Download citation
Download citation
link to html
Single crystals of the cobalt magnesium dichloride tetra­kis[trioxotellurate(IV)] solid solution Co5−yMgy(TeO3)4Cl2 [y = 1.4] were obtained from solid–gas phase reactions in sealed evacuated silica tubes. The crystal symmetry is monoclinic and the compound is isostructural with Co5(TeO3)4X2 and Ni5(TeO3)4X2 (X = Cl, Br). The layered structure comprises distorted MO6 and MO5Cl octa­hedra (M = statistically occupied Co and Mg sites) and TeO3E tetra­hedra (E = stereochemically active electron lone pair of TeIV). Five face-sharing MO6 octa­hedra make up claw-like [M5O16Cl2] units which form layers by corner-sharing with four other such units and by corner- and edge-sharing with TeO3E tetra­hedra. The layers are held together only by weak van der Waals forces with a closest Te...Cl distance of 3.184 (2) Å between two layers.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807024014/wm2109sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807024014/wm2109Isup2.hkl
Contains datablock I

Key indicators

  • Single-crystal X-ray study
  • T = 292 K
  • Mean [sigma](e-O) = 0.004 Å
  • Disorder in main residue
  • R factor = 0.044
  • wR factor = 0.064
  • Data-to-parameter ratio = 30.1

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT029_ALERT_3_B _diffrn_measured_fraction_theta_full Low ....... 0.95
Alert level C DIFMN02_ALERT_2_C The minimum difference density is < -0.1*ZMAX*0.75 _refine_diff_density_min given = -3.940 Test value = -3.900 DIFMN03_ALERT_1_C The minimum difference density is < -0.1*ZMAX*0.75 The relevant atom site should be identified. REFLT03_ALERT_3_C Reflection count < 95% complete From the CIF: _diffrn_reflns_theta_max 36.83 From the CIF: _diffrn_reflns_theta_full 36.26 From the CIF: _reflns_number_total 3245 TEST2: Reflns within _diffrn_reflns_theta_max Count of symmetry unique reflns 3523 Completeness (_total/calc) 92.11% PLAT041_ALERT_1_C Calc. and Rep. SumFormula Strings Differ .... ? PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT045_ALERT_1_C Calculated and Reported Z Differ by ............ 0.25 Ratio PLAT076_ALERT_1_C Occupancy 0.50 less than 1.0 for Sp.pos . CO1 PLAT076_ALERT_1_C Occupancy 0.50 less than 1.0 for Sp.pos . MG1 PLAT077_ALERT_4_C Unitcell contains non-integer number of atoms .. ? PLAT098_ALERT_2_C Minimum (Negative) Residual Density ............ -3.94 e/A    PLAT301_ALERT_3_C Main Residue Disorder ......................... 17.00 Perc. PLAT711_ALERT_1_C BOND Unknown or Inconsistent Label .......... M1 M1 O1 PLAT711_ALERT_1_C BOND Unknown or Inconsistent Label .......... M1 M1 O1 PLAT711_ALERT_1_C BOND Unknown or Inconsistent Label .......... M1 M1 O4 PLAT711_ALERT_1_C BOND Unknown or Inconsistent Label .......... M1 M1 O4 PLAT711_ALERT_1_C BOND Unknown or Inconsistent Label .......... M1 M1 O5 PLAT711_ALERT_1_C BOND Unknown or Inconsistent Label .......... M1 M1 O5 PLAT711_ALERT_1_C BOND Unknown or Inconsistent Label .......... M2 M2 M3 PLAT711_ALERT_1_C BOND Unknown or Inconsistent Label .......... M2 M2 MG3 PLAT711_ALERT_1_C BOND Unknown or Inconsistent Label .......... M2 M2 CL1 PLAT711_ALERT_1_C BOND Unknown or Inconsistent Label .......... M2 M2 O1 PLAT711_ALERT_1_C BOND Unknown or Inconsistent Label .......... M2 M2 O3 PLAT711_ALERT_1_C BOND Unknown or Inconsistent Label .......... M2 M2 O4 PLAT711_ALERT_1_C BOND Unknown or Inconsistent Label .......... M2 M2 O5 PLAT711_ALERT_1_C BOND Unknown or Inconsistent Label .......... M2 M2 O6 PLAT711_ALERT_1_C BOND Unknown or Inconsistent Label .......... M3 M3 O1 PLAT711_ALERT_1_C BOND Unknown or Inconsistent Label .......... M3 M3 O2 PLAT711_ALERT_1_C BOND Unknown or Inconsistent Label .......... M3 M3 O3 PLAT711_ALERT_1_C BOND Unknown or Inconsistent Label .......... M3 M3 O4 PLAT711_ALERT_1_C BOND Unknown or Inconsistent Label .......... M3 M3 O5 PLAT711_ALERT_1_C BOND Unknown or Inconsistent Label .......... M3 M3 O6 PLAT712_ALERT_1_C ANGLE Unknown or Inconsistent Label .......... M1 O1 M1 O1 PLAT712_ALERT_1_C ANGLE Unknown or Inconsistent Label .......... M1 O1 M1 O4 PLAT712_ALERT_1_C ANGLE Unknown or Inconsistent Label .......... M1 O1 M1 O4 PLAT712_ALERT_1_C ANGLE Unknown or Inconsistent Label .......... M1 O1 M1 O5 PLAT712_ALERT_1_C ANGLE Unknown or Inconsistent Label .......... M1 O1 M1 O5 PLAT712_ALERT_1_C ANGLE Unknown or Inconsistent Label .......... M1 O1 M1 O1 PLAT712_ALERT_1_C ANGLE Unknown or Inconsistent Label .......... M1 O1 M1 O4 PLAT712_ALERT_1_C ANGLE Unknown or Inconsistent Label .......... M1 O1 M1 O4 PLAT712_ALERT_1_C ANGLE Unknown or Inconsistent Label .......... M1 O1 M1 O5 PLAT712_ALERT_1_C ANGLE Unknown or Inconsistent Label .......... M1 O1 M1 O5 PLAT712_ALERT_1_C ANGLE Unknown or Inconsistent Label .......... M1 O4 M1 O4 PLAT712_ALERT_1_C ANGLE Unknown or Inconsistent Label .......... M1 O4 M1 O5 PLAT712_ALERT_1_C ANGLE Unknown or Inconsistent Label .......... M1 O4 M1 O5 PLAT712_ALERT_1_C ANGLE Unknown or Inconsistent Label .......... M1 O4 M1 O4 PLAT712_ALERT_1_C ANGLE Unknown or Inconsistent Label .......... M1 O4 M1 O5 PLAT712_ALERT_1_C ANGLE Unknown or Inconsistent Label .......... M1 O4 M1 O5 PLAT712_ALERT_1_C ANGLE Unknown or Inconsistent Label .......... M1 O5 M1 O5 PLAT712_ALERT_1_C ANGLE Unknown or Inconsistent Label .......... M1 O5 M1 O5 PLAT712_ALERT_1_C ANGLE Unknown or Inconsistent Label .......... M2 CL1 M2 O1 PLAT712_ALERT_1_C ANGLE Unknown or Inconsistent Label .......... M2 CL1 M2 O3 PLAT712_ALERT_1_C ANGLE Unknown or Inconsistent Label .......... M2 CL1 M2 O4 PLAT712_ALERT_1_C ANGLE Unknown or Inconsistent Label .......... M2 CL1 M2 O5 PLAT712_ALERT_1_C ANGLE Unknown or Inconsistent Label .......... M2 CL1 M2 O6 PLAT712_ALERT_1_C ANGLE Unknown or Inconsistent Label .......... M2 O1 M2 O3 PLAT712_ALERT_1_C ANGLE Unknown or Inconsistent Label .......... M2 O1 M2 O4 PLAT712_ALERT_1_C ANGLE Unknown or Inconsistent Label .......... M2 O1 M2 O5 PLAT712_ALERT_1_C ANGLE Unknown or Inconsistent Label .......... M2 O1 M2 O6 PLAT712_ALERT_1_C ANGLE Unknown or Inconsistent Label .......... M2 O3 M2 O4 PLAT712_ALERT_1_C ANGLE Unknown or Inconsistent Label .......... M2 O3 M2 O5 PLAT712_ALERT_1_C ANGLE Unknown or Inconsistent Label .......... M2 O3 M2 O6 PLAT712_ALERT_1_C ANGLE Unknown or Inconsistent Label .......... M2 O4 M2 O5 PLAT712_ALERT_1_C ANGLE Unknown or Inconsistent Label .......... M2 O4 M2 O6 PLAT712_ALERT_1_C ANGLE Unknown or Inconsistent Label .......... M2 O5 M2 O6 PLAT712_ALERT_1_C ANGLE Unknown or Inconsistent Label .......... M3 O1 M3 O2 PLAT712_ALERT_1_C ANGLE Unknown or Inconsistent Label .......... M3 O1 M3 O3 PLAT712_ALERT_1_C ANGLE Unknown or Inconsistent Label .......... M3 O1 M3 O4 PLAT712_ALERT_1_C ANGLE Unknown or Inconsistent Label .......... M3 O1 M3 O5 PLAT712_ALERT_1_C ANGLE Unknown or Inconsistent Label .......... M3 O1 M3 O6 PLAT712_ALERT_1_C ANGLE Unknown or Inconsistent Label .......... M3 O2 M3 O3 PLAT712_ALERT_1_C ANGLE Unknown or Inconsistent Label .......... M3 O2 M3 O4 PLAT712_ALERT_1_C ANGLE Unknown or Inconsistent Label .......... M3 O2 M3 O5 PLAT712_ALERT_1_C ANGLE Unknown or Inconsistent Label .......... M3 O2 M3 O6 PLAT712_ALERT_1_C ANGLE Unknown or Inconsistent Label .......... M3 O3 M3 O4 PLAT712_ALERT_1_C ANGLE Unknown or Inconsistent Label .......... M3 O3 M3 O5 PLAT712_ALERT_1_C ANGLE Unknown or Inconsistent Label .......... M3 O3 M3 O6 PLAT712_ALERT_1_C ANGLE Unknown or Inconsistent Label .......... M3 O4 M3 O5 PLAT712_ALERT_1_C ANGLE Unknown or Inconsistent Label .......... M3 O4 M3 O6 PLAT712_ALERT_1_C ANGLE Unknown or Inconsistent Label .......... M3 O5 M3 O6
Alert level G FORMU01_ALERT_1_G There is a discrepancy between the atom counts in the _chemical_formula_sum and _chemical_formula_moiety. This is usually due to the moiety formula being in the wrong format. Atom count from _chemical_formula_sum: Cl2 Co3.617 Mg1.383 O12 Te4 Atom count from _chemical_formula_moiety:
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 79 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 75 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The aim of this study was to introduce MgII into the CoII—TeIV—O—Cl system. Some few transition metal oxohalides comprising both TeIV and an alkaline earth element have been described before, e.g. Ba2Cu4Te4O11Cl4 (Feger & Kolis, 1998), Ca2CuTe4O10Cl2 (Takagi & Johnsson, 2005), Sr2Cu2TeO6Br2 (Takagi & Johnsson, 2006) and SrCu2(TeO3)2Cl2 (Takagi et al., 2006). In this communication we report the synthesis and crystal structure of the new compound Co3.6Mg1.4(TeO3)4Cl2 (I). The refinement proved (I) to be isostructural to Co5(TeO3)4X2 (X = Cl, Br) (Becker, Prester, Berger, Johnsson et al., 2007) and Ni5(TeO3)4X2 (Johnsson et al., 2003). The corresponding Se-compounds are, however, not isostructural and the four compounds Co5(SeO3)4X2 and Ni5(SeO3)4X2 (X=Cl, Br) are all triclinic and crystallize in two different structure types (Becker, Prester, Berger, Hui Lin et al., 2007; Jiang & Mao, 2006; Shen et al., 2005).

There are two crystallographic distinct Te positions that both have a TeO3E tetrahedral coordination (E = lone pair electrons of TeIV). The Te(1)O3E tetrahedron is quite regular while the Te(2)O3E tetrahedron is more distorted. Te(1) has a fourth neighbouring oxygen atom located at 2.706 (5) Å, however, a distance that is too long to be considered as belonging to the primary coordination sphere. Geometrically placing the lone pairs under assumption of a Te - E distance (radius) of 1.25 Å (Galy et al., 1975) gives the fractional coordinates for E(1) with x = 0.3149, y = 0.1870, z = 0.2989, and for E(2) with x = 0.2073, y = 0.2878, z = 0.4325, respectively. The metal positions, M, are statistically occupied by Co and Mg. The M(1) and M(3) sites have a distorted MO6 octahedral coordination with M—O distances ranging from 2.019 (3) Å to 2.397 (6) Å). The M(2) site has a MO5Cl distorted octahedral coordination with M—O distances ranging from 2.020 (5) to 2.270 (3) Å, while the M—Cl distance is 2.4616 (16) Å (Table 1).

The structural arrangement of (I) is layered, see Figure 1. The layers extend parallel to (100) and consist of TeO3E, MO6 and MO5Cl polyhedra. The M-polyhedra make up building blocks constituting five MO6 octahedra which, by face sharing, make up a claw-like [M5O16Cl2] unit. These units form layers by corner-sharing to four other such units and by corner- and edge-sharing to the TeO3E tetrahedra. The halides and the electron lone-pairs (E) of TeIV protrude from the layers to the empty space. The closest Te—Cl distance between two layers is 3.184 (2) Å. This distance is substantially shorter than the expected van der Waals distance of 3.81 Å (Bondi, 1964) indicating that there is a stronger interaction between two layers.

The highest fraction of Mg is present at the M(1) and M(3) sites that both coordinate solely to oxygen atoms. The shortest M—M distance between two layers is 5.832 (2) Å, which is slightly longer than in the structure of Co5(TeO3)4Cl2 (5.690 (7) Å).

Related literature top

For isostructural compounds, see: Johnsson et al., 2003; Becker, Prester, Berger, Johnsson et al., 2007; for compounds with the same formula type but different structures, see: Becker, Prester, Berger, Hui Lin et al., 2007; Jiang & Mao, 2006; Shen et al., 2005; for related TeIV containing compounds with transition and alkaline earth metals, see: Feger & Kolis, 1998; Takagi & Johnsson, 2005, 2006; Takagi et al., 2006; for structural peculiarities of TeIV compounds, see: Galy et al. 1975; Bondi, 1964.

Experimental top

Single crystals of compound (I) were synthesized from MgO (Merck, 99.99%), CoCl2 (Aldrich, +97%), CoO (Alfa Aesar, +99%), and TeO2 (ABCR, +99%) in the molar ratio 1:1:1:2. The components were mixed in a mortar and placed in a silica tube (length ~5 cm) which was then evacuated. The sample tube was heated at 920 K for 70 h in a muffle furnace to allow for solid-gas phase reactions. The final non-hygroscopic product consisted of a mixture of a purple powder, a brown powder, and blue transparent prismatic single crystals of (I). Analysis by energy dispersive spectrometry (EDS, LINK AN10000) of the crystal used for the diffraction experiment gave (at-%): 36.3% Te, 33.0% Co, 12.5% Mg, and 18.1% Cl. The Co:Mg ratio was thus found to be 73:27 = 2.7 which is in very good agreement with the composition determined from structure refinement (ratio 2.6).

Refinement top

The initial refinement presumed a structure without incorporation of magnesium and converged with good residuals, but the occupancy and the displacement parameters for the Co positions proved unsatisfactory. Refinement by assuming fully occupied metal sites and allowing for a statistical occupation of Co and Mg showed that the M(1) site is occupied by Mg with approximately 50%, the M(2) site with 13%, and the M(3) site with 32%. The highest peak and the deepest hole in the residual electron density map are 0.89 Å and 0.71 Å, respectively, from Te(1) and Te(2).

Structure description top

The aim of this study was to introduce MgII into the CoII—TeIV—O—Cl system. Some few transition metal oxohalides comprising both TeIV and an alkaline earth element have been described before, e.g. Ba2Cu4Te4O11Cl4 (Feger & Kolis, 1998), Ca2CuTe4O10Cl2 (Takagi & Johnsson, 2005), Sr2Cu2TeO6Br2 (Takagi & Johnsson, 2006) and SrCu2(TeO3)2Cl2 (Takagi et al., 2006). In this communication we report the synthesis and crystal structure of the new compound Co3.6Mg1.4(TeO3)4Cl2 (I). The refinement proved (I) to be isostructural to Co5(TeO3)4X2 (X = Cl, Br) (Becker, Prester, Berger, Johnsson et al., 2007) and Ni5(TeO3)4X2 (Johnsson et al., 2003). The corresponding Se-compounds are, however, not isostructural and the four compounds Co5(SeO3)4X2 and Ni5(SeO3)4X2 (X=Cl, Br) are all triclinic and crystallize in two different structure types (Becker, Prester, Berger, Hui Lin et al., 2007; Jiang & Mao, 2006; Shen et al., 2005).

There are two crystallographic distinct Te positions that both have a TeO3E tetrahedral coordination (E = lone pair electrons of TeIV). The Te(1)O3E tetrahedron is quite regular while the Te(2)O3E tetrahedron is more distorted. Te(1) has a fourth neighbouring oxygen atom located at 2.706 (5) Å, however, a distance that is too long to be considered as belonging to the primary coordination sphere. Geometrically placing the lone pairs under assumption of a Te - E distance (radius) of 1.25 Å (Galy et al., 1975) gives the fractional coordinates for E(1) with x = 0.3149, y = 0.1870, z = 0.2989, and for E(2) with x = 0.2073, y = 0.2878, z = 0.4325, respectively. The metal positions, M, are statistically occupied by Co and Mg. The M(1) and M(3) sites have a distorted MO6 octahedral coordination with M—O distances ranging from 2.019 (3) Å to 2.397 (6) Å). The M(2) site has a MO5Cl distorted octahedral coordination with M—O distances ranging from 2.020 (5) to 2.270 (3) Å, while the M—Cl distance is 2.4616 (16) Å (Table 1).

The structural arrangement of (I) is layered, see Figure 1. The layers extend parallel to (100) and consist of TeO3E, MO6 and MO5Cl polyhedra. The M-polyhedra make up building blocks constituting five MO6 octahedra which, by face sharing, make up a claw-like [M5O16Cl2] unit. These units form layers by corner-sharing to four other such units and by corner- and edge-sharing to the TeO3E tetrahedra. The halides and the electron lone-pairs (E) of TeIV protrude from the layers to the empty space. The closest Te—Cl distance between two layers is 3.184 (2) Å. This distance is substantially shorter than the expected van der Waals distance of 3.81 Å (Bondi, 1964) indicating that there is a stronger interaction between two layers.

The highest fraction of Mg is present at the M(1) and M(3) sites that both coordinate solely to oxygen atoms. The shortest M—M distance between two layers is 5.832 (2) Å, which is slightly longer than in the structure of Co5(TeO3)4Cl2 (5.690 (7) Å).

For isostructural compounds, see: Johnsson et al., 2003; Becker, Prester, Berger, Johnsson et al., 2007; for compounds with the same formula type but different structures, see: Becker, Prester, Berger, Hui Lin et al., 2007; Jiang & Mao, 2006; Shen et al., 2005; for related TeIV containing compounds with transition and alkaline earth metals, see: Feger & Kolis, 1998; Takagi & Johnsson, 2005, 2006; Takagi et al., 2006; for structural peculiarities of TeIV compounds, see: Galy et al. 1975; Bondi, 1964.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: JANA2000 (Petříček et al., 2000); molecular graphics: DIAMOND (Bergerhoff, 1996); software used to prepare material for publication: JANA2000.

Figures top
[Figure 1] Fig. 1. The crystal structure of (I) in projection along [010].
cobalt magnesium dichloride tetrakis[trioxotellurate(IV)] top
Crystal data top
Co3.617Mg1.383Cl2(TeO3)4F(000) = 1809
Mr = 1020.08Dx = 4.832 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -C 2ycCell parameters from 5897 reflections
a = 19.8551 (11) Åθ = 3.9–36.8°
b = 5.2584 (2) ŵ = 12.87 mm1
c = 16.4637 (10) ÅT = 292 K
β = 125.3607 (7)°Prism, blue
V = 1401.81 (13) Å30.11 × 0.10 × 0.08 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur3
diffractometer
3246 independent reflections
Radiation source: fine-focus sealed tube2376 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.056
Detector resolution: 6.7 pixels mm-1θmax = 36.8°, θmin = 4.1°
φ–scanh = 3333
Absorption correction: numerical
[X-RED (Stoe & Cie, 1999) and X-SHAPE (Stoe & Cie, 2001)]
k = 68
Tmin = 0.145, Tmax = 0.220l = 2327
8065 measured reflections
Refinement top
Refinement on F108 parameters
R[F > 3σ(F)] = 0.044Weighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0004F2)
wR(F) = 0.064(Δ/σ)max = 0.018
S = 1.48Δρmax = 3.82 e Å3
3246 reflectionsΔρmin = 3.94 e Å3
Crystal data top
Co3.617Mg1.383Cl2(TeO3)4V = 1401.81 (13) Å3
Mr = 1020.08Z = 4
Monoclinic, C2/cMo Kα radiation
a = 19.8551 (11) ŵ = 12.87 mm1
b = 5.2584 (2) ÅT = 292 K
c = 16.4637 (10) Å0.11 × 0.10 × 0.08 mm
β = 125.3607 (7)°
Data collection top
Oxford Diffraction Xcalibur3
diffractometer
3246 independent reflections
Absorption correction: numerical
[X-RED (Stoe & Cie, 1999) and X-SHAPE (Stoe & Cie, 2001)]
2376 reflections with I > 3σ(I)
Tmin = 0.145, Tmax = 0.220Rint = 0.056
8065 measured reflections
Refinement top
R[F > 3σ(F)] = 0.044108 parameters
wR(F) = 0.064Δρmax = 3.82 e Å3
S = 1.48Δρmin = 3.94 e Å3
3246 reflections
Special details top

Refinement. Single crystal X-ray data was collected on an Oxford Diffraction Xcalibur3 diffractometer using graphite-monochromated Mo Kα radiation, λ = 0.71073 Å. The intensities of the reflections were integrated using the supplied software CrysAlis (Oxford Diffraction, 2006) by the manufacturer. Numerical absorption correction was performed with the programs X-RED (Stoe & Cie, 1999) and X-SHAPE (Stoe & Cie, 2001). The structure was solved by direct methods: SHELXS97 (Sheldrick, 1997) and refined by full matrix least squares on F using the program JANA2000 (Petříček et al., 2000). All atoms including the mixed Co and Mg positions were refined with anisotropic temperature parameters. Molecular graphics were prepared with the program DIAMOND (Brandenburg, 1996).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Te10.37266 (2)0.19170 (7)0.36070 (2)0.01174 (14)
Te20.14654 (2)0.28795 (7)0.37921 (2)0.01156 (13)
Co100.2441 (3)0.250.0193 (7)0.500 (10)
Mg100.244 (3)0.250.0193 (7)0.500 (10)
Co20.09308 (5)0.22203 (15)0.47692 (6)0.0126 (3)0.874 (7)
Mg20.09308 (5)0.22203 (15)0.47692 (6)0.0126 (3)0.126 (7)
Co30.01002 (6)0.22050 (18)0.38052 (6)0.0129 (4)0.685 (8)
Mg30.01002 (6)0.22050 (18)0.38052 (6)0.0129 (4)0.315 (8)
Cl10.25953 (10)0.1767 (3)0.40309 (12)0.0252 (6)
O10.0661 (2)0.5050 (7)0.3715 (3)0.0140 (14)
O20.1135 (3)0.3485 (8)0.2513 (3)0.0199 (17)
O30.0733 (2)0.3903 (7)0.4283 (3)0.0144 (15)
O40.0777 (2)0.0109 (7)0.3549 (3)0.0144 (15)
O50.0432 (2)0.1600 (7)0.3564 (3)0.0142 (15)
O60.0971 (2)0.1415 (8)0.5224 (3)0.0169 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Te10.01354 (16)0.01096 (16)0.01182 (15)0.00027 (11)0.00798 (12)0.00053 (10)
Te20.01231 (15)0.01128 (16)0.01157 (14)0.00008 (11)0.00718 (12)0.00018 (10)
Co10.0244 (9)0.0110 (7)0.0117 (7)00.0041 (6)0
Mg10.0244 (9)0.0110 (7)0.0117 (7)00.0041 (6)0
Co20.0178 (4)0.0093 (4)0.0134 (4)0.0010 (3)0.0107 (3)0.0004 (3)
Mg20.0178 (4)0.0093 (4)0.0134 (4)0.0010 (3)0.0107 (3)0.0004 (3)
Co30.0161 (5)0.0106 (5)0.0149 (4)0.0008 (3)0.0107 (4)0.0006 (3)
Mg30.0161 (5)0.0106 (5)0.0149 (4)0.0008 (3)0.0107 (4)0.0006 (3)
Cl10.0197 (6)0.0307 (8)0.0244 (7)0.0018 (6)0.0122 (5)0.0025 (6)
O10.0169 (17)0.0094 (16)0.0149 (15)0.0027 (14)0.0088 (13)0.0015 (13)
O20.025 (2)0.0213 (19)0.0144 (16)0.0048 (17)0.0123 (15)0.0025 (15)
O30.0213 (18)0.0119 (16)0.0154 (15)0.0028 (15)0.0136 (14)0.0039 (13)
O40.0169 (17)0.0123 (16)0.0173 (16)0.0040 (14)0.0118 (14)0.0029 (13)
O50.0154 (17)0.0096 (16)0.0200 (17)0.0001 (14)0.0116 (14)0.0015 (13)
O60.0240 (19)0.0121 (16)0.0156 (16)0.0012 (16)0.0120 (15)0.0002 (14)
Geometric parameters (Å, º) top
Te1—O2i2.706 (5)M2—Mg32.8920 (7)
Te1—O3ii1.876 (4)M2—Cl1viii2.4616 (16)
Te1—O5iii1.881 (5)M2—O1v2.069 (4)
Te1—O6iv1.870 (4)M2—O3ix2.020 (5)
Te2—O11.907 (5)M2—O42.218 (5)
Te2—O21.834 (5)M2—O52.270 (3)
Te2—O41.876 (4)M2—O62.037 (4)
M1—O1v2.104 (4)M3—O12.191 (5)
M1—O1vi2.104 (4)M3—O2vii2.056 (3)
M1—O42.019 (3)M3—O32.035 (5)
M1—O4vii2.019 (3)M3—O42.296 (5)
M1—O52.397 (6)M3—O52.072 (4)
M1—O5vii2.397 (6)M3—O62.098 (3)
M2—M32.8920 (12)
O2i—Te1—O3ii65.95 (16)Cl1viii—M2—O4108.86 (13)
O2i—Te1—O5iii78.97 (17)Cl1viii—M2—O5174.24 (13)
O2i—Te1—O6iv156.31 (14)Cl1viii—M2—O697.62 (11)
O3ii—Te1—O5iii99.06 (19)O1v—M2—O3ix105.78 (17)
O3ii—Te1—O6iv93.00 (17)O1v—M2—O477.91 (16)
O5iii—Te1—O6iv94.6 (2)O1v—M2—O576.57 (16)
O1—Te2—O295.2 (2)O1v—M2—O6153.49 (16)
O1—Te2—O488.37 (19)O3ix—M2—O4162.76 (17)
O2—Te2—O499.07 (18)O3ix—M2—O594.10 (17)
O1v—M1—O1vi102.34 (15)O3ix—M2—O696.4 (2)
O1v—M1—O481.71 (14)O4—M2—O570.09 (17)
O1v—M1—O4vii167.7 (2)O4—M2—O676.70 (17)
O1v—M1—O573.18 (17)O5—M2—O687.68 (14)
O1v—M1—O5vii121.38 (17)O1—M3—O2vii90.70 (17)
O1vi—M1—O1v102.34 (15)O1—M3—O3109.33 (18)
O1vi—M1—O4167.7 (2)O1—M3—O471.91 (16)
O1vi—M1—O4vii81.71 (14)O1—M3—O5143.3 (2)
O1vi—M1—O5121.38 (17)O1—M3—O685.17 (16)
O1vi—M1—O5vii73.18 (17)O2vii—M3—O378.53 (19)
O4—M1—O4vii96.75 (15)O2vii—M3—O4111.34 (19)
O4—M1—O570.82 (18)O2vii—M3—O595.80 (15)
O4—M1—O5vii94.78 (18)O2vii—M3—O6172.04 (17)
O4vii—M1—O496.75 (15)O3—M3—O4170.13 (13)
O4vii—M1—O594.78 (18)O3—M3—O5107.4 (2)
O4vii—M1—O5vii70.82 (18)O3—M3—O696.41 (18)
O5—M1—O5vii158.73 (15)O4—M3—O572.10 (18)
O5vii—M1—O5158.73 (15)O4—M3—O673.83 (17)
Cl1viii—M2—O1v97.67 (12)O5—M3—O691.56 (14)
Cl1viii—M2—O3ix87.56 (12)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y1/2, z; (iii) x+1/2, y+1/2, z; (iv) x+1/2, y+1/2, z+1; (v) x, y1, z; (vi) x, y1, z+1/2; (vii) x, y, z+1/2; (viii) x+1/2, y1/2, z+1; (ix) x, y, z+1.

Experimental details

Crystal data
Chemical formulaCo3.617Mg1.383Cl2(TeO3)4
Mr1020.08
Crystal system, space groupMonoclinic, C2/c
Temperature (K)292
a, b, c (Å)19.8551 (11), 5.2584 (2), 16.4637 (10)
β (°) 125.3607 (7)
V3)1401.81 (13)
Z4
Radiation typeMo Kα
µ (mm1)12.87
Crystal size (mm)0.11 × 0.10 × 0.08
Data collection
DiffractometerOxford Diffraction Xcalibur3
Absorption correctionNumerical
[X-RED (Stoe & Cie, 1999) and X-SHAPE (Stoe & Cie, 2001)]
Tmin, Tmax0.145, 0.220
No. of measured, independent and
observed [I > 3σ(I)] reflections
8065, 3246, 2376
Rint0.056
(sin θ/λ)max1)0.843
Refinement
R[F > 3σ(F)], wR(F), S 0.044, 0.064, 1.48
No. of reflections3246
No. of parameters108
No. of restraints?
Δρmax, Δρmin (e Å3)3.82, 3.94

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), CrysAlis RED, SHELXS97 (Sheldrick, 1997), JANA2000 (Petříček et al., 2000), DIAMOND (Bergerhoff, 1996), JANA2000.

Selected bond lengths (Å) top
Te1—O3i1.876 (4)M2—Cl1vii2.4616 (16)
Te1—O5ii1.881 (5)M2—O1iv2.069 (4)
Te1—O6iii1.870 (4)M2—O3viii2.020 (5)
Te2—O11.907 (5)M2—O42.218 (5)
Te2—O21.834 (5)M2—O52.270 (3)
Te2—O41.876 (4)M2—O62.037 (4)
M1—O1iv2.104 (4)M3—O12.191 (5)
M1—O1v2.104 (4)M3—O2vi2.056 (3)
M1—O42.019 (3)M3—O32.035 (5)
M1—O4vi2.019 (3)M3—O42.296 (5)
M1—O52.397 (6)M3—O52.072 (4)
M1—O5vi2.397 (6)M3—O62.098 (3)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+1/2, y+1/2, z; (iii) x+1/2, y+1/2, z+1; (iv) x, y1, z; (v) x, y1, z+1/2; (vi) x, y, z+1/2; (vii) x+1/2, y1/2, z+1; (viii) x, y, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds