Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Single crystals of dirubidium dicalcium tris­[sulfate­(VI)], Rb2Ca2(SO4)3, were obtained from solid-state reactions of Rb2SO4 and CaSO4. The title compound crystallizes in the cubic langbeinite-type structure. It features two crystallographically independent CaO6 octa­hedra (each with site symmetry 3), which are linked by sharing corners with SO4 tetra­hedra to establish a framework with composition [Ca2(SO4)3]2-, where the two independent Rb+ cations (site symmetry 3) are located in the voids.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807027043/wm2116sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807027043/wm2116Isup2.hkl
Contains datablock I

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](S-O) = 0.010 Å
  • R factor = 0.065
  • wR factor = 0.128
  • Data-to-parameter ratio = 18.3

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT031_ALERT_4_B Refined Extinction Parameter within Range ...... 1.60 Sigma
Alert level C PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for S PLAT850_ALERT_2_C Check Flack Parameter Exact Value 0.00 and su .. 0.04
Alert level G REFLT03_ALERT_1_G ALERT: Expected hkl max differ from CIF values From the CIF: _diffrn_reflns_theta_max 29.89 From the CIF: _reflns_number_total 1080 From the CIF: _diffrn_reflns_limit_ max hkl 9. 10. 14. From the CIF: _diffrn_reflns_limit_ min hkl -8. -10. -14. TEST1: Expected hkl limits for theta max Calculated maximum hkl 14. 14. 14. Calculated minimum hkl -14. -14. -14. REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 29.89 From the CIF: _reflns_number_total 1080 Count of symmetry unique reflns 654 Completeness (_total/calc) 165.14% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 426 Fraction of Friedel pairs measured 0.651 Are heavy atom types Z>Si present yes PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The double sulfate salts with formula A2B2(SO4)3 adopting the langbeinite-type structure have attracted great interest due to their ferroelastic or ferroelectric properties and first-order phase transitions (Ukeda et al., 1995; Dilanian et al., 1999 and references therein). Numerous compounds with A = NH4, K, Rb, Tl, Cs and B = Mn, Ca, Mg, Fe, Co, Ni, Zn, Cd (e.g. Zemann & Zemann, 1957; Guelylah et al., 1996; Guelylah & Madariaga, 2003) have been characterized up to now. Gattow and Zemann (1957) mentioned the possible synthesis of 26 double sulfates, including large monovalent cations. Notable differences exist between langbeinite-type and Nasicon-type structures (Sizova et al., 1981; Dro\&s & Glaum, 2004). In the Nasicon-type structures, four interstitial vacant sites are present, while langbeinite-type structures have only two.

A projection of the crystal structure of langbeinite-type Rb2Ca2(SO4)3 is given in Fig. 1. It is characterized by the presence of alternating SO4 tetrahedra and CaO6 octahedra, linked by sharing corners, to establish a [Ca2(SO4)3]2- framework. The two independent Rb+ ions are located in the voids of this arrangement.

The SO4 tetrahedra are quite regular, with an average S—O distance of 1.455 Å, which is virtually the same as that observed in the isotypic Rb2Cd2(SO4)2 (1.455 Å; Guelylah & Madariaga, 2003). In the title compound sulfur has a bond valence sum (BVS) of 6.69 valence units (expected 6) as calculated with the values given by Brown & Altermatt (1985). The [Ca1O6] octahedron is quite regular, with dav(Ca1—O) = 2.292 Å, whereas the [Ca2O6] octahedron is considerably distorted, with dav(Ca2—O) = 2.321 Å. Rb1 has twelve oxygen neighbours with dav(Rb1—O) = 3.239 Å and a BVS of 1.03 (expected 1). Rb2 is ninefold coordinated with dav(Rb2—O) = 3.158 Å and a BVS of 0.852 (expected 1).

Related literature top

For studies of phase transitions of langbeinites, see: Ukeda et al. (1995); Dilanian et al. (1999). Double sulfates of the langbeinite-type were summarized by Gattow & Zemann (1957). For single-crystal structure analyses of selected langbeinites, see: Zemann & Zemann (1957); Guelylah et al. (1996); Guelylah & Madariaga (2003). Differences of the langbeinite and the Nasicon structure are discussed by Sizova et al. (1981) and Dro\&s & Glaum (2004). Parameters for the bond valence sum (BVS) analysis were taken from Brown & Altermatt (1985).

Experimental top

Single crystals of Rb2Ca2(SO4)3 were obtained by solid-state reaction of Rb2SO4 (Aldrich 99.999%) and CaSO4.H2O (Aldrich 99.9%). Stoichiometric amounts of the starting materials were mixed thoroughly in an agate mortar. After grinding, the mixture was heated at 673 K for 4 h, then at 1173 K for 66 h and was finally allowed to cool to room temperature at a rate of 5 K/h. Transparent polycrystalline chunks were obtained from which single crystals were separated manually.

Structure description top

The double sulfate salts with formula A2B2(SO4)3 adopting the langbeinite-type structure have attracted great interest due to their ferroelastic or ferroelectric properties and first-order phase transitions (Ukeda et al., 1995; Dilanian et al., 1999 and references therein). Numerous compounds with A = NH4, K, Rb, Tl, Cs and B = Mn, Ca, Mg, Fe, Co, Ni, Zn, Cd (e.g. Zemann & Zemann, 1957; Guelylah et al., 1996; Guelylah & Madariaga, 2003) have been characterized up to now. Gattow and Zemann (1957) mentioned the possible synthesis of 26 double sulfates, including large monovalent cations. Notable differences exist between langbeinite-type and Nasicon-type structures (Sizova et al., 1981; Dro\&s & Glaum, 2004). In the Nasicon-type structures, four interstitial vacant sites are present, while langbeinite-type structures have only two.

A projection of the crystal structure of langbeinite-type Rb2Ca2(SO4)3 is given in Fig. 1. It is characterized by the presence of alternating SO4 tetrahedra and CaO6 octahedra, linked by sharing corners, to establish a [Ca2(SO4)3]2- framework. The two independent Rb+ ions are located in the voids of this arrangement.

The SO4 tetrahedra are quite regular, with an average S—O distance of 1.455 Å, which is virtually the same as that observed in the isotypic Rb2Cd2(SO4)2 (1.455 Å; Guelylah & Madariaga, 2003). In the title compound sulfur has a bond valence sum (BVS) of 6.69 valence units (expected 6) as calculated with the values given by Brown & Altermatt (1985). The [Ca1O6] octahedron is quite regular, with dav(Ca1—O) = 2.292 Å, whereas the [Ca2O6] octahedron is considerably distorted, with dav(Ca2—O) = 2.321 Å. Rb1 has twelve oxygen neighbours with dav(Rb1—O) = 3.239 Å and a BVS of 1.03 (expected 1). Rb2 is ninefold coordinated with dav(Rb2—O) = 3.158 Å and a BVS of 0.852 (expected 1).

For studies of phase transitions of langbeinites, see: Ukeda et al. (1995); Dilanian et al. (1999). Double sulfates of the langbeinite-type were summarized by Gattow & Zemann (1957). For single-crystal structure analyses of selected langbeinites, see: Zemann & Zemann (1957); Guelylah et al. (1996); Guelylah & Madariaga (2003). Differences of the langbeinite and the Nasicon structure are discussed by Sizova et al. (1981) and Dro\&s & Glaum (2004). Parameters for the bond valence sum (BVS) analysis were taken from Brown & Altermatt (1985).

Computing details top

Data collection: STADI4 (Stoe & Cie, 2000); cell refinement: STADI4; data reduction: X-RED (Stoe & Cie, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: CRYSTALS.

Figures top
[Figure 1] Fig. 1. Projection of the crystal structure of langbeinite-type Rb2Ca2(SO4)3 approximately along [001]. The voids are visible, where the Rb+ cations (lavender spheres) are located. CaO6 octahedra are dark-grey and SO4 tetrahedra are light-grey.
dirubidium dicalcium tris[sulfate(VI)] top
Crystal data top
Rb2Ca2(SO4)3Dx = 3.048 Mg m3
Mr = 539.28Mo Kα radiation, λ = 0.71073 Å
Cubic, P213Cell parameters from 23 reflections
Hall symbol: P 2ac 2ab 3θ = 2.7–30.1°
a = 10.553 (3) ŵ = 9.79 mm1
V = 1175.2 (6) Å3T = 293 K
Z = 4Fragment, colourless
F(000) = 10320.22 × 0.13 × 0.05 mm
Data collection top
Stoe–Siemens AED2 four-circle
diffractometer
Rint = 0.08
Graphite monochromatorθmax = 29.9°, θmin = 2.7°
ω/2θ scansh = 89
Absorption correction: multi-scan
(MULABS in PLATON; Spek, 2003)
k = 1010
Tmin = 0.231, Tmax = 0.644l = 1414
1236 measured reflections2 standard reflections every 30 min
1080 independent reflections intensity decay: 0.7%
658 reflections with I > 3σ(I)
Refinement top
Refinement on F2 w = 1/[σ2(Fo2) + (0.021P)2 + 6.5703P]
where P = (Fo2 + 2Fc2)/3 Method, part 1, Chebychev polynomial, (Watkin (1994). Acta Cryst. A50, 411–437. Prince (1982) Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.] [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)]
where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 2.38 -2.95 2.50 -1.02 0.340
Least-squares matrix: full(Δ/σ)max = 0.001
R[F2 > 2σ(F2)] = 0.065Δρmax = 0.93 e Å3
wR(F2) = 0.128Δρmin = 1.00 e Å3
S = 1.12Extinction correction: SHELXL
1080 reflectionsExtinction coefficient: 0.0008 (5)
59 parametersAbsolute structure: Flack (1983), 558 Friedel pairs
0 restraintsAbsolute structure parameter: 0.00 (4)
Primary atom site location: structure-invariant direct methods
Crystal data top
Rb2Ca2(SO4)3Z = 4
Mr = 539.28Mo Kα radiation
Cubic, P213µ = 9.79 mm1
a = 10.553 (3) ÅT = 293 K
V = 1175.2 (6) Å30.22 × 0.13 × 0.05 mm
Data collection top
Stoe–Siemens AED2 four-circle
diffractometer
658 reflections with I > 3σ(I)
Absorption correction: multi-scan
(MULABS in PLATON; Spek, 2003)
Rint = 0.08
Tmin = 0.231, Tmax = 0.6442 standard reflections every 30 min
1236 measured reflections intensity decay: 0.7%
1080 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.128Δρmax = 0.93 e Å3
S = 1.12Δρmin = 1.00 e Å3
1080 reflectionsAbsolute structure: Flack (1983), 558 Friedel pairs
59 parametersAbsolute structure parameter: 0.00 (4)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ca10.3314 (2)0.3314 (2)0.3314 (2)0.0170 (9)
Ca20.5920 (2)0.5920 (2)0.5920 (2)0.0170 (9)
Rb10.81628 (13)0.81628 (13)0.81628 (13)0.0270 (5)
Rb20.04991 (13)0.04991 (13)0.04991 (13)0.0291 (6)
S0.2243 (3)0.3749 (3)0.0108 (3)0.0136 (6)
O10.3089 (9)0.2795 (8)0.9600 (9)0.032 (2)
O20.0954 (8)0.3285 (10)0.0046 (10)0.039 (3)
O30.2364 (10)0.4880 (10)0.9326 (11)0.043 (3)
O40.2580 (10)0.4059 (11)0.1420 (9)0.044 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca10.0170 (9)0.0170 (9)0.0170 (9)0.0002 (10)0.0002 (10)0.0002 (10)
Ca20.0170 (9)0.0170 (9)0.0170 (9)0.0004 (10)0.0004 (10)0.0004 (10)
Rb10.0270 (5)0.0270 (5)0.0270 (5)0.0023 (6)0.0023 (6)0.0023 (6)
Rb20.0291 (6)0.0291 (6)0.0291 (6)0.0012 (6)0.0012 (6)0.0012 (6)
S0.0156 (15)0.0120 (13)0.0131 (15)0.0031 (11)0.0003 (11)0.0015 (10)
O10.034 (5)0.023 (5)0.039 (6)0.011 (4)0.012 (5)0.006 (4)
O20.015 (5)0.037 (6)0.064 (7)0.007 (4)0.011 (5)0.016 (6)
O30.059 (7)0.030 (6)0.041 (6)0.015 (5)0.008 (5)0.023 (5)
O40.060 (8)0.047 (7)0.026 (6)0.003 (6)0.009 (5)0.011 (5)
Geometric parameters (Å, º) top
Ca1—O4i2.284 (10)Rb1—O3xxiii3.464 (13)
Ca1—O4ii2.284 (10)Rb1—O3xxiv3.464 (13)
Ca1—O42.284 (10)Rb2—O2i3.018 (10)
Ca1—O3iii2.299 (10)Rb2—O23.018 (10)
Ca1—O3iv2.299 (10)Rb2—O2ii3.018 (10)
Ca1—O3v2.299 (10)Rb2—O1xxv3.118 (10)
Ca1—Rb1vi4.0344 (18)Rb2—O1xxvi3.118 (10)
Ca1—Rb1vii4.0344 (18)Rb2—O1xxvii3.118 (10)
Ca1—Rb1viii4.0344 (18)Rb2—O3xxvi3.338 (11)
Ca1—Rb2ix4.804 (2)Rb2—O3xxvii3.338 (11)
Ca1—Rb2x4.804 (2)Rb2—O3xxv3.338 (11)
Ca1—Rb2xi4.804 (2)Rb2—Sxxviii3.584 (3)
Ca2—O1xii2.304 (9)Rb2—Sxxix3.584 (3)
Ca2—O1xiii2.304 (9)Rb2—Sxxx3.584 (3)
Ca2—O1xiv2.304 (9)S—O1xxxi1.449 (9)
Ca2—O2xv2.338 (9)S—O21.447 (9)
Ca2—O2xvi2.338 (9)S—O3xxxi1.456 (10)
Ca2—O2xvii2.338 (9)S—O41.466 (10)
Ca2—Sxv3.464 (4)S—Ca2xxvii3.464 (4)
Ca2—Sxvi3.464 (4)S—Rb1v3.533 (3)
Ca2—Sxvii3.464 (4)S—Rb2xi3.584 (3)
Ca2—Rb2xv4.0891 (19)S—Rb1viii3.859 (3)
Ca2—Rb2xviii4.0891 (19)O1—Sxxxii1.449 (9)
Ca2—Rb2xvii4.0891 (19)O1—Ca2vii2.304 (9)
Rb1—O4xix3.028 (11)O1—Rb2xv3.118 (10)
Rb1—O4xx3.028 (11)O1—Rb1vii3.224 (9)
Rb1—O4xxi3.028 (11)O2—Ca2xxvii2.338 (9)
Rb1—O1xii3.224 (9)O2—Rb1v3.515 (10)
Rb1—O1xiii3.224 (9)O3—Sxxxii1.456 (10)
Rb1—O1xiv3.224 (10)O3—Ca1xviii2.299 (10)
Rb1—O3xiv3.239 (12)O3—Rb1vii3.239 (12)
Rb1—O3xii3.239 (12)O3—Rb2xv3.338 (11)
Rb1—O3xiii3.239 (12)O3—Rb1xxxiii3.464 (13)
Rb1—O3xxii3.464 (13)O4—Rb1viii3.028 (11)
O4i—Ca1—O4ii96.9 (4)O3xii—Rb1—O3xxiii138.68 (19)
O4i—Ca1—O496.9 (4)O3xiii—Rb1—O3xxiii58.5 (4)
O4ii—Ca1—O496.9 (4)O3xxii—Rb1—O3xxiii82.8 (3)
O4i—Ca1—O3iii90.9 (4)O4xix—Rb1—O3xxiv107.7 (3)
O4ii—Ca1—O3iii81.3 (4)O4xx—Rb1—O3xxiv54.3 (3)
O4—Ca1—O3iii172.1 (4)O4xxi—Rb1—O3xxiv42.4 (2)
O4i—Ca1—O3iv81.3 (4)O1xii—Rb1—O3xxiv96.7 (2)
O4ii—Ca1—O3iv172.1 (4)O1xiii—Rb1—O3xxiv131.6 (2)
O4—Ca1—O3iv90.9 (4)O1xiv—Rb1—O3xxiv145.4 (2)
O3iii—Ca1—O3iv91.0 (4)O3xiv—Rb1—O3xxiv138.68 (19)
O4i—Ca1—O3v172.1 (4)O3xii—Rb1—O3xxiv58.5 (4)
O4ii—Ca1—O3v90.9 (4)O3xiii—Rb1—O3xxiv104.18 (3)
O4—Ca1—O3v81.3 (4)O3xxii—Rb1—O3xxiv82.8 (3)
O3iii—Ca1—O3v91.0 (4)O3xxiii—Rb1—O3xxiv82.8 (3)
O3iv—Ca1—O3v91.0 (4)O2i—Rb2—O291.4 (3)
O1xii—Ca2—O1xiii85.6 (4)O2i—Rb2—O2ii91.4 (3)
O1xii—Ca2—O1xiv85.6 (4)O2—Rb2—O2ii91.4 (3)
O1xiii—Ca2—O1xiv85.6 (4)O2i—Rb2—O1xxv64.0 (2)
O1xii—Ca2—O2xv172.2 (4)O2—Rb2—O1xxv153.1 (3)
O1xiii—Ca2—O2xv88.5 (3)O2ii—Rb2—O1xxv79.1 (2)
O1xiv—Ca2—O2xv89.0 (3)O2i—Rb2—O1xxvi79.1 (2)
O1xii—Ca2—O2xvi89.0 (3)O2—Rb2—O1xxvi64.0 (2)
O1xiii—Ca2—O2xvi172.2 (4)O2ii—Rb2—O1xxvi153.1 (3)
O1xiv—Ca2—O2xvi88.5 (3)O1xxv—Rb2—O1xxvi117.59 (9)
O2xv—Ca2—O2xvi96.4 (3)O2i—Rb2—O1xxvii153.1 (3)
O1xii—Ca2—O2xvii88.5 (3)O2—Rb2—O1xxvii79.1 (2)
O1xiii—Ca2—O2xvii89.0 (3)O2ii—Rb2—O1xxvii64.0 (2)
O1xiv—Ca2—O2xvii172.2 (4)O1xxv—Rb2—O1xxvii117.59 (9)
O2xv—Ca2—O2xvii96.4 (3)O1xxvi—Rb2—O1xxvii117.59 (9)
O2xvi—Ca2—O2xvii96.4 (3)O2i—Rb2—O3xxvi78.9 (3)
O4xix—Rb1—O4xx94.9 (3)O2—Rb2—O3xxvi106.5 (2)
O4xix—Rb1—O4xxi94.9 (3)O2ii—Rb2—O3xxvi159.8 (2)
O4xx—Rb1—O4xxi94.9 (3)O1xxv—Rb2—O3xxvi80.6 (2)
O4xix—Rb1—O1xii155.6 (3)O1xxvi—Rb2—O3xxvi42.5 (2)
O4xx—Rb1—O1xii99.5 (2)O1xxvii—Rb2—O3xxvi127.9 (3)
O4xxi—Rb1—O1xii103.3 (3)O2i—Rb2—O3xxvii159.8 (2)
O4xix—Rb1—O1xiii103.3 (3)O2—Rb2—O3xxvii78.9 (3)
O4xx—Rb1—O1xiii155.6 (3)O2ii—Rb2—O3xxvii106.5 (2)
O4xxi—Rb1—O1xiii99.5 (2)O1xxv—Rb2—O3xxvii127.9 (3)
O1xii—Rb1—O1xiii58.1 (3)O1xxvi—Rb2—O3xxvii80.6 (2)
O4xix—Rb1—O1xiv99.5 (2)O1xxvii—Rb2—O3xxvii42.5 (2)
O4xx—Rb1—O1xiv103.3 (3)O3xxvi—Rb2—O3xxvii86.7 (3)
O4xxi—Rb1—O1xiv155.6 (3)O2i—Rb2—O3xxv106.5 (2)
O1xii—Rb1—O1xiv58.1 (3)O2—Rb2—O3xxv159.8 (2)
O1xiii—Rb1—O1xiv58.1 (3)O2ii—Rb2—O3xxv78.9 (3)
O4xix—Rb1—O3xiv62.7 (3)O1xxv—Rb2—O3xxv42.5 (2)
O4xx—Rb1—O3xiv85.4 (3)O1xxvi—Rb2—O3xxv127.9 (3)
O4xxi—Rb1—O3xiv157.5 (3)O1xxvii—Rb2—O3xxv80.6 (2)
O1xii—Rb1—O3xiv98.8 (3)O3xxvi—Rb2—O3xxv86.7 (3)
O1xiii—Rb1—O3xiv88.6 (2)O3xxvii—Rb2—O3xxv86.7 (3)
O1xiv—Rb1—O3xiv42.6 (2)O1xxxi—S—O2109.1 (6)
O4xix—Rb1—O3xii157.5 (3)O1xxxi—S—O3xxxi107.8 (6)
O4xx—Rb1—O3xii62.7 (3)O2—S—O3xxxi109.5 (7)
O4xxi—Rb1—O3xii85.4 (3)O1xxxi—S—O4110.8 (6)
O1xii—Rb1—O3xii42.6 (2)O2—S—O4110.2 (6)
O1xiii—Rb1—O3xii98.8 (2)O3xxxi—S—O4109.3 (7)
O1xiv—Rb1—O3xii88.6 (2)Sxxxii—O1—Ca2vii164.7 (6)
O3xiv—Rb1—O3xii114.23 (15)Sxxxii—O1—Rb2xv96.5 (4)
O4xix—Rb1—O3xiii85.4 (3)Ca2vii—O1—Rb2xv96.8 (3)
O4xx—Rb1—O3xiii157.5 (3)Sxxxii—O1—Rb1vii89.9 (4)
O4xxi—Rb1—O3xiii62.7 (3)Ca2vii—O1—Rb1vii94.3 (3)
O1xii—Rb1—O3xiii88.6 (2)Rb2xv—O1—Rb1vii103.6 (3)
O1xiii—Rb1—O3xiii42.6 (2)S—O2—Ca2xxvii131.0 (6)
O1xiv—Rb1—O3xiii98.8 (3)S—O2—Rb2118.2 (5)
O3xiv—Rb1—O3xiii114.23 (15)Ca2xxvii—O2—Rb298.8 (3)
O3xii—Rb1—O3xiii114.23 (14)S—O2—Rb1v78.8 (4)
O4xix—Rb1—O3xxii54.3 (3)Ca2xxvii—O2—Rb1v128.1 (4)
O4xx—Rb1—O3xxii42.4 (2)Rb2—O2—Rb1v99.1 (3)
O4xxi—Rb1—O3xxii107.7 (3)Sxxxii—O3—Ca1xviii156.2 (7)
O1xii—Rb1—O3xxii131.6 (2)Sxxxii—O3—Rb1vii89.2 (5)
O1xiii—Rb1—O3xxii145.4 (2)Ca1xviii—O3—Rb1vii91.9 (4)
O1xiv—Rb1—O3xxii96.7 (2)Sxxxii—O3—Rb2xv87.6 (5)
O3xiv—Rb1—O3xxii58.5 (4)Ca1xviii—O3—Rb2xv115.7 (4)
O3xii—Rb1—O3xxii104.18 (3)Rb1vii—O3—Rb2xv98.5 (3)
O3xiii—Rb1—O3xxii138.68 (19)Sxxxii—O3—Rb1xxxiii94.4 (5)
O4xix—Rb1—O3xxiii42.4 (2)Ca1xviii—O3—Rb1xxxiii86.4 (3)
O4xx—Rb1—O3xxiii107.7 (3)Rb1vii—O3—Rb1xxxiii174.7 (3)
O4xxi—Rb1—O3xxiii54.3 (3)Rb2xv—O3—Rb1xxxiii77.7 (3)
O1xii—Rb1—O3xxiii145.4 (2)S—O4—Ca1146.3 (7)
O1xiii—Rb1—O3xxiii96.7 (2)S—O4—Rb1viii113.7 (6)
O1xiv—Rb1—O3xxiii131.6 (2)Ca1—O4—Rb1viii97.9 (3)
O3xiv—Rb1—O3xxiii104.18 (3)
Symmetry codes: (i) z, x, y; (ii) y, z, x; (iii) z1/2, x+1/2, y+1; (iv) x+1/2, y+1, z1/2; (v) y+1, z1/2, x+1/2; (vi) y+3/2, z+1, x1/2; (vii) y+1, z1/2, x+3/2; (viii) z1/2, x+3/2, y+1; (ix) y, z+1/2, x+1/2; (x) y+1/2, z, x+1/2; (xi) z+1/2, x+1/2, y; (xii) x+1, y+1/2, z+3/2; (xiii) y+1/2, z+3/2, x+1; (xiv) z+3/2, x+1, y+1/2; (xv) z+1/2, x+1/2, y+1; (xvi) x+1/2, y+1, z+1/2; (xvii) y+1, z+1/2, x+1/2; (xviii) y+1/2, z+1, x+1/2; (xix) z+1, x+1/2, y+3/2; (xx) x+1/2, y+3/2, z+1; (xxi) y+3/2, z+1, x+1/2; (xxii) x+1/2, y+3/2, z+2; (xxiii) z+2, x+1/2, y+3/2; (xxiv) y+3/2, z+2, x+1/2; (xxv) z+1, x1/2, y+1/2; (xxvi) x1/2, y+1/2, z+1; (xxvii) y+1/2, z+1, x1/2; (xxviii) z, x1/2, y+1/2; (xxix) x1/2, y+1/2, z; (xxx) y+1/2, z, x1/2; (xxxi) x, y, z1; (xxxii) x, y, z+1; (xxxiii) z1/2, x+3/2, y+2.

Experimental details

Crystal data
Chemical formulaRb2Ca2(SO4)3
Mr539.28
Crystal system, space groupCubic, P213
Temperature (K)293
a (Å)10.553 (3)
V3)1175.2 (6)
Z4
Radiation typeMo Kα
µ (mm1)9.79
Crystal size (mm)0.22 × 0.13 × 0.05
Data collection
DiffractometerStoe–Siemens AED2 four-circle
Absorption correctionMulti-scan
(MULABS in PLATON; Spek, 2003)
Tmin, Tmax0.231, 0.644
No. of measured, independent and
observed [I > 3σ(I)] reflections
1236, 1080, 658
Rint0.08
(sin θ/λ)max1)0.701
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.128, 1.12
No. of reflections1080
No. of parameters59
Δρmax, Δρmin (e Å3)0.93, 1.00
Absolute structureFlack (1983), 558 Friedel pairs
Absolute structure parameter0.00 (4)

Computer programs: STADI4 (Stoe & Cie, 2000), STADI4, X-RED (Stoe & Cie, 1996), SHELXS97 (Sheldrick, 1997), CRYSTALS (Betteridge et al., 2003), DIAMOND (Brandenburg & Berndt, 1999), CRYSTALS.

Selected bond lengths (Å) top
Ca1—O42.284 (10)Rb2—O23.018 (10)
Ca1—O3i2.299 (10)Rb2—O1vii3.118 (10)
Ca2—O1ii2.304 (9)Rb2—O3vii3.338 (11)
Ca2—O2iii2.338 (9)S—O1viii1.449 (9)
Rb1—O4iv3.028 (11)S—O21.447 (9)
Rb1—O1v3.224 (9)S—O3viii1.456 (10)
Rb1—O3v3.239 (12)S—O41.466 (10)
Rb1—O3vi3.464 (13)
Symmetry codes: (i) z1/2, x+1/2, y+1; (ii) z+3/2, x+1, y+1/2; (iii) y+1, z+1/2, x+1/2; (iv) z+1, x+1/2, y+3/2; (v) x+1, y+1/2, z+3/2; (vi) z+2, x+1/2, y+3/2; (vii) z+1, x1/2, y+1/2; (viii) x, y, z1.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds