Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, dipotassium sulfate selenate/telluric acid adduct, K2(SO4)0.63(SeO4)0.47·Te(OH)6, is a solid solution in the series K2SO4·Te(OH)6/K2SeO4·Te(OH)6. It crystallizes in the same structure as the end member K2SO4·Te(OH)6 in the space group P\overline{1}, whereas the other end-member K2SeO4·Te(OH)6 crystallizes in the space group C2/c. The structure of the solid solution consists of planes of Te(OH)6 octa­hedra alternating with planes of statistically occupied XO4 tetra­hedra (X = S and Se), and with K+ cations situated between the planes. The structure is stabilized by inter­planar O—H...O hydrogen bonds involving all the H atoms that belong to the OH groups of the Te(OH)6 octa­hedra. Both Te atoms lie on inversion centres.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807027705/wm2119sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807027705/wm2119Isup2.hkl
Contains datablock I

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](e-O) = 0.007 Å
  • Disorder in main residue
  • R factor = 0.045
  • wR factor = 0.051
  • Data-to-parameter ratio = 15.1

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT077_ALERT_4_C Unitcell contains non-integer number of atoms .. ? PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for O7 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for O8 PLAT301_ALERT_3_C Main Residue Disorder ......................... 5.00 Perc. PLAT711_ALERT_1_C BOND Unknown or Inconsistent Label .......... X1 X1 O7 PLAT711_ALERT_1_C BOND Unknown or Inconsistent Label .......... X1 X1 O8 PLAT711_ALERT_1_C BOND Unknown or Inconsistent Label .......... X1 X1 O9 PLAT711_ALERT_1_C BOND Unknown or Inconsistent Label .......... X1 X1 O10 PLAT712_ALERT_1_C ANGLE Unknown or Inconsistent Label .......... X1 O7 X1 O8 PLAT712_ALERT_1_C ANGLE Unknown or Inconsistent Label .......... X1 O7 X1 O9 PLAT712_ALERT_1_C ANGLE Unknown or Inconsistent Label .......... X1 O8 X1 O9 PLAT712_ALERT_1_C ANGLE Unknown or Inconsistent Label .......... X1 O7 X1 O10 PLAT712_ALERT_1_C ANGLE Unknown or Inconsistent Label .......... X1 O8 X1 O10 PLAT712_ALERT_1_C ANGLE Unknown or Inconsistent Label .......... X1 O9 X1 O10 PLAT755_ALERT_4_C D-H Calc 0.86000, Rep 0.857(6) ...... Senseless su O1 -H1 1.555 1.555 PLAT755_ALERT_4_C D-H Calc 0.82000, Rep 0.817(6) ...... Senseless su O2 -H2 1.555 1.555 PLAT755_ALERT_4_C D-H Calc 0.82000, Rep 0.817(6) ...... Senseless su O3 -H3 1.555 1.555 PLAT755_ALERT_4_C D-H Calc 0.85000, Rep 0.848(6) ...... Senseless su O4 -H4 1.555 1.555 PLAT755_ALERT_4_C D-H Calc 0.86000, Rep 0.856(6) ...... Senseless su O5 -H5 1.555 1.555 PLAT755_ALERT_4_C D-H Calc 0.83000, Rep 0.826(6) ...... Senseless su O6 -H6 1.555 1.555 PLAT756_ALERT_4_C H...A Calc 1.92000, Rep 1.924(7) ...... Senseless su H1 -O9 1.555 1.545 PLAT756_ALERT_4_C H...A Calc 1.97000, Rep 1.967(7) ...... Senseless su H2 -O9 1.555 1.555 PLAT756_ALERT_4_C H...A Calc 1.97000, Rep 1.972(7) ...... Senseless su H3 -O10 1.555 1.655 PLAT756_ALERT_4_C H...A Calc 1.81000, Rep 1.815(7) ...... Senseless su H4 -O8 1.555 1.645 PLAT756_ALERT_4_C H...A Calc 1.87000, Rep 1.868(6) ...... Senseless su H5 -O7 1.555 1.655 PLAT756_ALERT_4_C H...A Calc 1.95000, Rep 1.946(6) ...... Senseless su H6 -O7 1.555 1.545 PLAT758_ALERT_4_C D-H..A Calc 169.00, Rep 168.7(5) ...... Senseless su O2 -H2 -O9 1.555 1.555 1.555 PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 3 O4 S0.63 Se0.37 PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 5 K
Alert level G PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 7
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 30 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 11 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 16 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Fig. 1 shows a projection of the title structure (I) on the ab plane. The structure consists of planes of Te(OH)6 octahedra alternating with planes of statistically occupied XO4 tetrahedra (X = S, Se). The Te(OH)6 layers extend parallel to the ac plane at y = 0, whereas the parallel XO4 layers are at y 0.5. The K+ cations are situated between the layers.

The two independent Te atoms in (I) occupy inversion centres (Fig. 2), with very similar Te—O distances between 1.900 (6) and 1.921 (6) Å and O—Te—O angles between 88.8 (3) and 91.20 (3)°. In the isostructural end-member K2SO4·Te(OH)6 (KSTe) (Zilber et al., 1980), the Te—O distances are nearly the same and vary from 1.914 (5) to 1.938 (5) Å, whilst in K2SeO4·Te(OH)6 (KSeTe) they are between 1.913 (2) and 1.919 (2) Å (Dammak et al., 2005).

The X—O distances of the slightly distorted XO4 tetrahedra vary from 1.460 (7) to 1.508 (6) Å, with O—X—O angles between 108.3 (4) and 111.0 (4)°. In the KSTe structure, the S—O distances range from 1.453 (5) to 1.503 (5) Å and in the KSeTe homologue, the Se—O distances vary from 1.627 (7) to 1.659 (7) Å.

The two K+ cations are both in eightfold coordination with distances ranging between 2.709 (6) and 3.267 (8) Å. K1+ is coordinated by three O atoms belonging to two XO4 tetrahedra, by one O atom of a Te1O6 octahedron, and by four O atoms of three Te2O6 octahedra. The environment of K2+ consists of three O atoms belonging to three XO4 tetrahedra, of one O atom from a Te2O6 octahedron, and of four O atoms from three Te1O6 octahedra.

Interplanar O—H···O hydrogen bonding between the Te(OH)6 octahedra and the XO4 tetrahedra helps to consolidate the structural set-up. In consequence, all H atoms of the hydroxyl groups participate in the formation of hydrogen bonding. In the XO4 group, two oxygen atoms are acceptors of one H atom, whereas the other O atoms are acceptors of two H atoms. The O···O distances vary from 2.654 (9) to 2.780 (9) Å and the O—H···O angles range from 164.3 (4) and 175.6 (5)° (Table 1, Fig. 3).

Related literature top

For the structures of the end-members of this solid solution series, see K2SO4·Te(OH)6 (Zilber et al., 1980) and K2SeO4·Te(OH)6 (Dammak et al., 2005).

Experimental top

Transparent, colorless single crystals of compound (I) were grown at room temperature by slow evaporation of an aqueous solution consisting of a mixture of Te(OH)6 (Aldrich, 99%), K2SeO4 (Aldrich, 99.99%) and K2SO4 (Aldrich, 99%) in the stoichiometric ratio 1:0.5:0.5.

Refinement top

Hydrogen atoms on Te(OH)6 groups were located in a difference map and were refined with restrained distances between 0.81 (1) and 0.86 (1) Å and a common Uiso parameter. For the refinement of the occupation factors for S and Se, their sum was constrained to be equal to 1. The highest peak and the deepest hole in the final Fourier map are located 0.04 and 0.57 Å, respectively, from the X site (X = S, Se).

Structure description top

Fig. 1 shows a projection of the title structure (I) on the ab plane. The structure consists of planes of Te(OH)6 octahedra alternating with planes of statistically occupied XO4 tetrahedra (X = S, Se). The Te(OH)6 layers extend parallel to the ac plane at y = 0, whereas the parallel XO4 layers are at y 0.5. The K+ cations are situated between the layers.

The two independent Te atoms in (I) occupy inversion centres (Fig. 2), with very similar Te—O distances between 1.900 (6) and 1.921 (6) Å and O—Te—O angles between 88.8 (3) and 91.20 (3)°. In the isostructural end-member K2SO4·Te(OH)6 (KSTe) (Zilber et al., 1980), the Te—O distances are nearly the same and vary from 1.914 (5) to 1.938 (5) Å, whilst in K2SeO4·Te(OH)6 (KSeTe) they are between 1.913 (2) and 1.919 (2) Å (Dammak et al., 2005).

The X—O distances of the slightly distorted XO4 tetrahedra vary from 1.460 (7) to 1.508 (6) Å, with O—X—O angles between 108.3 (4) and 111.0 (4)°. In the KSTe structure, the S—O distances range from 1.453 (5) to 1.503 (5) Å and in the KSeTe homologue, the Se—O distances vary from 1.627 (7) to 1.659 (7) Å.

The two K+ cations are both in eightfold coordination with distances ranging between 2.709 (6) and 3.267 (8) Å. K1+ is coordinated by three O atoms belonging to two XO4 tetrahedra, by one O atom of a Te1O6 octahedron, and by four O atoms of three Te2O6 octahedra. The environment of K2+ consists of three O atoms belonging to three XO4 tetrahedra, of one O atom from a Te2O6 octahedron, and of four O atoms from three Te1O6 octahedra.

Interplanar O—H···O hydrogen bonding between the Te(OH)6 octahedra and the XO4 tetrahedra helps to consolidate the structural set-up. In consequence, all H atoms of the hydroxyl groups participate in the formation of hydrogen bonding. In the XO4 group, two oxygen atoms are acceptors of one H atom, whereas the other O atoms are acceptors of two H atoms. The O···O distances vary from 2.654 (9) to 2.780 (9) Å and the O—H···O angles range from 164.3 (4) and 175.6 (5)° (Table 1, Fig. 3).

For the structures of the end-members of this solid solution series, see K2SO4·Te(OH)6 (Zilber et al., 1980) and K2SeO4·Te(OH)6 (Dammak et al., 2005).

Computing details top

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO/SCALEPACK; data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: CRYSTALS.

Figures top
[Figure 1] Fig. 1. Projection of the K2(SO4)0.63(SeO4)0.37·Te(OH)6 crystal structure on the ab plane.
[Figure 2] Fig. 2. The asymmetric unit of K2(SO4)0.63(SeO4)0.37·Te(OH)6 (expanded by symmetry to give complete Te(OH)6 octahedra) with displacement ellipsoids drawn at the 50% probability level. [Symmetry codes:(a) -x, -y, -z; (b) -x + 1, -y, -z + 1].
[Figure 3] Fig. 3. The hydrogen bonding (dotted lines) in the crystal structure of K2(SO4)0.63(SeO4)0.37·Te(OH)6.
Dipotassium sulfate/selenate tellurate top
Crystal data top
K2(SO4)0.63(SeO4)0.37Te(OH)6Z = 2
Mr = 421.16F(000) = 397.250
Triclinic, P1Dx = 2.961 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.2463 (2) ÅCell parameters from 7138 reflections
b = 6.6470 (2) Åθ = 2.7–30.1°
c = 13.1326 (4) ŵ = 5.63 mm1
α = 102.138 (2)°T = 298 K
β = 90.073 (2)°Prism, colourless
γ = 116.943 (1)°0.15 × 0.14 × 0.10 mm
V = 472.28 (3) Å3
Data collection top
Nonius KappaCCD
diffractometer
1719 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.038
φ rotation scans with 2° widthθmax = 30.2°, θmin = 1.6°
Absorption correction: multi-scan
(MULABS in PLATON; Spek, 2003)
h = 88
Tmin = 0.447, Tmax = 0.569k = 99
69116 measured reflectionsl = 1818
2787 independent reflections
Refinement top
Refinement on FPrimary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045All H-atom parameters refined
wR(F2) = 0.051 Method, part 1, Chebychev polynomial, [Watkin (1994). Acta Cryst. A50, 411–437; Prince, (1982). Mathematical Techniques in Crystallography and Materials Science. Springer-Verlag: New York.] [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)]
where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 4.11 -3.38 2.64
S = 1.09(Δ/σ)max = 0.002
1719 reflectionsΔρmax = 2.40 e Å3
114 parametersΔρmin = 2.99 e Å3
7 restraints
Crystal data top
K2(SO4)0.63(SeO4)0.37Te(OH)6γ = 116.943 (1)°
Mr = 421.16V = 472.28 (3) Å3
Triclinic, P1Z = 2
a = 6.2463 (2) ÅMo Kα radiation
b = 6.6470 (2) ŵ = 5.63 mm1
c = 13.1326 (4) ÅT = 298 K
α = 102.138 (2)°0.15 × 0.14 × 0.10 mm
β = 90.073 (2)°
Data collection top
Nonius KappaCCD
diffractometer
2787 independent reflections
Absorption correction: multi-scan
(MULABS in PLATON; Spek, 2003)
1719 reflections with I > 3σ(I)
Tmin = 0.447, Tmax = 0.569Rint = 0.038
69116 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0457 restraints
wR(F2) = 0.051All H-atom parameters refined
S = 1.09Δρmax = 2.40 e Å3
1719 reflectionsΔρmin = 2.99 e Å3
114 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Te10.00000.00000.00000.0150
Te20.50000.00000.50000.0144
Se10.24991 (17)0.46625 (17)0.24814 (17)0.04390.368 (7)
S10.24991 (17)0.46625 (17)0.24814 (17)0.04390.632 (7)
K10.1921 (4)0.2576 (3)0.35079 (18)0.0274
K20.4207 (4)0.2342 (3)0.14873 (17)0.0254
O10.0604 (11)0.0373 (10)0.1399 (5)0.0232
O20.1770 (12)0.1704 (11)0.0061 (5)0.0251
O30.2905 (11)0.2817 (10)0.0548 (6)0.0269
O40.7680 (10)0.0037 (10)0.4321 (5)0.0250
O50.6055 (11)0.3137 (9)0.4891 (5)0.0215
O60.3083 (10)0.1107 (10)0.3668 (5)0.0233
O70.1044 (11)0.4714 (11)0.3412 (5)0.0260
O80.3641 (13)0.6150 (12)0.2807 (6)0.0281
O90.0842 (12)0.5509 (12)0.1687 (6)0.0312
O100.4411 (12)0.2270 (10)0.2057 (6)0.0301
H10.06930.16710.14520.0436*
H20.14190.27460.05890.0436*
H30.36570.24910.09370.0436*
H40.72290.13430.38960.0436*
H50.69850.33950.44040.0436*
H60.18750.23150.37020.0436*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Te10.01489 (9)0.01533 (9)0.01406 (9)0.00653 (9)0.00131 (9)0.00335 (9)
Te20.01472 (9)0.01349 (9)0.01512 (9)0.00649 (9)0.00155 (9)0.00350 (9)
Se10.03752 (17)0.04897 (17)0.03836 (17)0.01470 (17)0.00249 (17)0.00931 (17)
S10.03752 (17)0.04897 (17)0.03836 (17)0.01470 (17)0.00249 (17)0.00931 (17)
K10.0242 (8)0.0260 (8)0.0370 (11)0.0156 (7)0.0043 (7)0.0079 (7)
K20.0244 (8)0.0227 (8)0.0346 (10)0.0146 (7)0.0013 (7)0.0093 (7)
O10.033 (3)0.025 (3)0.016 (3)0.015 (2)0.007 (2)0.009 (2)
O20.031 (3)0.028 (3)0.024 (3)0.022 (3)0.000 (2)0.003 (2)
O30.025 (3)0.016 (2)0.035 (4)0.004 (2)0.007 (2)0.008 (2)
O40.019 (3)0.020 (3)0.032 (3)0.008 (2)0.008 (2)0.001 (2)
O50.026 (3)0.013 (2)0.026 (3)0.009 (2)0.006 (2)0.006 (2)
O60.024 (3)0.019 (3)0.020 (3)0.004 (2)0.004 (2)0.006 (2)
O70.023 (3)0.031 (3)0.028 (3)0.011 (2)0.000 (2)0.017 (3)
O80.036 (4)0.032 (3)0.029 (4)0.029 (3)0.006 (3)0.001 (3)
O90.032 (3)0.030 (3)0.033 (4)0.013 (3)0.006 (3)0.012 (3)
O100.031 (3)0.016 (3)0.038 (4)0.007 (2)0.005 (3)0.005 (2)
Geometric parameters (Å, º) top
Te1—O1i1.920 (6)O4—H40.848
Te1—O3i1.915 (6)O5—H50.856
Te1—O2i1.900 (6)O6—H60.826
Te1—O11.920 (6)K1—O4iii2.792 (6)
Te1—O21.900 (6)K1—O72.815 (6)
Te1—O31.915 (6)K1—O5iv2.889 (6)
Te2—O6ii1.921 (6)K1—O62.897 (6)
Te2—O5ii1.919 (5)K1—O12.984 (7)
Te2—O4ii1.905 (6)K1—O52.990 (6)
Te2—O41.905 (6)K1—O8v3.022 (8)
Te2—O51.919 (5)K1—O10v3.032 (8)
Te2—O61.921 (6)K2—O10v2.709 (6)
X1—O71.508 (6)K2—O2i2.751 (6)
X1—O81.460 (7)K2—O8vi2.786 (8)
X1—O91.482 (7)K2—O9vii2.852 (7)
X1—O101.473 (6)K2—O1v2.908 (7)
O1—H10.857K2—O3vii2.915 (6)
O2—H20.817K2—O62.984 (7)
O3—H30.817K2—O3viii3.267 (8)
O1i—Te1—O3i89.9 (3)O6ii—Te2—O590.4 (3)
O1i—Te1—O2i91.2 (3)O5ii—Te2—O5179.994
O3i—Te1—O2i90.4 (3)O4ii—Te2—O590.0 (3)
O1i—Te1—O1179.994O4—Te2—O590.0 (3)
O3i—Te1—O190.1 (3)O6ii—Te2—O6179.994
O2i—Te1—O188.8 (3)O5ii—Te2—O690.4 (3)
O1i—Te1—O288.8 (3)O4ii—Te2—O689.6 (3)
O3i—Te1—O289.6 (3)O4—Te2—O690.4 (3)
O2i—Te1—O2179.994O5—Te2—O689.6 (3)
O1—Te1—O291.2 (3)O7—X1—O8109.8 (4)
O1i—Te1—O390.1 (3)O7—X1—O9108.3 (4)
O3i—Te1—O3179.994O8—X1—O9110.1 (4)
O2i—Te1—O389.6 (3)O7—X1—O10109.3 (4)
O1—Te1—O389.9 (3)O8—X1—O10108.4 (4)
O2—Te1—O390.4 (3)O9—X1—O10111.0 (4)
O6ii—Te2—O5ii89.6 (3)Te1—O1—H1109.426
O6ii—Te2—O4ii90.4 (3)Te1—O2—H2114.986
O5ii—Te2—O4ii90.0 (3)Te1—O3—H3105.734
O6ii—Te2—O489.6 (3)Te2—O4—H4109.438
O5ii—Te2—O490.0 (3)Te2—O5—H5108.396
O4ii—Te2—O4179.994Te2—O6—H6106.016
Symmetry codes: (i) x, y, z; (ii) x+1, y, z+1; (iii) x1, y, z; (iv) x+1, y+1, z+1; (v) x+1, y, z; (vi) x+1, y1, z; (vii) x, y1, z; (viii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O9vii0.86 (1)1.92 (1)2.780 (9)176 (1)
O2—H2···O90.82 (1)1.97 (1)2.773 (10)169 (1)
O3—H3···O10v0.82 (1)1.97 (1)2.778 (9)169 (1)
O4—H4···O8vi0.85 (1)1.82 (1)2.654 (9)170 (1)
O5—H5···O7v0.86 (1)1.87 (1)2.701 (9)164 (1)
O6—H6···O7vii0.83 (1)1.95 (1)2.755 (8)166 (1)
Symmetry codes: (v) x+1, y, z; (vi) x+1, y1, z; (vii) x, y1, z.

Experimental details

Crystal data
Chemical formulaK2(SO4)0.63(SeO4)0.37Te(OH)6
Mr421.16
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)6.2463 (2), 6.6470 (2), 13.1326 (4)
α, β, γ (°)102.138 (2), 90.073 (2), 116.943 (1)
V3)472.28 (3)
Z2
Radiation typeMo Kα
µ (mm1)5.63
Crystal size (mm)0.15 × 0.14 × 0.10
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(MULABS in PLATON; Spek, 2003)
Tmin, Tmax0.447, 0.569
No. of measured, independent and
observed [I > 3σ(I)] reflections
69116, 2787, 1719
Rint0.038
(sin θ/λ)max1)0.707
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.051, 1.09
No. of reflections1719
No. of parameters114
No. of restraints7
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)2.40, 2.99

Computer programs: COLLECT (Nonius, 2001), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 1997), CRYSTALS (Betteridge et al., 2003), DIAMOND (Brandenburg & Berndt, 1999), CRYSTALS.

Selected bond lengths (Å) top
Te1—O1i1.920 (6)K1—O4iii2.792 (6)
Te1—O3i1.915 (6)K1—O72.815 (6)
Te1—O2i1.900 (6)K1—O5iv2.889 (6)
Te1—O11.920 (6)K1—O62.897 (6)
Te1—O21.900 (6)K1—O12.984 (7)
Te1—O31.915 (6)K1—O52.990 (6)
Te2—O6ii1.921 (6)K1—O8v3.022 (8)
Te2—O5ii1.919 (5)K1—O10v3.032 (8)
Te2—O4ii1.905 (6)K2—O10v2.709 (6)
Te2—O41.905 (6)K2—O2i2.751 (6)
Te2—O51.919 (5)K2—O8vi2.786 (8)
Te2—O61.921 (6)K2—O9vii2.852 (7)
X1—O71.508 (6)K2—O1v2.908 (7)
X1—O81.460 (7)K2—O3vii2.915 (6)
X1—O91.482 (7)K2—O62.984 (7)
X1—O101.473 (6)K2—O3viii3.267 (8)
Symmetry codes: (i) x, y, z; (ii) x+1, y, z+1; (iii) x1, y, z; (iv) x+1, y+1, z+1; (v) x+1, y, z; (vi) x+1, y1, z; (vii) x, y1, z; (viii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O9vii0.857 (6)1.924 (7)2.780 (9)175.6 (5)
O2—H2···O90.817 (6)1.967 (7)2.773 (10)168.7 (5)
O3—H3···O10v0.817 (6)1.972 (7)2.778 (9)169.1 (5)
O4—H4···O8vi0.848 (6)1.815 (7)2.654 (9)169.7 (5)
O5—H5···O7v0.856 (6)1.868 (6)2.701 (9)164.3 (4)
O6—H6···O7vii0.826 (6)1.946 (6)2.755 (8)166.0 (5)
Symmetry codes: (v) x+1, y, z; (vi) x+1, y1, z; (vii) x, y1, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds