Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Single crystals of the title compound, [Gd(C6H4NO2)3(H2O)2]n, were obtained by evaporation of an aqueous solution of isonicotinic acid and gadolinium(III) nitrate. The GdIII cation is eight-coordinated by four carboxyl­ate O atoms of bridging isonicotinate anions, two carboxyl­ate O atoms of a chelating isonicotinate anion and two water mol­ecules. The coordination environment around the rare earth cation might be described as a distorted bicapped trigonal prism. As a result of the two coordination modes of the isonicotinate ligands (with one as a bidentate chelate ligand and the others as bridging ligands), an infinite chain along the a axis is formed. Medium-strength hydrogen bonds of the types O—H...O and O—H...N between the water mol­ecules and adjacent chains generate a three-dimensional framework.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680703320X/wm2123sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680703320X/wm2123Isup2.hkl
Contains datablock I

CCDC reference: 647424

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.020
  • wR factor = 0.044
  • Data-to-parameter ratio = 11.9

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT031_ALERT_4_C Refined Extinction Parameter within Range ...... 2.50 Sigma PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.94 Ratio PLAT731_ALERT_1_C Bond Calc 0.82(3), Rep 0.822(10) ...... 3.00 su-Ra O8 -H8B 1.555 1.555 PLAT731_ALERT_1_C Bond Calc 0.82(3), Rep 0.820(10) ...... 3.00 su-Ra O7 -H7A 1.555 1.555 PLAT735_ALERT_1_C D-H Calc 0.82(3), Rep 0.822(10) ...... 3.00 su-Ra O8 -H8B 1.555 1.555 PLAT735_ALERT_1_C D-H Calc 0.82(3), Rep 0.820(10) ...... 3.00 su-Ra O7 -H7A 1.555 1.555 PLAT736_ALERT_1_C H...A Calc 1.99(3), Rep 1.986(12) ...... 2.50 su-Ra H8B -N2 1.555 1.554 PLAT736_ALERT_1_C H...A Calc 1.99(3), Rep 1.989(11) ...... 2.73 su-Ra H7A -N3 1.555 4.565
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT794_ALERT_5_G Check Predicted Bond Valency for Gd1 (3) 3.18 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 4
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 9 ALERT level C = Check and explain 4 ALERT level G = General alerts; check 9 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

The interest in crystal engineering of coordination polymers originates from their potential applications as materials for molecular selection, ion exchange, catalysis, and because of their intriguing variety of architectures and topologies (Yaghi et al., 1998, 2003; Eddaoudi et al., 2001; Moulton & Zaworotko, 2001). In particular, isonicotinate metal complexes are of considerable interest because isonicotinic acid plays an important role in the metabolism of all living cells (Sorenson, 1976), and acts as a versatile ligand to construct supramolecular architectures (Aakeroy et al., 1999; Burrows et al., 1998). Moreover, isonicotinate metal complexes find also use as drugs (Sorenson, 1976). In this article we report on the crystal structure of the title complex (I), a new coordination polymer of isonicotinic acid with GdIII.

A part of the monomeric structure of (I) is shown in Fig. 1 and selected geometric parameters are gathered in Table 1. The GdIII cation is coordinated by eight O atoms in a distorted bicapped trigonal-prismatic environment. The [GdO8] polyhedron is built by two O atoms from two water molecules, by four carboxylate O atoms of bridging isonicotinate anions and by two carboxylate O atoms of chelating isonicotinate anions. Each adjacent GdIII is bridged by two O atoms of two isonicotinate ligands to form an infinite chain along the a axis. The bond lengths of C7—O3, C7—O4 and C13—O5, C13—O6 are 1.251 (4), 1.250 (4) Å and 1.258 (3), 1.242 (4) Å, respectively, indicating that a delocalized π-bond is present.

Adjacent chains are linked into a framework structure by hydrogen bond interactions. Two types of hydrogen bonds are present in (I) (Table 2): One type is formed between O atoms of the coordinating water molecules and the N atoms of the isonicotinate ligands (O7—H7A···N3 and O8—H8B···N2), whereas the other type consists of O atoms of the coordinating water molecules and the carboxylate O atoms of the isonicotinate ligands (O7—H7B···O1, O8—H8A···O2).

Related literature top

Potential applications and different structures and topologies of coordination polymers in general are given by Yaghi et al. (1998, 2003), Eddaoudi et al. (2001) and Moulton & Zaworotko (2001). For isonicotinate ligands in particular, see Aakeroy et al. (1999) and Burrows et al. (1998). The use of isonicotinate metal complexes as drugs is discussed by Sorenson (1976).

Experimental top

A solution of isonicotinic acid (0.3693 g, 3 mmol) in 30 ml hot water was added under stirring to a solution of Gd(NO3)3.5H2O (0.4333 g, 1 mmol) in 10 ml water and the pH of the mixture was adjusted to about 5.4 using aqueous ammonia. Gd(NO3)3.5H2O was prepared by dissolving Gd2O3 (99.95%) in diluted HNO3, and then crystallizing the products. After stirring for 2 h and cooling to room temperature, the mixture was filtered. Light-yellow single crystals of (I) were obtained from the filtrate after two weeks.

Refinement top

The H atoms attached to C atoms were treated as riding with C—H = 0.93 Å and Uiso(H) = 1.5Ueq(C) of the parent atom. The H atoms of the water molecules were refined with Uiso(H) = 1.2Ueq(O) and distance restraints of 0.82 (1) Å.

Structure description top

The interest in crystal engineering of coordination polymers originates from their potential applications as materials for molecular selection, ion exchange, catalysis, and because of their intriguing variety of architectures and topologies (Yaghi et al., 1998, 2003; Eddaoudi et al., 2001; Moulton & Zaworotko, 2001). In particular, isonicotinate metal complexes are of considerable interest because isonicotinic acid plays an important role in the metabolism of all living cells (Sorenson, 1976), and acts as a versatile ligand to construct supramolecular architectures (Aakeroy et al., 1999; Burrows et al., 1998). Moreover, isonicotinate metal complexes find also use as drugs (Sorenson, 1976). In this article we report on the crystal structure of the title complex (I), a new coordination polymer of isonicotinic acid with GdIII.

A part of the monomeric structure of (I) is shown in Fig. 1 and selected geometric parameters are gathered in Table 1. The GdIII cation is coordinated by eight O atoms in a distorted bicapped trigonal-prismatic environment. The [GdO8] polyhedron is built by two O atoms from two water molecules, by four carboxylate O atoms of bridging isonicotinate anions and by two carboxylate O atoms of chelating isonicotinate anions. Each adjacent GdIII is bridged by two O atoms of two isonicotinate ligands to form an infinite chain along the a axis. The bond lengths of C7—O3, C7—O4 and C13—O5, C13—O6 are 1.251 (4), 1.250 (4) Å and 1.258 (3), 1.242 (4) Å, respectively, indicating that a delocalized π-bond is present.

Adjacent chains are linked into a framework structure by hydrogen bond interactions. Two types of hydrogen bonds are present in (I) (Table 2): One type is formed between O atoms of the coordinating water molecules and the N atoms of the isonicotinate ligands (O7—H7A···N3 and O8—H8B···N2), whereas the other type consists of O atoms of the coordinating water molecules and the carboxylate O atoms of the isonicotinate ligands (O7—H7B···O1, O8—H8A···O2).

Potential applications and different structures and topologies of coordination polymers in general are given by Yaghi et al. (1998, 2003), Eddaoudi et al. (2001) and Moulton & Zaworotko (2001). For isonicotinate ligands in particular, see Aakeroy et al. (1999) and Burrows et al. (1998). The use of isonicotinate metal complexes as drugs is discussed by Sorenson (1976).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. Part of the monomeric molecular structure of (I) with the atom-numbering scheme and with displacement ellipsoids drawn at the 30% probability level. H atoms are displayed as spheres of arbitrary radius.
catena-Poly[[diaqua(isonicotinato-κ2O,O')gadolinium(III)]-di-µ- isonicotinato-κ4O:O'] top
Crystal data top
[Gd(C6H4NO2)3(H2O)2]F(000) = 1092
Mr = 559.59Dx = 1.925 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3435 reflections
a = 9.4786 (6) Åθ = 2.2–25.1°
b = 18.9589 (11) ŵ = 3.49 mm1
c = 10.7557 (6) ÅT = 293 K
β = 92.313 (1)°Prism, light yellow
V = 1931.3 (2) Å30.39 × 0.31 × 0.26 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3435 independent reflections
Radiation source: fine-focus sealed tube3102 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
φ and ω scansθmax = 25.1°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 119
Tmin = 0.286, Tmax = 0.404k = 2221
9640 measured reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.020H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.044 w = 1/[σ2(Fo2) + (0.015P)2 + 1.4397P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.013
3435 reflectionsΔρmax = 0.61 e Å3
288 parametersΔρmin = 0.62 e Å3
4 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00020 (8)
Crystal data top
[Gd(C6H4NO2)3(H2O)2]V = 1931.3 (2) Å3
Mr = 559.59Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.4786 (6) ŵ = 3.49 mm1
b = 18.9589 (11) ÅT = 293 K
c = 10.7557 (6) Å0.39 × 0.31 × 0.26 mm
β = 92.313 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3435 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3102 reflections with I > 2σ(I)
Tmin = 0.286, Tmax = 0.404Rint = 0.023
9640 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0204 restraints
wR(F2) = 0.044H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.61 e Å3
3435 reflectionsΔρmin = 0.62 e Å3
288 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O40.4038 (2)0.44208 (12)0.1958 (2)0.0356 (5)
Gd10.752460 (15)0.509995 (7)0.043256 (12)0.02074 (6)
C10.7433 (3)0.60647 (16)0.1627 (3)0.0289 (7)
C20.7397 (3)0.64748 (17)0.2816 (3)0.0338 (8)
O80.8820 (3)0.47313 (14)0.2220 (2)0.0363 (5)
O30.6058 (2)0.46285 (12)0.10665 (18)0.0352 (5)
O50.9145 (2)0.42758 (11)0.0353 (2)0.0336 (5)
O70.6381 (2)0.40567 (12)0.1344 (2)0.0332 (5)
C30.6672 (4)0.71045 (18)0.2911 (3)0.0397 (8)
H30.61530.72850.22320.048*
N10.7408 (4)0.7220 (2)0.5057 (3)0.0650 (10)
C40.6733 (4)0.7460 (2)0.4033 (4)0.0505 (10)
H40.62750.78930.40760.061*
C70.5354 (3)0.44658 (15)0.1983 (3)0.0262 (7)
N20.7527 (4)0.42460 (18)0.5549 (3)0.0529 (9)
C120.7578 (4)0.43956 (18)0.3345 (3)0.0384 (8)
H120.81170.44670.26520.046*
C80.6130 (3)0.43428 (16)0.3216 (3)0.0291 (7)
C110.8212 (4)0.4342 (2)0.4511 (3)0.0500 (10)
H110.91910.43740.45780.060*
C60.8133 (4)0.6229 (2)0.3861 (3)0.0544 (11)
H60.86580.58160.38330.065*
C50.8074 (5)0.6613 (3)0.4954 (4)0.0729 (14)
H50.85340.64300.56630.087*
O61.1211 (2)0.38840 (11)0.1093 (2)0.0342 (5)
C140.9197 (3)0.31977 (15)0.1482 (3)0.0248 (7)
C130.9910 (3)0.38314 (15)0.0928 (3)0.0253 (7)
C90.5393 (4)0.4215 (2)0.4275 (3)0.0508 (10)
H90.44190.41530.42250.061*
C100.6130 (5)0.4179 (2)0.5414 (3)0.0611 (12)
H100.56200.41050.61230.073*
O10.6452 (2)0.61156 (11)0.08095 (19)0.0298 (5)
O20.8464 (2)0.56526 (11)0.14872 (19)0.0325 (5)
N30.7840 (3)0.20752 (15)0.2622 (3)0.0466 (8)
C180.9898 (3)0.27771 (17)0.2350 (3)0.0346 (8)
H181.08440.28590.25650.042*
C150.7804 (4)0.30338 (18)0.1172 (3)0.0406 (9)
H150.72920.32980.05810.049*
C170.9179 (4)0.22308 (18)0.2898 (3)0.0437 (9)
H170.96630.19580.34930.052*
C160.7191 (4)0.24716 (19)0.1757 (4)0.0531 (11)
H160.62600.23620.15300.064*
H8B0.846 (4)0.456 (2)0.286 (2)0.068 (14)*
H7B0.561 (2)0.3912 (19)0.114 (3)0.051 (12)*
H8A0.962 (2)0.458 (2)0.215 (4)0.072 (15)*
H7A0.677 (4)0.3713 (14)0.164 (3)0.060 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.0236 (13)0.0500 (14)0.0325 (13)0.0001 (10)0.0065 (10)0.0056 (10)
Gd10.01908 (9)0.02429 (9)0.01873 (9)0.00065 (6)0.00063 (6)0.00041 (6)
C10.0265 (18)0.0293 (17)0.0312 (18)0.0064 (14)0.0031 (14)0.0061 (13)
C20.0285 (19)0.0401 (19)0.0329 (18)0.0074 (15)0.0037 (14)0.0097 (15)
O80.0247 (14)0.0577 (16)0.0265 (13)0.0039 (12)0.0011 (10)0.0086 (11)
O30.0396 (14)0.0452 (13)0.0211 (11)0.0065 (11)0.0049 (10)0.0059 (10)
O50.0330 (13)0.0316 (12)0.0365 (13)0.0050 (10)0.0034 (10)0.0110 (10)
O70.0241 (13)0.0315 (13)0.0443 (14)0.0043 (11)0.0060 (11)0.0117 (11)
C30.034 (2)0.044 (2)0.041 (2)0.0027 (16)0.0047 (16)0.0115 (16)
N10.081 (3)0.069 (2)0.045 (2)0.005 (2)0.0005 (19)0.0261 (18)
C40.051 (3)0.046 (2)0.055 (2)0.0013 (19)0.006 (2)0.0177 (19)
C70.0306 (19)0.0223 (15)0.0255 (16)0.0002 (13)0.0013 (14)0.0015 (12)
N20.055 (2)0.069 (2)0.0329 (18)0.0093 (18)0.0135 (16)0.0028 (15)
C120.031 (2)0.053 (2)0.0309 (18)0.0014 (16)0.0019 (15)0.0007 (15)
C80.0297 (18)0.0334 (17)0.0240 (16)0.0024 (14)0.0004 (13)0.0019 (13)
C110.037 (2)0.068 (3)0.043 (2)0.003 (2)0.0134 (18)0.0041 (19)
C60.064 (3)0.057 (2)0.041 (2)0.015 (2)0.009 (2)0.0164 (18)
C50.096 (4)0.079 (3)0.042 (2)0.023 (3)0.017 (2)0.021 (2)
O60.0230 (13)0.0344 (12)0.0452 (14)0.0059 (10)0.0006 (10)0.0064 (10)
C140.0225 (17)0.0227 (15)0.0292 (16)0.0012 (12)0.0007 (13)0.0012 (12)
C130.0284 (19)0.0234 (15)0.0243 (16)0.0019 (13)0.0022 (13)0.0020 (12)
C90.037 (2)0.081 (3)0.034 (2)0.002 (2)0.0031 (17)0.0075 (19)
C100.058 (3)0.098 (3)0.028 (2)0.005 (3)0.0020 (19)0.011 (2)
O10.0229 (12)0.0337 (12)0.0327 (12)0.0012 (9)0.0016 (10)0.0029 (9)
O20.0234 (12)0.0436 (13)0.0303 (12)0.0047 (10)0.0004 (9)0.0121 (10)
N30.0411 (19)0.0375 (17)0.062 (2)0.0076 (14)0.0088 (16)0.0150 (15)
C180.0269 (19)0.0366 (18)0.040 (2)0.0009 (14)0.0018 (15)0.0075 (15)
C150.032 (2)0.0389 (19)0.050 (2)0.0056 (15)0.0069 (17)0.0153 (16)
C170.045 (2)0.039 (2)0.046 (2)0.0038 (17)0.0003 (18)0.0166 (16)
C160.031 (2)0.051 (2)0.076 (3)0.0139 (18)0.007 (2)0.017 (2)
Geometric parameters (Å, º) top
O4—C71.250 (4)C7—C81.508 (4)
O4—Gd1i2.349 (2)N2—C111.327 (5)
Gd1—O52.326 (2)N2—C101.332 (5)
Gd1—O32.348 (2)C12—C111.373 (5)
Gd1—O4i2.349 (2)C12—C81.377 (4)
Gd1—O6ii2.391 (2)C12—H120.9300
Gd1—O82.426 (2)C8—C91.382 (5)
Gd1—O72.442 (2)C11—H110.9300
Gd1—O22.451 (2)C6—C51.385 (5)
Gd1—O12.576 (2)C6—H60.9300
Gd1—C12.877 (3)C5—H50.9300
C1—O11.258 (4)O6—C131.242 (4)
C1—O21.265 (4)O6—Gd1ii2.391 (2)
C1—C21.497 (4)C14—C181.378 (4)
C2—C61.380 (5)C14—C151.384 (4)
C2—C31.383 (5)C14—C131.513 (4)
O8—H8B0.822 (10)C9—C101.387 (5)
O8—H8A0.818 (10)C9—H90.9300
O3—C71.251 (4)C10—H100.9300
O5—C131.258 (3)N3—C171.325 (5)
O7—H7B0.819 (10)N3—C161.328 (5)
O7—H7A0.820 (10)C18—C171.385 (5)
C3—C41.382 (5)C18—H180.9300
C3—H30.9300C15—C161.378 (5)
N1—C51.319 (5)C15—H150.9300
N1—C41.332 (5)C17—H170.9300
C4—H40.9300C16—H160.9300
C7—O4—Gd1i126.1 (2)C4—C3—C2118.8 (3)
O5—Gd1—O383.99 (8)C4—C3—H3120.6
O5—Gd1—O4i154.48 (8)C2—C3—H3120.6
O3—Gd1—O4i104.65 (8)C5—N1—C4116.4 (3)
O5—Gd1—O6ii108.51 (7)N1—C4—C3123.8 (4)
O3—Gd1—O6ii145.91 (8)N1—C4—H4118.1
O4i—Gd1—O6ii77.91 (7)C3—C4—H4118.1
O5—Gd1—O875.31 (8)O4—C7—O3124.3 (3)
O3—Gd1—O8140.12 (9)O4—C7—C8117.3 (3)
O4i—Gd1—O883.28 (8)O3—C7—C8118.3 (3)
O6ii—Gd1—O873.80 (8)C11—N2—C10116.1 (3)
O5—Gd1—O782.98 (8)C11—C12—C8119.0 (3)
O3—Gd1—O772.64 (8)C11—C12—H12120.5
O4i—Gd1—O777.04 (8)C8—C12—H12120.5
O6ii—Gd1—O7138.85 (8)C12—C8—C9117.7 (3)
O8—Gd1—O771.30 (8)C12—C8—C7121.7 (3)
O5—Gd1—O276.63 (7)C9—C8—C7120.5 (3)
O3—Gd1—O277.83 (7)N2—C11—C12124.6 (4)
O4i—Gd1—O2128.37 (8)N2—C11—H11117.7
O6ii—Gd1—O274.71 (7)C12—C11—H11117.7
O8—Gd1—O2127.78 (8)C2—C6—C5118.6 (4)
O7—Gd1—O2145.57 (8)C2—C6—H6120.7
O5—Gd1—O1125.61 (7)C5—C6—H6120.7
O3—Gd1—O170.81 (7)N1—C5—C6124.4 (4)
O4i—Gd1—O179.75 (7)N1—C5—H5117.8
O6ii—Gd1—O176.40 (7)C6—C5—H5117.8
O8—Gd1—O1148.16 (8)C13—O6—Gd1ii121.92 (19)
O7—Gd1—O1129.45 (7)C18—C14—C15117.6 (3)
O2—Gd1—O151.76 (7)C18—C14—C13121.0 (3)
O5—Gd1—C1100.79 (8)C15—C14—C13121.4 (3)
O3—Gd1—C171.09 (8)O6—C13—O5124.4 (3)
O4i—Gd1—C1104.73 (8)O6—C13—C14117.7 (3)
O6ii—Gd1—C175.38 (8)O5—C13—C14117.9 (3)
O8—Gd1—C1145.64 (9)C8—C9—C10118.9 (4)
O7—Gd1—C1142.88 (8)C8—C9—H9120.5
O2—Gd1—C125.92 (8)C10—C9—H9120.5
O1—Gd1—C125.92 (7)N2—C10—C9123.7 (4)
O1—C1—O2121.1 (3)N2—C10—H10118.2
O1—C1—C2121.0 (3)C9—C10—H10118.2
O2—C1—C2117.8 (3)C1—O1—Gd190.52 (18)
O1—C1—Gd163.55 (15)C1—O2—Gd196.22 (17)
O2—C1—Gd157.86 (15)C17—N3—C16116.3 (3)
C2—C1—Gd1171.8 (2)C14—C18—C17119.3 (3)
C6—C2—C3117.8 (3)C14—C18—H18120.4
C6—C2—C1119.5 (3)C17—C18—H18120.4
C3—C2—C1122.7 (3)C16—C15—C14118.6 (3)
Gd1—O8—H8B125 (3)C16—C15—H15120.7
Gd1—O8—H8A122 (3)C14—C15—H15120.7
H8B—O8—H8A107 (4)N3—C17—C18123.7 (3)
C7—O3—Gd1169.9 (2)N3—C17—H17118.2
C13—O5—Gd1171.0 (2)C18—C17—H17118.2
Gd1—O7—H7B123 (3)N3—C16—C15124.5 (3)
Gd1—O7—H7A127 (3)N3—C16—H16117.8
H7B—O7—H7A105 (4)C15—C16—H16117.8
O5—Gd1—C1—O1164.59 (17)C8—C12—C11—N20.6 (6)
O3—Gd1—C1—O184.84 (18)C3—C2—C6—C51.9 (6)
O4i—Gd1—C1—O115.90 (19)C1—C2—C6—C5179.3 (4)
O6ii—Gd1—C1—O188.90 (18)C4—N1—C5—C61.4 (8)
O8—Gd1—C1—O1115.70 (19)C2—C6—C5—N13.2 (8)
O7—Gd1—C1—O172.0 (2)Gd1ii—O6—C13—O54.0 (4)
O2—Gd1—C1—O1173.9 (3)Gd1ii—O6—C13—C14174.64 (18)
O5—Gd1—C1—O221.48 (19)C18—C14—C13—O613.5 (4)
O3—Gd1—C1—O2101.23 (19)C15—C14—C13—O6168.9 (3)
O4i—Gd1—C1—O2158.03 (17)C18—C14—C13—O5165.2 (3)
O6ii—Gd1—C1—O285.03 (18)C15—C14—C13—O512.4 (4)
O8—Gd1—C1—O258.2 (3)C12—C8—C9—C103.0 (6)
O7—Gd1—C1—O2114.1 (2)C7—C8—C9—C10173.1 (3)
O1—Gd1—C1—O2173.9 (3)C11—N2—C10—C90.9 (7)
O1—C1—C2—C6155.2 (3)C8—C9—C10—N21.6 (7)
O2—C1—C2—C623.0 (5)O2—C1—O1—Gd16.0 (3)
O1—C1—C2—C326.1 (5)C2—C1—O1—Gd1172.2 (3)
O2—C1—C2—C3155.7 (3)O5—Gd1—O1—C118.7 (2)
O5—Gd1—O3—C795.4 (12)O3—Gd1—O1—C186.05 (18)
O4i—Gd1—O3—C7109.1 (12)O4i—Gd1—O1—C1164.38 (18)
O6ii—Gd1—O3—C719.1 (13)O6ii—Gd1—O1—C184.47 (18)
O8—Gd1—O3—C7153.8 (12)O8—Gd1—O1—C1105.5 (2)
O7—Gd1—O3—C7179.9 (11),O7—Gd1—O1—C1131.98 (17)
O2—Gd1—O3—C717.8 (12)O2—Gd1—O1—C13.37 (17)
O1—Gd1—O3—C735.7 (12)O1—C1—O2—Gd16.3 (3)
C1—Gd1—O3—C78.2 (12)C2—C1—O2—Gd1171.9 (2)
C6—C2—C3—C40.8 (5)O5—Gd1—O2—C1158.30 (19)
C1—C2—C3—C4177.9 (3)O3—Gd1—O2—C171.67 (18)
C5—N1—C4—C31.6 (6)O4i—Gd1—O2—C127.5 (2)
C2—C3—C4—N12.7 (6)O6ii—Gd1—O2—C187.92 (19)
Gd1i—O4—C7—O317.4 (4)O8—Gd1—O2—C1142.63 (18)
Gd1i—O4—C7—C8160.10 (19)O7—Gd1—O2—C1103.0 (2)
Gd1—O3—C7—O4120.9 (11)O1—Gd1—O2—C13.37 (17)
Gd1—O3—C7—C856.5 (13)C15—C14—C18—C172.1 (5)
C11—C12—C8—C92.0 (5)C13—C14—C18—C17175.6 (3)
C11—C12—C8—C7174.1 (3)C18—C14—C15—C161.1 (5)
O4—C7—C8—C12178.6 (3)C13—C14—C15—C16176.6 (3)
O3—C7—C8—C121.0 (4)C16—N3—C17—C180.8 (6)
O4—C7—C8—C92.6 (5)C14—C18—C17—N31.2 (6)
O3—C7—C8—C9175.1 (3)C17—N3—C16—C151.9 (6)
C10—N2—C11—C122.1 (6)C14—C15—C16—N31.0 (6)
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8B···N2iii0.82 (1)1.99 (1)2.805 (4)175 (4)
O7—H7A···N3iv0.82 (1)1.99 (1)2.807 (4)176 (4)
O7—H7B···O1i0.82 (1)2.00 (2)2.788 (3)161 (4)
O8—H8A···O2ii0.82 (1)1.97 (2)2.759 (3)162 (4)
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1, z; (iii) x, y, z1; (iv) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Gd(C6H4NO2)3(H2O)2]
Mr559.59
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.4786 (6), 18.9589 (11), 10.7557 (6)
β (°) 92.313 (1)
V3)1931.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)3.49
Crystal size (mm)0.39 × 0.31 × 0.26
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.286, 0.404
No. of measured, independent and
observed [I > 2σ(I)] reflections
9640, 3435, 3102
Rint0.023
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.044, 1.06
No. of reflections3435
No. of parameters288
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.61, 0.62

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2000), SHELXTL.

Selected bond lengths (Å) top
Gd1—O52.326 (2)Gd1—O82.426 (2)
Gd1—O32.348 (2)Gd1—O72.442 (2)
Gd1—O4i2.349 (2)Gd1—O22.451 (2)
Gd1—O6ii2.391 (2)Gd1—O12.576 (2)
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8B···N2iii0.822 (10)1.986 (12)2.805 (4)175 (4)
O7—H7A···N3iv0.820 (10)1.989 (11)2.807 (4)176 (4)
O7—H7B···O1i0.819 (10)2.001 (16)2.788 (3)161 (4)
O8—H8A···O2ii0.818 (10)1.968 (16)2.759 (3)162 (4)
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1, z; (iii) x, y, z1; (iv) x, y+1/2, z1/2.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds