Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Crystals of dipotassium iron(III) tin(IV) tris­(orthophosphate) were grown from a self-flux in the system K2O–P2O5–Fe2O3–SnO2. The title compound is isotypic with the mineral langbeinite, K2Mg2(SO4)3. Its three-dimensional [M2(PO4)3] framework is composed of [MO6] (M = Sn, Fe) octa­hedra and [PO4] tetra­hedra inter­linked via vertices. In comparison with the previous refinement from X-ray powder data [Aatiq, Haggouch, Bakri, Lakhdar & Saadoune. (2006). Powder Diffr. 21, 214–219], the present reinvestigation from single-crystal data allows a more precise determination of the distribution of the Fe and Sn atoms over two crystallographic positions and a revision of the P—O and M—O [M = K, (Fe, Sn)] bond lengths. For the two K+ cations, two different polyhedra with coordination numbers of 9 and 12 are observed. The (Fe, Sn) and K atoms are located on threefold axes.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807058588/wm2157sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807058588/wm2157Isup2.hkl
Contains datablock I

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](P-O) = 0.002 Å
  • Disorder in main residue
  • R factor = 0.021
  • wR factor = 0.045
  • Data-to-parameter ratio = 22.8

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT112_ALERT_2_B ADDSYM Detects Additional (Pseudo) Symm. Elem... -4 PLAT112_ALERT_2_B ADDSYM Detects Additional (Pseudo) Symm. Elem... -4 PLAT112_ALERT_2_B ADDSYM Detects Additional (Pseudo) Symm. Elem... -4 PLAT112_ALERT_2_B ADDSYM Detects Additional (Pseudo) Symm. Elem... m PLAT112_ALERT_2_B ADDSYM Detects Additional (Pseudo) Symm. Elem... m PLAT112_ALERT_2_B ADDSYM Detects Additional (Pseudo) Symm. Elem... m
Alert level C PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.99 PLAT141_ALERT_4_C su on a - Axis Small or Missing (x 100000) ..... 7 Ang. PLAT301_ALERT_3_C Main Residue Disorder ......................... 11.00 Perc.
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 34.99 From the CIF: _reflns_number_total 1434 Count of symmetry unique reflns 812 Completeness (_total/calc) 176.60% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 622 Fraction of Friedel pairs measured 0.766 Are heavy atom types Z>Si present yes PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 3
0 ALERT level A = In general: serious problem 6 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 4 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 6 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Langbeinite-type frameworks [M2(PO4)3] can be composed from various types of tetravalent and bi- or trivalent metal pairs. For example, the structures of K2M0.5Ti1.5(PO4)3 (M = Ni, Co, Mn) (Ogorodnyk et al., 2006; 2007a), K2MTi(PO4)3 (M = Y, Yb, Er) (Norberg, 2002), K2FeZr(PO4)3 (Orlova et al., 2003) and K2LuZr(PO4)3 (Ogorodnyk et al., 2007b) have been investigated in the past years. Among other langbeinite-related compounds, the structures of only two tin(IV)-containing phosphates, viz. K2MSn(PO4)3 (M = Fe, Yb) refined from X-ray powder data, were previously reported (Aatiq et al., 2006). Herein we report the single-crystal growth and re-investigation of K2FeSn(PO4)3 (I), a structure that is isotypic with the mineral langbeinite, K2Mg2(SO4)3 (Zemann, & Zemann, 1957).

Sn and Fe atoms are statistically distributed over two octahedrally coordinated positions with an insignificant priority of the M1 site occupation by Sn and of the M2 site by Fe. The {Sn(Fe)1-Sn(Fe)2-K1—K2} sequence runs along [111] (Fig. 1). K1 atoms are coordinated by 9 O atoms, while K2 atoms are surrounded by 12 O atoms (Fig. 2), with K—O bond lengths ranging from 2.852 (2) to 3.243 (2) Å.

Comparing the results from the single-crystal study with the results of the previous powder study, the following points are noteable. The distribution of two type of metals (Fe and Sn) over two octahedrally coordinated positions are close to those reported earlier, but the accuracy of single-crystal refinement is more precise. The values of corresponding Fe/Sn—O bond lengths insignificantly differs from one another in each type of octahedron in the present structure model, while the values found by Rietveld refinement differs a lot. Actually, the new results of the single-crystal refinement suggest a lower degree of distortion of the [(Fe,Sn)O6] polyhedra. Moreover, in contrast to the results of the powder refinement with each of the K+ cations in 9-fold coordination, we assume that K1 is 9-coordinate, while K2 is 12-coordinate, which agrees with the most of earlier discussed structures of langbeinite-related phosphates.

Related literature top

For the previous powder study of the title compound, see Aatiq et al. (2006). The crystal structure of the mineral langbeinite was determined by Zemann & Zemann (1957). Other phosphates with langbeinite-type structure have been investigated by Norberg (2002), Ogorodnyk et al. (2006), Ogorodnyk, Zatovsky & Slobodyanik (2007), Ogorodnyk, Zatovsky, Baumer et al. (2007), and Orlova et al. (2003).

Experimental top

Crystals of (I) were obtained in the pseudo-quaternary system K2O—P2O5—SnO2—Fe2O3 using the high-temperature flux crystallization technique. A well ground mixture of 0.9 g SnO2 (6.0 mmol), 1,44 g Fe2O3 (9.0 mmol), 6,63 g KPO3 (56.2 mmol) and 1,03 g K4P2O7 (3.1 mmol) was placed into a platinum crucible, and was heated up to 1373 K. The melt was exposed during 6 h at this temperature to dissolve the metal oxides, and then was cooled down 1013 K at a rate 25 K/h. At the final stage of crystallization the melt was sustained under isothermal conditions for 1 h to gain equilibrium, and was then poured out onto a copper sheet for quenching. Yellow-brownish crystals with mostly tetrahedral shape were recovered from the remaining flux by leaching out with deionized water.

Refinement top

As suggested from the previous powder refinement (Aatiq et al., 2006), the Fe and Sn atoms are statistically distributed. Their coordinates and displacement ellipsoids were constrained. Three additional restraints were applied, viz. two for full occupancies of the Fe/Sn sites and one for the total charge of iron and tin (charge sum = 7.00). The highest peak in the final Fourier map is located 0.87 Å from atom P1, and the deepest hole is 1.05 Å from atom Sn1.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2005); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A part of the crystal structure of (I), displayed with ellipsoids at the 70% probability level. The blue line shows the [111] direction.
[Figure 2] Fig. 2. Arrangement of [MO6] octahedra and [PO4] tetrahedra forming cavities around the K+ cations (70% probability displacement ellipsoids). [M1O6] octahedra are light brown, [M2O6] octahedra are dark red, and [PO4] tetrahedra are purple.
dipotassium iron(III) tin(IV) tris(orthophosphate) top
Crystal data top
K2FeSn(PO4)3Dx = 3.664 Mg m3
Mr = 537.65Mo Kα radiation, λ = 0.71073 Å
Cubic, P213Cell parameters from 5809 reflections
Hall symbol: P 2ac 2ab 3θ = 2.9–35.0°
a = 9.91473 (7) ŵ = 5.47 mm1
V = 974.64 (1) Å3T = 293 K
Z = 4Tetrahedron, yellow brown
F(000) = 10200.08 × 0.06 × 0.05 mm
Data collection top
XCalibur-3
diffractometer
1434 independent reflections
Radiation source: fine focus sealed tube1338 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ϕ and ω scansθmax = 35.0°, θmin = 2.9°
Absorption correction: multi-scan
(Blessing; 1995)
h = 1316
Tmin = 0.669, Tmax = 0.772k = 1515
5809 measured reflectionsl = 1516
Refinement top
Refinement on F2 w = 1/[σ2(Fo2) + (0.0194P)2 + 0.5777P]
where P = (Fo2 + 2Fc2)/3
Least-squares matrix: full(Δ/σ)max < 0.001
R[F2 > 2σ(F2)] = 0.021Δρmax = 0.50 e Å3
wR(F2) = 0.045Δρmin = 0.57 e Å3
S = 1.1Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1434 reflectionsExtinction coefficient: 0.0058 (5)
63 parametersAbsolute structure: Flack (1983), 621 Friedel Pairs
3 restraintsAbsolute structure parameter: 0.03 (2)
Crystal data top
K2FeSn(PO4)3Z = 4
Mr = 537.65Mo Kα radiation
Cubic, P213µ = 5.47 mm1
a = 9.91473 (7) ÅT = 293 K
V = 974.64 (1) Å30.08 × 0.06 × 0.05 mm
Data collection top
XCalibur-3
diffractometer
1434 independent reflections
Absorption correction: multi-scan
(Blessing; 1995)
1338 reflections with I > 2σ(I)
Tmin = 0.669, Tmax = 0.772Rint = 0.035
5809 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0213 restraints
wR(F2) = 0.045Δρmax = 0.50 e Å3
S = 1.1Δρmin = 0.57 e Å3
1434 reflectionsAbsolute structure: Flack (1983), 621 Friedel Pairs
63 parametersAbsolute structure parameter: 0.03 (2)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
K10.70742 (8)0.70742 (8)0.70742 (8)0.0278 (3)
K20.93262 (6)0.93262 (6)0.93262 (6)0.0220 (2)
Fe10.14686 (2)0.14686 (2)0.14686 (2)0.00732 (8)0.4464 (11)
Fe20.41421 (2)0.41421 (2)0.41421 (2)0.00737 (8)0.5538 (12)
Sn10.14686 (2)0.14686 (2)0.14686 (2)0.00732 (8)0.5536 (11)
Sn20.41421 (2)0.41421 (2)0.41421 (2)0.00737 (8)0.4462 (11)
P10.46113 (6)0.22920 (6)0.12592 (6)0.00634 (10)
O10.31483 (18)0.2389 (2)0.0776 (2)0.0154 (4)
O20.5516 (2)0.2973 (2)0.0223 (2)0.0180 (4)
O30.5006 (2)0.08280 (19)0.1516 (2)0.0172 (3)
O40.4825 (2)0.3057 (2)0.2572 (2)0.0203 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.0278 (3)0.0278 (3)0.0278 (3)0.0001 (3)0.0001 (3)0.0001 (3)
K20.0220 (2)0.0220 (2)0.0220 (2)0.0026 (2)0.0026 (2)0.0026 (2)
Fe10.00732 (8)0.00732 (8)0.00732 (8)0.00009 (7)0.00009 (7)0.00009 (7)
Fe20.00737 (8)0.00737 (8)0.00737 (8)0.00050 (7)0.00050 (7)0.00050 (7)
Sn10.00732 (8)0.00732 (8)0.00732 (8)0.00009 (7)0.00009 (7)0.00009 (7)
Sn20.00737 (8)0.00737 (8)0.00737 (8)0.00050 (7)0.00050 (7)0.00050 (7)
P10.0061 (2)0.0066 (2)0.0063 (2)0.00007 (18)0.00116 (17)0.00006 (17)
O10.0068 (7)0.0201 (9)0.0194 (9)0.0031 (6)0.0024 (7)0.0086 (8)
O20.0155 (9)0.0211 (10)0.0174 (9)0.0008 (7)0.0091 (7)0.0087 (8)
O30.0220 (9)0.0078 (7)0.0219 (9)0.0063 (7)0.0031 (8)0.0032 (8)
O40.0240 (11)0.0235 (11)0.0135 (9)0.0030 (8)0.0022 (8)0.0117 (8)
Geometric parameters (Å, º) top
K1—O1i2.852 (2)Fe1—O1xiv2.0195 (19)
K1—O1ii2.852 (2)Fe1—K2xv3.6790 (12)
K1—O1iii2.852 (2)Fe1—K1xvi3.8453 (6)
K1—O2iv3.013 (2)Fe1—K1xvii3.8453 (6)
K1—O2v3.013 (2)Fe1—K1xviii3.8453 (6)
K1—O2vi3.013 (2)Fe2—O3i1.9830 (19)
K1—O4iv3.117 (2)Fe2—O3ii1.9830 (19)
K1—O4v3.117 (2)Fe2—O3iii1.9830 (19)
K1—O4vi3.117 (2)Fe2—O42.010 (2)
K1—P1iv3.4419 (9)Fe2—O4xiv2.010 (2)
K1—P1v3.4419 (9)Fe2—O4xiii2.010 (2)
K1—P1vi3.4419 (9)Fe2—K2xix3.7636 (4)
K2—O3iv2.868 (2)Fe2—K2xx3.7636 (4)
K2—O3vi2.868 (2)Fe2—K2xxi3.7636 (4)
K2—O3v2.868 (2)P1—O41.521 (2)
K2—O2vii2.960 (2)P1—O21.521 (2)
K2—O2viii2.960 (2)P1—O31.525 (2)
K2—O2ix2.960 (2)P1—O11.5306 (19)
K2—O4iv3.053 (3)O1—K1xvi2.852 (2)
K2—O4v3.053 (3)O2—Sn1xxii2.0032 (19)
K2—O4vi3.053 (3)O2—Fe1xxii2.0032 (19)
K2—O4vii3.243 (2)O2—K2xix2.960 (2)
K2—O4viii3.243 (2)O2—K1xxi3.013 (2)
K2—O4ix3.243 (2)O3—Sn2xvi1.9830 (19)
Fe1—O2x2.0032 (19)O3—Fe2xvi1.9830 (19)
Fe1—O2xi2.0032 (19)O3—K2xxi2.868 (2)
Fe1—O2xii2.0032 (19)O4—K2xxi3.053 (3)
Fe1—O1xiii2.0195 (19)O4—K1xxi3.117 (2)
Fe1—O12.0195 (19)O4—K2xix3.243 (2)
O1i—K1—O1ii92.31 (7)O3v—K2—O4viii86.13 (6)
O1i—K1—O1iii92.31 (7)O2vii—K2—O4viii88.43 (6)
O1ii—K1—O1iii92.31 (7)O2viii—K2—O4viii45.82 (5)
O1i—K1—O2iv57.28 (5)O2ix—K2—O4viii100.56 (6)
O1ii—K1—O2iv81.42 (6)O4iv—K2—O4viii137.22 (4)
O1iii—K1—O2iv148.35 (7)O4v—K2—O4viii54.34 (8)
O1i—K1—O2v148.35 (7)O4vi—K2—O4viii104.276 (11)
O1ii—K1—O2v57.28 (5)O4vii—K2—O4viii115.51 (3)
O1iii—K1—O2v81.42 (6)O3iv—K2—O4ix86.13 (6)
O2iv—K1—O2v119.065 (15)O3vi—K2—O4ix156.82 (6)
O1i—K1—O2vi81.42 (6)O3v—K2—O4ix56.20 (5)
O1ii—K1—O2vi148.35 (7)O2vii—K2—O4ix100.56 (6)
O1iii—K1—O2vi57.28 (5)O2viii—K2—O4ix88.43 (6)
O2iv—K1—O2vi119.065 (15)O2ix—K2—O4ix45.82 (5)
O2v—K1—O2vi119.065 (15)O4iv—K2—O4ix54.34 (8)
O1i—K1—O4iv103.75 (6)O4v—K2—O4ix104.276 (11)
O1ii—K1—O4iv82.12 (6)O4vi—K2—O4ix137.22 (4)
O1iii—K1—O4iv163.15 (6)O4vii—K2—O4ix115.51 (3)
O2iv—K1—O4iv46.64 (6)O4viii—K2—O4ix115.51 (3)
O2v—K1—O4iv82.20 (6)O2x—Fe1—O2xi88.12 (9)
O2vi—K1—O4iv129.53 (7)O2x—Fe1—O2xii88.12 (9)
O1i—K1—O4v163.15 (6)O2xi—Fe1—O2xii88.12 (9)
O1ii—K1—O4v103.75 (6)O2x—Fe1—O1xiii88.81 (8)
O1iii—K1—O4v82.12 (6)O2xi—Fe1—O1xiii176.13 (9)
O2iv—K1—O4v129.53 (7)O2xii—Fe1—O1xiii89.43 (9)
O2v—K1—O4v46.64 (6)O2x—Fe1—O189.43 (9)
O2vi—K1—O4v82.20 (6)O2xi—Fe1—O188.81 (8)
O4iv—K1—O4v83.78 (7)O2xii—Fe1—O1176.13 (9)
O1i—K1—O4vi82.12 (6)O1xiii—Fe1—O193.51 (9)
O1ii—K1—O4vi163.15 (6)O2x—Fe1—O1xiv176.13 (9)
O1iii—K1—O4vi103.75 (6)O2xi—Fe1—O1xiv89.43 (9)
O2iv—K1—O4vi82.20 (6)O2xii—Fe1—O1xiv88.81 (8)
O2v—K1—O4vi129.53 (7)O1xiii—Fe1—O1xiv93.51 (9)
O2vi—K1—O4vi46.64 (6)O1—Fe1—O1xiv93.51 (9)
O4iv—K1—O4vi83.78 (7)O3i—Fe2—O3ii93.35 (9)
O4v—K1—O4vi83.78 (7)O3i—Fe2—O3iii93.35 (9)
O3iv—K2—O3vi100.64 (6)O3ii—Fe2—O3iii93.35 (9)
O3iv—K2—O3v100.64 (6)O3i—Fe2—O4172.59 (9)
O3vi—K2—O3v100.64 (6)O3ii—Fe2—O493.04 (9)
O3iv—K2—O2vii95.91 (6)O3iii—Fe2—O482.53 (9)
O3vi—K2—O2vii100.74 (6)O3i—Fe2—O4xiv93.04 (9)
O3v—K2—O2vii149.93 (6)O3ii—Fe2—O4xiv82.53 (9)
O3iv—K2—O2viii149.93 (6)O3iii—Fe2—O4xiv172.59 (9)
O3vi—K2—O2viii95.91 (6)O4—Fe2—O4xiv91.52 (9)
O3v—K2—O2viii100.74 (6)O3i—Fe2—O4xiii82.53 (9)
O2vii—K2—O2viii56.14 (6)O3ii—Fe2—O4xiii172.59 (9)
O3iv—K2—O2ix100.74 (6)O3iii—Fe2—O4xiii93.04 (9)
O3vi—K2—O2ix149.93 (6)O4—Fe2—O4xiii91.52 (9)
O3v—K2—O2ix95.91 (6)O4xiv—Fe2—O4xiii91.52 (9)
O2vii—K2—O2ix56.14 (6)O4—P1—O2105.93 (13)
O2viii—K2—O2ix56.14 (6)O4—P1—O3107.23 (13)
O3iv—K2—O4iv48.81 (5)O2—P1—O3112.54 (12)
O3vi—K2—O4iv114.59 (7)O4—P1—O1111.60 (13)
O3v—K2—O4iv52.71 (6)O2—P1—O1108.63 (12)
O2vii—K2—O4iv132.57 (6)O3—P1—O1110.83 (12)
O2viii—K2—O4iv141.48 (6)P1—O1—Fe1130.29 (12)
O2ix—K2—O4iv95.42 (6)P1—O1—K1xvi112.12 (11)
O3iv—K2—O4v114.59 (7)Fe1—O1—K1xvi102.92 (7)
O3vi—K2—O4v52.71 (6)P1—O2—Sn1xxii165.01 (15)
O3v—K2—O4v48.81 (5)P1—O2—Fe1xxii165.01 (15)
O2vii—K2—O4v141.48 (6)P1—O2—K2xix93.70 (9)
O2viii—K2—O4v95.42 (6)Sn1xxii—O2—K2xix93.67 (8)
O2ix—K2—O4v132.57 (6)Fe1xxii—O2—K2xix93.67 (8)
O4iv—K2—O4v85.96 (7)P1—O2—K1xxi92.83 (10)
O3iv—K2—O4vi52.71 (6)Sn1xxii—O2—K1xxi98.07 (8)
O3vi—K2—O4vi48.81 (5)Fe1xxii—O2—K1xxi98.07 (8)
O3v—K2—O4vi114.59 (7)K2xix—O2—K1xxi103.77 (7)
O2vii—K2—O4vi95.42 (6)P1—O3—Sn2xvi148.98 (14)
O2viii—K2—O4vi132.57 (6)P1—O3—Fe2xvi148.98 (14)
O2ix—K2—O4vi141.48 (6)P1—O3—K2xxi105.79 (11)
O4iv—K2—O4vi85.96 (7)Sn2xvi—O3—K2xxi100.16 (8)
O4v—K2—O4vi85.96 (7)Fe2xvi—O3—K2xxi100.16 (8)
O3iv—K2—O4vii56.20 (5)P1—O4—Fe2151.99 (15)
O3vi—K2—O4vii86.13 (6)P1—O4—K2xxi98.04 (10)
O3v—K2—O4vii156.82 (6)Fe2—O4—K2xxi93.77 (8)
O2vii—K2—O4vii45.82 (5)P1—O4—K1xxi88.91 (9)
O2viii—K2—O4vii100.56 (6)Fe2—O4—K1xxi118.50 (9)
O2ix—K2—O4vii88.43 (6)K2xxi—O4—K1xxi77.63 (6)
O4iv—K2—O4vii104.276 (11)P1—O4—K2xix83.19 (10)
O4v—K2—O4vii137.22 (4)Fe2—O4—K2xix88.28 (8)
O4vi—K2—O4vii54.34 (8)K2xxi—O4—K2xix172.75 (8)
O3iv—K2—O4viii156.82 (6)K1xxi—O4—K2xix95.28 (7)
O3vi—K2—O4viii56.20 (5)
Symmetry codes: (i) z+1/2, x+1, y+1/2; (ii) x+1, y+1/2, z+1/2; (iii) y+1/2, z+1/2, x+1; (iv) z+1/2, x+3/2, y+1; (v) x+3/2, y+1, z+1/2; (vi) y+1, z+1/2, x+3/2; (vii) z+1, x+1/2, y+3/2; (viii) y+3/2, z+1, x+1/2; (ix) x+1/2, y+3/2, z+1; (x) y+1/2, z, x1/2; (xi) x1/2, y+1/2, z; (xii) z, x1/2, y+1/2; (xiii) y, z, x; (xiv) z, x, y; (xv) x1, y1, z1; (xvi) x+1, y1/2, z+1/2; (xvii) x1/2, y+1/2, z+1; (xviii) x+1/2, y+1, z1/2; (xix) x1/2, y+3/2, z+1; (xx) x+1, y1/2, z+3/2; (xxi) x+3/2, y+1, z1/2; (xxii) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaK2FeSn(PO4)3
Mr537.65
Crystal system, space groupCubic, P213
Temperature (K)293
a (Å)9.91473 (7)
V3)974.64 (1)
Z4
Radiation typeMo Kα
µ (mm1)5.47
Crystal size (mm)0.08 × 0.06 × 0.05
Data collection
DiffractometerXCalibur-3
diffractometer
Absorption correctionMulti-scan
(Blessing; 1995)
Tmin, Tmax0.669, 0.772
No. of measured, independent and
observed [I > 2σ(I)] reflections
5809, 1434, 1338
Rint0.035
(sin θ/λ)max1)0.807
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.045, 1.1
No. of reflections1434
No. of parameters63
No. of restraints3
Δρmax, Δρmin (e Å3)0.50, 0.57
Absolute structureFlack (1983), 621 Friedel Pairs
Absolute structure parameter0.03 (2)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2005), CrysAlis CCD, CrysAlis RED (Oxford Diffraction, 2005), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), DIAMOND (Brandenburg, 2006), WinGX publication routines (Farrugia, 1999).

Selected bond lengths (Å) top
K1—O1i2.852 (2)Fe1—O1v2.0195 (19)
K1—O2ii3.013 (2)Fe2—O3i1.9830 (19)
K1—O4ii3.117 (2)Fe2—O42.010 (2)
K2—O3ii2.868 (2)P1—O41.521 (2)
K2—O2iii2.960 (2)P1—O21.521 (2)
K2—O4ii3.053 (3)P1—O31.525 (2)
K2—O4iii3.243 (2)P1—O11.5306 (19)
Fe1—O2iv2.0032 (19)
Symmetry codes: (i) z+1/2, x+1, y+1/2; (ii) z+1/2, x+3/2, y+1; (iii) z+1, x+1/2, y+3/2; (iv) y+1/2, z, x1/2; (v) y, z, x.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds