M. & Hu, C. W. (2004). Angew. Chem. Int. Ed. 43, 5036-5040.  Web of Science CSD CrossRef CAS Google Scholar
First citationWu, G., Wang, Y., Wang, X. F. Kawaguchi, H. & Sun, W. Y. (2007). J. Chem. Cryst. 37, 199-205.  Web of Science CSD CrossRef CAS Google Scholar
First citationZheng, S. L., Yang, J. H., Yu, X. L., Chen, X. M. & Wong, W. T. (2004). Inorg. Chem. 43, 830-836.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages m184-m185
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds