Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The crystal structure of YMgGa, yttrium magnesium gallide, is isotypic with LaMgGa and crystallizes in the hexa­gonal ZrNiAl type structure. It consists of a three-dimensional network of Mg and Ga atoms, in which Y atoms fill channels. There are two crystallographically independent Ga sites. One Ga atom (Ga1) has three Mg atoms as near neighbours and six Y atoms at a slightly longer distance, giving rise to a [3 + 6] coordination. Another Ga atom (Ga2) is also nine-coordinate but has six near Mg neighbours and three Y at a somewhat longer distance in a [6 + 3] coordination. The Mg atom is tetra­hedrally coordinated by four Ga atoms and has two additional Mg neighbours at a slightly longer distance. The site symmetries for Y, Ga1, Ga2 and Mg are m2m, \overline{6}, \overline{6}2m and m2m, respectively. The crystal used was an inversion twin.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680705413X/wm2155sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680705413X/wm2155Isup2.hkl
Contains datablock I

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma]() = 0.000 Å
  • R factor = 0.035
  • wR factor = 0.088
  • Data-to-parameter ratio = 25.6

checkCIF/PLATON results

No syntax errors found



Alert level C ABSTM02_ALERT_3_C The ratio of expected to reported Tmax/Tmin(RR) is > 1.10 Tmin and Tmax reported: 0.276 0.431 Tmin and Tmax expected: 0.243 0.431 RR = 1.135 Please check that your absorption correction is appropriate. STRVA01_ALERT_4_C Flack test results are ambiguous. From the CIF: _refine_ls_abs_structure_Flack 0.430 From the CIF: _refine_ls_abs_structure_Flack_su 0.050 PLAT041_ALERT_1_C Calc. and Rep. SumFormula Strings Differ .... ? PLAT045_ALERT_1_C Calculated and Reported Z Differ by ............ 0.33 Ratio PLAT060_ALERT_3_C Ratio Tmax/Tmin (Exp-to-Rep) (too) Large ....... 1.13 PLAT731_ALERT_1_C Bond Calc 3.487(2), Rep 3.4869(8) ...... 2.50 su-Ra Y1 -MG1 1.555 2.775 PLAT731_ALERT_1_C Bond Calc 3.487(3), Rep 3.4868(8) ...... 3.75 su-Ra Y1 -MG1 1.555 3.564 PLAT731_ALERT_1_C Bond Calc 3.487(3), Rep 3.4868(8) ...... 3.75 su-Ra Y1 -MG1 1.555 3.565 PLAT731_ALERT_1_C Bond Calc 3.487(2), Rep 3.4868(8) ...... 2.50 su-Ra Y1 -MG1 1.555 2.774 PLAT731_ALERT_1_C Bond Calc 3.0936(10), Rep 3.0936(4) ...... 2.50 su-Ra GA1 -Y1 1.555 3.565 PLAT731_ALERT_1_C Bond Calc 3.0936(10), Rep 3.0936(4) ...... 2.50 su-Ra GA1 -Y1 1.555 3.566
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 26.27 From the CIF: _reflns_number_total 333 Count of symmetry unique reflns 199 Completeness (_total/calc) 167.34% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 134 Fraction of Friedel pairs measured 0.673 Are heavy atom types Z>Si present yes PLAT033_ALERT_2_G Flack Parameter Value Deviates 2 * su from zero. 0.43 PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 11 ALERT level C = Check and explain 4 ALERT level G = General alerts; check 10 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The potential use of magnesium alloys as storage materials for hydrogen has led to a large number of investigations on different magnesium alloys (Sakintuna et al., 2007). The studies of compounds in the systems Mg—Y, Mg—Ga and Mg—Y—Zn have shown some very interesting hydrogen absorbing properties, such as hydrogen induced nanowhisker formation and improved hydrogen absorption/desorption properties, as compared to pure Mg (Zlotea et al., 2006; Sahlberg & Andersson, 2007). Recently we have grown single crystals of YMgGa, and determined its crystal structure. The existence of this phase and the unit-cell parameters were previously reported (Kraft et al., 2003), but no crystal structure refinement has been published.

In the title compound Mg and Ga atoms form a network with distorted channels which are occupied by Y atoms. YMgGa crystallizes in the hexagonal ZrNiAl type structure which is related to the Fe2P type structure (Rundqvist & Jellinek, 1959). The two Fe sites are then occupied with Mg and Y atoms, and the two distinct Ga atoms are located at the corresponding P positions. The Mg—Ga distances, 2.803 (3) and 2.835 (3) Å, respectively, are in agreement with the binary Mg—Ga compounds (Smith et al., 1969). However, the Mg—Mg distance is 3.076 (7) Å, which is significantly shorter than in metallic magnesium, 3.20 Å (Owen et al., 1935). The strong Mg—Ga and Mg—Mg interactions lead to a three-dimensional network which is shown in Figure 1. The Y—Mg (3.255 (3) Å) and Y—Ga (3.0936 (4) Å and 3.1033 (12) Å) distances are likewise in agreement with the binary compounds (Smith et al., 1965; Schob & Parthé, 1965).

The coordination around Ga can be described as a slightly distorted capped trigonal prism. Ga1 is surrounded by 3 Mg atoms at 2.803 (3) Å and by 6 Y atoms at 3.0936 (4) Å in a [3 + 6] coordination. The Mg atoms form a triangle and the Y atoms are situated in the corners of a trigonal prism. Ga2 has a [6 + 3] coordination by 6 Mg at 2.835 (3) Å forming a trigonal prism that is capped by 3 Y at 3.1033 (12) Å. The Mg atom is tetrahedrally coordinated by 4 Ga atoms at 2.803 (3) and 2.835 (3) Å, and has 2 additional Mg neighbours at 3.076 (7) Å. The Y atom has 5 Ga neighbours in a pyramidal coordination and 6 additional Mg atoms forming a trigonal prism. The different coordination polyhedra around each atom are displayed in Figure 2.

Related literature top

For structure refinement of LaMgGa and for the unit-cell parameters of YMgGa, see: Kraft et al. (2003). The crystal structure of YMgGa is related to the Fe2P type structure (Rundqvist & Jellinek, 1959). For structural investigations of Mg and binaries in the Y–Mg–Ga system, see: Smith et al. (1969); Owen et al. (1935); Smith et al. (1965); Schob & Parthé, (1965). For Mg alloys and hydrogen-absorbing properties of Mg compounds, see: Sakintuna et al. (2007); Zlotea et al. (2006); Sahlberg & Andersson (2007).

Experimental top

YMgGa single crystals were obtained by heating appropriate amounts of the elements (Mg 99.95%, Y 99.9%, Ga 99.998%) inside an argon filled sealed tantalum tube in a high-frequency induction furnace at 1373 K. The sample was then heat-treated at 573 K for seven d to improve crystal growth. Large single crystals were removed from the surface of the sample and cut into smaller pieces. Bulk samples were characterized by X-ray powder diffraction.

Refinement top

The highest peak in the final Fourier map is located is 1.05 Å, and the deepest hole 1.51 Å from Y1. The measured crystal was an inversion twin with an approximate twin ratio of 1:1 (Flack parameter 0.43 (5).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Crystal Impact, 2006); software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2007).

Figures top
[Figure 1] Fig. 1. The packing of the crystal structure of YMgGa, viewed down the c axis. The dotted lines show the Mg—Ga network and the channels filled by Y atoms. The Mg, Ga and Y atoms are gray, black and red, respectively.
[Figure 2] Fig. 2. The coordination polyhedra of YMgGa, displayed with ellipsoids at the 90% probability level. a) represents the coordination around Ga1, b) around Ga2, c) around Mg and d) around Y.
Yttrium magnesium gallide top
Crystal data top
YMgGaDx = 4.505 Mg m3
Mr = 182.94Ag Kα radiation, λ = 0.56085 Å
Hexagonal, P62mCell parameters from 801 reflections
Hall symbol: P -6 -2θ = 3.6–22.4°
a = 7.2689 (10) ŵ = 16.83 mm1
c = 4.4205 (9) ÅT = 293 K
V = 202.27 (6) Å3Block, grey
Z = 30.09 × 0.07 × 0.05 mm
F(000) = 246
Data collection top
Bruker Apex1
diffractometer
333 independent reflections
Radiation source: fine-focus sealed tube324 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.087
Detector resolution: 7.31 pixels mm-1θmax = 26.3°, θmin = 2.6°
ω–scansh = 1111
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
k = 1111
Tmin = 0.276, Tmax = 0.431l = 66
4365 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035 w = 1/[σ2(Fo2) + (0.0466P)2 + 0.5229P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.088(Δ/σ)max = 0.001
S = 1.15Δρmax = 1.65 e Å3
333 reflectionsΔρmin = 1.78 e Å3
13 parametersAbsolute structure: Flack (1983), 136 Friedel pairs
0 restraintsAbsolute structure parameter: 0.43 (5)
Crystal data top
YMgGaZ = 3
Mr = 182.94Ag Kα radiation, λ = 0.56085 Å
Hexagonal, P62mµ = 16.83 mm1
a = 7.2689 (10) ÅT = 293 K
c = 4.4205 (9) Å0.09 × 0.07 × 0.05 mm
V = 202.27 (6) Å3
Data collection top
Bruker Apex1
diffractometer
333 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
324 reflections with I > 2σ(I)
Tmin = 0.276, Tmax = 0.431Rint = 0.087
4365 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.088Δρmax = 1.65 e Å3
S = 1.15Δρmin = 1.78 e Å3
333 reflectionsAbsolute structure: Flack (1983), 136 Friedel pairs
13 parametersAbsolute structure parameter: 0.43 (5)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Y10.57308 (15)1.00000.50000.0116 (2)
Ga10.33330.66671.00000.0104 (3)
Ga20.00001.00000.50000.0125 (4)
Mg10.2443 (5)1.00001.00000.0109 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Y10.0118 (3)0.0103 (4)0.0121 (4)0.0052 (2)0.0000.000
Ga10.0101 (4)0.0101 (4)0.0112 (6)0.0050 (2)0.0000.000
Ga20.0138 (6)0.0138 (6)0.0100 (9)0.0069 (3)0.0000.000
Mg10.0088 (14)0.0102 (19)0.0141 (17)0.0051 (9)0.0000.000
Geometric parameters (Å, º) top
Y1—Ga1i3.0936 (4)Ga1—Y1xii3.0936 (4)
Y1—Ga1ii3.0936 (4)Ga2—Mg1xiii2.835 (3)
Y1—Ga1iii3.0936 (4)Ga2—Mg12.835 (3)
Y1—Ga13.0936 (4)Ga2—Mg1xiv2.835 (3)
Y1—Ga2iv3.1033 (12)Ga2—Mg1xv2.835 (3)
Y1—Mg1ii3.255 (3)Ga2—Mg1ii2.835 (3)
Y1—Mg13.255 (3)Ga2—Mg1xvi2.835 (3)
Y1—Mg1v3.4869 (8)Ga2—Y1xvii3.1033 (12)
Y1—Mg1vi3.4868 (8)Ga2—Y1ix3.1033 (12)
Y1—Mg1vii3.4868 (8)Ga2—Y1xviii3.1033 (12)
Y1—Mg1viii3.4868 (8)Mg1—Ga1i2.803 (3)
Y1—Y1v3.7491 (7)Mg1—Ga2x2.835 (2)
Ga1—Mg12.803 (3)Mg1—Mg1xvi3.076 (7)
Ga1—Mg1ix2.803 (3)Mg1—Mg1xiv3.076 (7)
Ga1—Mg1vii2.803 (3)Mg1—Y1x3.255 (3)
Ga1—Y1x3.0936 (4)Mg1—Y1ix3.4869 (8)
Ga1—Y1ix3.0936 (4)Mg1—Y1xix3.4869 (8)
Ga1—Y1xi3.0936 (4)Mg1—Y1xi3.4868 (8)
Ga1—Y1vii3.0936 (4)Mg1—Y1xvii3.4868 (8)
Ga1i—Y1—Ga1ii160.23 (4)Mg1xiii—Ga2—Mg1143.50 (5)
Ga1i—Y1—Ga1iii91.197 (16)Mg1xiii—Ga2—Mg1xiv143.50 (5)
Ga1ii—Y1—Ga1iii85.420 (15)Mg1—Ga2—Mg1xiv65.69 (10)
Ga1i—Y1—Ga185.420 (15)Mg1xiii—Ga2—Mg1xv65.69 (10)
Ga1ii—Y1—Ga191.197 (16)Mg1—Ga2—Mg1xv143.50 (5)
Ga1iii—Y1—Ga1160.23 (4)Mg1xiv—Ga2—Mg1xv102.44 (13)
Ga1i—Y1—Ga2iv99.89 (2)Mg1xiii—Ga2—Mg1ii65.69 (10)
Ga1ii—Y1—Ga2iv99.89 (2)Mg1—Ga2—Mg1ii102.44 (13)
Ga1iii—Y1—Ga2iv99.89 (2)Mg1xiv—Ga2—Mg1ii143.50 (5)
Ga1—Y1—Ga2iv99.89 (2)Mg1xv—Ga2—Mg1ii65.69 (10)
Ga1i—Y1—Mg1ii111.04 (4)Mg1xiii—Ga2—Mg1xvi102.44 (13)
Ga1ii—Y1—Mg1ii52.33 (3)Mg1—Ga2—Mg1xvi65.69 (10)
Ga1iii—Y1—Mg1ii52.33 (3)Mg1xiv—Ga2—Mg1xvi65.69 (10)
Ga1—Y1—Mg1ii111.04 (4)Mg1xv—Ga2—Mg1xvi143.50 (5)
Ga2iv—Y1—Mg1ii137.24 (5)Mg1ii—Ga2—Mg1xvi143.50 (5)
Ga1i—Y1—Mg152.33 (3)Mg1xiii—Ga2—Y1xvii128.78 (6)
Ga1ii—Y1—Mg1111.04 (4)Mg1—Ga2—Y1xvii71.75 (3)
Ga1iii—Y1—Mg1111.04 (4)Mg1xiv—Ga2—Y1xvii71.75 (3)
Ga1—Y1—Mg152.33 (3)Mg1xv—Ga2—Y1xvii71.75 (3)
Ga2iv—Y1—Mg1137.24 (5)Mg1ii—Ga2—Y1xvii71.75 (3)
Mg1ii—Y1—Mg185.53 (10)Mg1xvi—Ga2—Y1xvii128.78 (6)
Ga1i—Y1—Mg1v49.99 (5)Mg1xiii—Ga2—Y1ix71.75 (3)
Ga1ii—Y1—Mg1v149.44 (7)Mg1—Ga2—Y1ix71.75 (3)
Ga1iii—Y1—Mg1v105.24 (5)Mg1xiv—Ga2—Y1ix128.78 (6)
Ga1—Y1—Mg1v87.44 (4)Mg1xv—Ga2—Y1ix128.78 (6)
Ga2iv—Y1—Mg1v50.55 (5)Mg1ii—Ga2—Y1ix71.75 (3)
Mg1ii—Y1—Mg1v153.75 (6)Mg1xvi—Ga2—Y1ix71.75 (3)
Mg1—Y1—Mg1v92.07 (7)Y1xvii—Ga2—Y1ix120.0
Ga1i—Y1—Mg1vi149.44 (7)Mg1xiii—Ga2—Y1xviii71.75 (3)
Ga1ii—Y1—Mg1vi49.99 (5)Mg1—Ga2—Y1xviii128.78 (6)
Ga1iii—Y1—Mg1vi87.44 (4)Mg1xiv—Ga2—Y1xviii71.75 (3)
Ga1—Y1—Mg1vi105.24 (5)Mg1xv—Ga2—Y1xviii71.75 (3)
Ga2iv—Y1—Mg1vi50.55 (5)Mg1ii—Ga2—Y1xviii128.78 (6)
Mg1ii—Y1—Mg1vi92.07 (7)Mg1xvi—Ga2—Y1xviii71.75 (3)
Mg1—Y1—Mg1vi153.75 (6)Y1xvii—Ga2—Y1xviii120.0
Mg1v—Y1—Mg1vi101.11 (10)Y1ix—Ga2—Y1xviii120.0
Ga1i—Y1—Mg1vii87.44 (4)Ga1—Mg1—Ga1i96.93 (12)
Ga1ii—Y1—Mg1vii105.24 (5)Ga1—Mg1—Ga2114.538 (6)
Ga1iii—Y1—Mg1vii149.44 (7)Ga1i—Mg1—Ga2114.538 (6)
Ga1—Y1—Mg1vii49.99 (5)Ga1—Mg1—Ga2x114.538 (6)
Ga2iv—Y1—Mg1vii50.55 (5)Ga1i—Mg1—Ga2x114.538 (6)
Mg1ii—Y1—Mg1vii153.75 (6)Ga2—Mg1—Ga2x102.44 (12)
Mg1—Y1—Mg1vii92.07 (7)Ga1—Mg1—Mg1xvi101.54 (6)
Mg1v—Y1—Mg1vii52.34 (12)Ga1i—Mg1—Mg1xvi161.54 (6)
Mg1vi—Y1—Mg1vii78.67 (2)Ga2—Mg1—Mg1xvi57.15 (5)
Ga1i—Y1—Mg1viii105.24 (5)Ga2x—Mg1—Mg1xvi57.15 (5)
Ga1ii—Y1—Mg1viii87.44 (4)Ga1—Mg1—Mg1xiv161.54 (6)
Ga1iii—Y1—Mg1viii49.99 (5)Ga1i—Mg1—Mg1xiv101.54 (6)
Ga1—Y1—Mg1viii149.44 (7)Ga2—Mg1—Mg1xiv57.15 (5)
Ga2iv—Y1—Mg1viii50.55 (5)Ga2x—Mg1—Mg1xiv57.15 (5)
Mg1ii—Y1—Mg1viii92.07 (7)Mg1xvi—Mg1—Mg1xiv60.0
Mg1—Y1—Mg1viii153.75 (6)Ga1—Mg1—Y1x60.87 (6)
Mg1v—Y1—Mg1viii78.67 (2)Ga1i—Mg1—Y1x60.87 (6)
Mg1vi—Y1—Mg1viii52.34 (12)Ga2—Mg1—Y1x171.54 (11)
Mg1vii—Y1—Mg1viii101.11 (10)Ga2x—Mg1—Y1x86.01 (3)
Ga1i—Y1—Y1v52.703 (6)Mg1xvi—Mg1—Y1x129.48 (4)
Ga1ii—Y1—Y1v134.380 (9)Mg1xiv—Mg1—Y1x129.48 (4)
Ga1iii—Y1—Y1v52.703 (6)Ga1—Mg1—Y160.87 (6)
Ga1—Y1—Y1v134.380 (9)Ga1i—Mg1—Y160.87 (6)
Ga2iv—Y1—Y1v74.21 (3)Ga2—Mg1—Y186.01 (3)
Mg1ii—Y1—Y1v101.53 (2)Ga2x—Mg1—Y1171.54 (11)
Mg1—Y1—Y1v101.53 (2)Mg1xvi—Mg1—Y1129.48 (4)
Mg1v—Y1—Y1v53.32 (5)Mg1xiv—Mg1—Y1129.48 (4)
Mg1vi—Y1—Y1v104.56 (7)Y1x—Mg1—Y185.53 (10)
Mg1vii—Y1—Y1v104.56 (7)Ga1—Mg1—Y1ix57.70 (2)
Mg1viii—Y1—Y1v53.32 (5)Ga1i—Mg1—Y1ix128.28 (9)
Mg1—Ga1—Mg1ix120.0Ga2—Mg1—Y1ix57.70 (3)
Mg1—Ga1—Mg1vii120.000 (1)Ga2x—Mg1—Y1ix117.00 (8)
Mg1ix—Ga1—Mg1vii120.0Mg1xvi—Mg1—Y1ix63.83 (6)
Mg1—Ga1—Y1x66.80 (4)Mg1xiv—Mg1—Y1ix109.25 (6)
Mg1ix—Ga1—Y1x134.247 (10)Y1x—Mg1—Y1ix118.53 (8)
Mg1vii—Ga1—Y1x72.31 (4)Y1—Mg1—Y1ix67.47 (3)
Mg1—Ga1—Y1ix72.31 (4)Ga1—Mg1—Y1xix128.28 (9)
Mg1ix—Ga1—Y1ix66.80 (4)Ga1i—Mg1—Y1xix57.70 (2)
Mg1vii—Ga1—Y1ix134.247 (10)Ga2—Mg1—Y1xix117.00 (8)
Y1x—Ga1—Y1ix139.045 (6)Ga2x—Mg1—Y1xix57.70 (3)
Mg1—Ga1—Y1xi72.31 (4)Mg1xvi—Mg1—Y1xix109.25 (6)
Mg1ix—Ga1—Y1xi66.80 (4)Mg1xiv—Mg1—Y1xix63.83 (6)
Mg1vii—Ga1—Y1xi134.247 (10)Y1x—Mg1—Y1xix67.47 (3)
Y1x—Ga1—Y1xi74.593 (12)Y1—Mg1—Y1xix118.53 (8)
Y1ix—Ga1—Y1xi91.197 (16)Y1ix—Mg1—Y1xix172.63 (13)
Mg1—Ga1—Y166.80 (4)Ga1—Mg1—Y1xi57.70 (2)
Mg1ix—Ga1—Y1134.247 (10)Ga1i—Mg1—Y1xi128.28 (9)
Mg1vii—Ga1—Y172.31 (4)Ga2—Mg1—Y1xi117.00 (8)
Y1x—Ga1—Y191.197 (16)Ga2x—Mg1—Y1xi57.70 (3)
Y1ix—Ga1—Y174.593 (12)Mg1xvi—Mg1—Y1xi63.83 (6)
Y1xi—Ga1—Y1139.045 (6)Mg1xiv—Mg1—Y1xi109.25 (6)
Mg1—Ga1—Y1vii134.247 (10)Y1x—Mg1—Y1xi67.47 (3)
Mg1ix—Ga1—Y1vii72.31 (4)Y1—Mg1—Y1xi118.53 (8)
Mg1vii—Ga1—Y1vii66.80 (4)Y1ix—Mg1—Y1xi78.67 (2)
Y1x—Ga1—Y1vii139.045 (6)Y1xix—Mg1—Y1xi100.84 (3)
Y1ix—Ga1—Y1vii74.593 (12)Ga1—Mg1—Y1xvii128.28 (9)
Y1xi—Ga1—Y1vii139.045 (6)Ga1i—Mg1—Y1xvii57.70 (2)
Y1—Ga1—Y1vii74.593 (12)Ga2—Mg1—Y1xvii57.70 (3)
Mg1—Ga1—Y1xii134.247 (10)Ga2x—Mg1—Y1xvii117.00 (8)
Mg1ix—Ga1—Y1xii72.31 (4)Mg1xvi—Mg1—Y1xvii109.25 (6)
Mg1vii—Ga1—Y1xii66.80 (4)Mg1xiv—Mg1—Y1xvii63.83 (6)
Y1x—Ga1—Y1xii74.593 (12)Y1x—Mg1—Y1xvii118.53 (8)
Y1ix—Ga1—Y1xii139.045 (6)Y1—Mg1—Y1xvii67.47 (3)
Y1xi—Ga1—Y1xii74.593 (12)Y1ix—Mg1—Y1xvii100.84 (3)
Y1—Ga1—Y1xii139.045 (6)Y1xix—Mg1—Y1xvii78.67 (2)
Y1vii—Ga1—Y1xii91.197 (16)Y1xi—Mg1—Y1xvii172.63 (13)
Symmetry codes: (i) y, x+1, z+2; (ii) x, y, z1; (iii) y, x+1, z+1; (iv) x+1, y, z; (v) y+2, xy+2, z; (vi) x+y, x+1, z1; (vii) x+y, x+1, z; (viii) y+2, xy+2, z1; (ix) y+1, xy+1, z; (x) x, y, z+1; (xi) y+1, xy+1, z+1; (xii) x+y, x+1, z+1; (xiii) x+y1, x+1, z1; (xiv) y+1, xy+2, z; (xv) y+1, xy+2, z1; (xvi) x+y1, x+1, z; (xvii) x+y, x+2, z; (xviii) x1, y, z; (xix) x+y, x+2, z+1.

Experimental details

Crystal data
Chemical formulaYMgGa
Mr182.94
Crystal system, space groupHexagonal, P62m
Temperature (K)293
a, c (Å)7.2689 (10), 4.4205 (9)
V3)202.27 (6)
Z3
Radiation typeAg Kα, λ = 0.56085 Å
µ (mm1)16.83
Crystal size (mm)0.09 × 0.07 × 0.05
Data collection
DiffractometerBruker Apex1
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.276, 0.431
No. of measured, independent and
observed [I > 2σ(I)] reflections
4365, 333, 324
Rint0.087
(sin θ/λ)max1)0.789
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.088, 1.15
No. of reflections333
No. of parameters13
Δρmax, Δρmin (e Å3)1.65, 1.78
Absolute structureFlack (1983), 136 Friedel pairs
Absolute structure parameter0.43 (5)

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SAINT, SHELXTL (Sheldrick, 2001), DIAMOND (Crystal Impact, 2006), SHELXTL and publCIF (Westrip, 2007).

Selected bond lengths (Å) top
Ga1—Mg12.803 (3)Ga2—Y1ii3.1033 (12)
Ga1—Y1i3.0936 (4)Mg1—Mg1iii3.076 (7)
Ga2—Mg12.835 (3)Mg1—Y1i3.255 (3)
Symmetry codes: (i) x, y, z+1; (ii) x+y, x+2, z; (iii) x+y1, x+1, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds