Download citation
Download citation
link to html
Dirubidium titanium yttrium triphosphate belongs to the langbeinite structure type with a framework of MO6 octa­hedra (M = Ti, Y) sharing corners with PO4 tetra­hedra and vice versa, creating cages in which the Rb+ cations are located. The compound exhibits mixed Ti/Y populations in the two crystallographically independent octa­hedral sites of symmetry 3. More than two-thirds of the yttrium is found in one site and the remaining amount in the other; this is caused by the difference in coordination for the two sites.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536806021635/wm2016sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536806021635/wm2016Isup2.hkl
Contains datablock I

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](P-O) = 0.005 Å
  • Disorder in main residue
  • R factor = 0.033
  • wR factor = 0.079
  • Data-to-parameter ratio = 20.9

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT112_ALERT_2_B ADDSYM Detects Additional (Pseudo) Symm. Elem... -4 PLAT112_ALERT_2_B ADDSYM Detects Additional (Pseudo) Symm. Elem... -4 PLAT112_ALERT_2_B ADDSYM Detects Additional (Pseudo) Symm. Elem... -4
Alert level C PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for O2 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for O3 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for P PLAT301_ALERT_3_C Main Residue Disorder ......................... 11.00 Perc.
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 31.89 From the CIF: _reflns_number_total 1254 Count of symmetry unique reflns 709 Completeness (_total/calc) 176.87% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 545 Fraction of Friedel pairs measured 0.769 Are heavy atom types Z>Si present yes
0 ALERT level A = In general: serious problem 3 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 6 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997), DIAMOND (Brandenburg, 2004) and POV-RAY (Persistence of Vision Raytracer Pty. Ltd., 2004); software used to prepare material for publication: WinGX (Farrugia, 1999).

Dirubidium titanium yttrium tris(phosphate) top
Crystal data top
Rb2TiY(PO4)3Dx = 3.637 Mg m3
Mr = 592.66Mo Kα radiation, λ = 0.71073 Å
Cubic, P213Cell parameters from 14 reflections
Hall symbol: P 2ac 2ab 3θ = 25.0–31.6°
a = 10.2674 (4) ŵ = 15.51 mm1
V = 1082.38 (7) Å3T = 296 K
Z = 4Tetrahedron, colourless
F(000) = 11040.25 × 0.25 × 0.25 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.062
ω–2θ scansθmax = 31.9°, θmin = 3.4°
Absorption correction: analytical
(Alcock, 1970)
h = 015
Tmin = 0.837, Tmax = 0.867k = 015
4075 measured reflectionsl = 1515
1254 independent reflections2 standard reflections every 120 min
1091 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F28 constraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.04P)2 + 1.5P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.033(Δ/σ)max < 0.001
wR(F2) = 0.079Δρmax = 0.61 e Å3
S = 1.06Δρmin = 0.83 e Å3
1254 reflectionsAbsolute structure: Flack (1983), 539 Friedel pairs
60 parametersAbsolute structure parameter: 0.012 (14)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Constraints used during the refinement:

Equal Atomic Displacements parameters Ti1 Y1 Equal Atomic Displacements parameters Ti2 Y2 Equal Atomic coordinates Ti1 Y1 Equal Atomic coordinates Ti2 Y2 Occupancy of Ti1+Y1 = 1.0 Occupancy of Ti2+Y2 = 1.0

Restraints used: Occupancy Ti1 + Ti2 = 1.0

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Rb10.42927 (5)0.57073 (5)1.07073 (5)0.02301 (18)
Rb20.20746 (5)0.79254 (5)1.29254 (5)0.0270 (2)
Y10.08281 (4)0.58281 (4)0.91719 (4)0.00932 (16)0.702 (3)
Ti10.08281 (4)0.58281 (4)0.91719 (4)0.00932 (16)0.298 (3)
Y20.35274 (6)0.85274 (6)0.64726 (6)0.0123 (2)0.298 (3)
Ti20.35274 (6)0.85274 (6)0.64726 (6)0.0123 (2)0.702 (3)
P0.26279 (13)0.87945 (12)0.95905 (13)0.0196 (2)
O10.3988 (4)0.8521 (5)1.0071 (4)0.0362 (10)
O20.1782 (5)0.7599 (4)0.9800 (5)0.0429 (12)
O30.2651 (5)0.9170 (5)0.8143 (5)0.0398 (11)
O40.2026 (5)0.9918 (5)1.0372 (6)0.0535 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rb10.02301 (18)0.02301 (18)0.02301 (18)0.00196 (17)0.00196 (17)0.00196 (17)
Rb20.0270 (2)0.0270 (2)0.0270 (2)0.00101 (19)0.00101 (19)0.00101 (19)
Y10.00932 (16)0.00932 (16)0.00932 (16)0.00091 (15)0.00091 (15)0.00091 (15)
Ti10.00932 (16)0.00932 (16)0.00932 (16)0.00091 (15)0.00091 (15)0.00091 (15)
Y20.0123 (2)0.0123 (2)0.0123 (2)0.0003 (2)0.0003 (2)0.0003 (2)
Ti20.0123 (2)0.0123 (2)0.0123 (2)0.0003 (2)0.0003 (2)0.0003 (2)
P0.0214 (6)0.0154 (5)0.0219 (6)0.0014 (4)0.0016 (4)0.0029 (4)
O10.033 (2)0.039 (2)0.036 (2)0.0069 (18)0.0112 (17)0.0032 (19)
O20.051 (3)0.033 (2)0.044 (3)0.022 (2)0.008 (2)0.004 (2)
O30.048 (3)0.037 (2)0.034 (2)0.003 (2)0.0113 (19)0.0151 (18)
O40.042 (3)0.035 (3)0.083 (4)0.007 (2)0.005 (3)0.035 (3)
Geometric parameters (Å, º) top
Rb1—O1i2.978 (5)Y1—Rb1xii3.8929 (4)
Rb1—O1ii2.978 (5)Y1—Rb1x3.8929 (4)
Rb1—O12.978 (5)Y1—Rb2x4.5964 (6)
Rb1—O4iii3.084 (5)Y1—Rb2xii4.5964 (6)
Rb1—O4iv3.084 (5)Y2—O4xiii2.036 (4)
Rb1—O4v3.084 (5)Y2—O4xiv2.036 (4)
Rb1—O2iii3.135 (5)Y2—O4xv2.036 (4)
Rb1—O2v3.135 (5)Y2—O3xi2.046 (5)
Rb1—O2iv3.135 (5)Y2—O32.046 (5)
Rb1—O2i3.359 (5)Y2—O3iii2.046 (5)
Rb1—O2ii3.359 (5)Y2—Pxi3.3432 (15)
Rb1—O23.359 (5)Y2—Piii3.3432 (15)
Rb2—O3vi3.004 (5)Y2—P3.3432 (15)
Rb2—O3vii3.004 (5)Y2—Rb1xvi3.8768 (13)
Rb2—O3viii3.004 (5)Y2—Rb2xvii3.9839 (5)
Rb2—O2i3.240 (5)Y2—Rb2xiv3.9839 (5)
Rb2—O2ii3.240 (5)P—O11.508 (4)
Rb2—O23.240 (5)P—O21.520 (4)
Rb2—O4i3.326 (7)P—O41.535 (5)
Rb2—O43.326 (7)P—O31.535 (5)
Rb2—O4ii3.326 (7)P—Rb1x3.4758 (14)
Rb2—O4vi3.473 (7)P—Rb2xiv3.7893 (15)
Rb2—O4viii3.473 (7)O1—Ti1v2.149 (4)
Rb2—O4vii3.473 (7)O1—Y1v2.149 (4)
Y1—O1ix2.149 (4)O2—Rb1x3.135 (5)
Y1—O1ii2.149 (4)O3—Rb2xiv3.004 (5)
Y1—O1x2.149 (4)O4—Ti2vi2.036 (4)
Y1—O22.163 (5)O4—Y2vi2.036 (4)
Y1—O2iii2.163 (5)O4—Rb1x3.084 (5)
Y1—O2xi2.163 (4)O4—Rb2xiv3.473 (7)
O1i—Rb1—O1ii97.70 (12)O3vi—Rb2—O4vi44.63 (12)
O1i—Rb1—O197.70 (12)O3vii—Rb2—O4vi50.33 (13)
O1ii—Rb1—O197.70 (12)O3viii—Rb2—O4vi106.52 (11)
O1i—Rb1—O4iii150.98 (13)O2i—Rb2—O4vi75.66 (13)
O1ii—Rb1—O4iii102.63 (13)O2ii—Rb2—O4vi122.45 (11)
O1—Rb1—O4iii99.82 (14)O2—Rb2—O4vi143.79 (11)
O1i—Rb1—O4iv102.63 (13)O4i—Rb2—O4vi48.39 (16)
O1ii—Rb1—O4iv99.82 (15)O4—Rb2—O4vi100.48 (2)
O1—Rb1—O4iv150.98 (13)O4ii—Rb2—O4vi130.93 (9)
O4iii—Rb1—O4iv53.77 (14)O3vi—Rb2—O4viii50.33 (13)
O1i—Rb1—O4v99.82 (15)O3vii—Rb2—O4viii106.52 (11)
O1ii—Rb1—O4v150.98 (13)O3viii—Rb2—O4viii44.63 (12)
O1—Rb1—O4v102.63 (13)O2i—Rb2—O4viii122.45 (11)
O4iii—Rb1—O4v53.77 (14)O2ii—Rb2—O4viii143.79 (11)
O4iv—Rb1—O4v53.77 (14)O2—Rb2—O4viii75.66 (13)
O1i—Rb1—O2iii158.42 (12)O4i—Rb2—O4viii130.93 (9)
O1ii—Rb1—O2iii60.72 (12)O4—Rb2—O4viii48.39 (16)
O1—Rb1—O2iii85.65 (12)O4ii—Rb2—O4viii100.48 (2)
O4iii—Rb1—O2iii46.70 (12)O4vi—Rb2—O4viii84.31 (12)
O4iv—Rb1—O2iii83.01 (15)O3vi—Rb2—O4vii106.52 (11)
O4v—Rb1—O2iii100.21 (14)O3vii—Rb2—O4vii44.63 (12)
O1i—Rb1—O2v85.65 (12)O3viii—Rb2—O4vii50.33 (13)
O1ii—Rb1—O2v158.42 (12)O2i—Rb2—O4vii143.79 (11)
O1—Rb1—O2v60.72 (12)O2ii—Rb2—O4vii75.66 (13)
O4iii—Rb1—O2v83.01 (15)O2—Rb2—O4vii122.45 (11)
O4iv—Rb1—O2v100.21 (14)O4i—Rb2—O4vii100.48 (3)
O4v—Rb1—O2v46.70 (12)O4—Rb2—O4vii130.93 (9)
O2iii—Rb1—O2v114.14 (7)O4ii—Rb2—O4vii48.39 (16)
O1i—Rb1—O2iv60.72 (12)O4vi—Rb2—O4vii84.31 (12)
O1ii—Rb1—O2iv85.65 (12)O4viii—Rb2—O4vii84.31 (12)
O1—Rb1—O2iv158.42 (12)O1ix—Y1—O1ii93.89 (17)
O4iii—Rb1—O2iv100.21 (14)O1ix—Y1—O1x93.89 (17)
O4iv—Rb1—O2iv46.70 (12)O1ii—Y1—O1x93.89 (17)
O4v—Rb1—O2iv83.01 (15)O1ix—Y1—O2174.29 (19)
O2iii—Rb1—O2iv114.14 (7)O1ii—Y1—O284.32 (19)
O2v—Rb1—O2iv114.14 (7)O1x—Y1—O291.64 (18)
O1i—Rb1—O2i45.41 (11)O1ix—Y1—O2iii84.32 (19)
O1ii—Rb1—O2i112.12 (13)O1ii—Y1—O2iii91.64 (18)
O1—Rb1—O2i53.95 (11)O1x—Y1—O2iii174.29 (19)
O4iii—Rb1—O2i138.06 (15)O2—Y1—O2iii90.31 (18)
O4iv—Rb1—O2i135.97 (15)O1ix—Y1—O2xi91.64 (18)
O4v—Rb1—O2i96.62 (12)O1ii—Y1—O2xi174.29 (19)
O2iii—Rb1—O2i138.82 (9)O1x—Y1—O2xi84.32 (19)
O2v—Rb1—O2i56.24 (17)O2—Y1—O2xi90.31 (18)
O2iv—Rb1—O2i105.000 (13)O2iii—Y1—O2xi90.31 (18)
O1i—Rb1—O2ii53.95 (11)O4xiii—Y2—O4xiv86.5 (2)
O1ii—Rb1—O2ii45.41 (11)O4xiii—Y2—O4xv86.5 (2)
O1—Rb1—O2ii112.12 (13)O4xiv—Y2—O4xv86.5 (2)
O4iii—Rb1—O2ii135.97 (15)O4xiii—Y2—O3xi172.3 (2)
O4iv—Rb1—O2ii96.62 (12)O4xiv—Y2—O3xi86.09 (19)
O4v—Rb1—O2ii138.06 (15)O4xv—Y2—O3xi95.2 (2)
O2iii—Rb1—O2ii105.000 (13)O4xiii—Y2—O386.09 (19)
O2v—Rb1—O2ii138.82 (9)O4xiv—Y2—O395.2 (2)
O2iv—Rb1—O2ii56.24 (17)O4xv—Y2—O3172.3 (2)
O2i—Rb1—O2ii85.95 (12)O3xi—Y2—O392.50 (18)
O1i—Rb1—O2112.12 (13)O4xiii—Y2—O3iii95.2 (2)
O1ii—Rb1—O253.95 (11)O4xiv—Y2—O3iii172.3 (2)
O1—Rb1—O245.41 (11)O4xv—Y2—O3iii86.09 (19)
O4iii—Rb1—O296.62 (12)O3xi—Y2—O3iii92.50 (18)
O4iv—Rb1—O2138.06 (15)O3—Y2—O3iii92.50 (18)
O4v—Rb1—O2135.97 (15)O1—P—O2109.4 (3)
O2iii—Rb1—O256.24 (17)O1—P—O4110.0 (3)
O2v—Rb1—O2105.000 (13)O2—P—O4107.6 (3)
O2iv—Rb1—O2138.82 (9)O1—P—O3110.4 (3)
O2i—Rb1—O285.95 (12)O2—P—O3110.4 (3)
O2ii—Rb1—O285.95 (12)O4—P—O3108.8 (3)
O3vi—Rb2—O3vii91.50 (12)P—O1—Ti1v151.0 (3)
O3vi—Rb2—O3viii91.50 (12)P—O1—Y1v151.0 (3)
O3vii—Rb2—O3viii91.50 (12)P—O1—Rb1110.5 (2)
O3vi—Rb2—O2i79.79 (14)Ti1v—O1—Rb197.47 (15)
O3vii—Rb2—O2i100.68 (12)Y1v—O1—Rb197.47 (15)
O3viii—Rb2—O2i165.13 (13)P—O1—Rb277.95 (19)
O3vi—Rb2—O2ii165.13 (13)Ti1v—O1—Rb2103.84 (15)
O3vii—Rb2—O2ii79.79 (14)Y1v—O1—Rb2103.84 (15)
O3viii—Rb2—O2ii100.68 (12)Rb1—O1—Rb273.28 (10)
O2i—Rb2—O2ii89.94 (14)P—O2—Y1153.6 (3)
O3vi—Rb2—O2100.68 (12)P—O2—Rb1x89.7 (2)
O3vii—Rb2—O2165.13 (13)Y1—O2—Rb1x92.73 (17)
O3viii—Rb2—O279.79 (14)P—O2—Rb290.2 (2)
O2i—Rb2—O289.94 (13)Y1—O2—Rb2115.11 (17)
O2ii—Rb2—O289.94 (14)Rb1x—O2—Rb2100.54 (14)
O3vi—Rb2—O4i82.25 (13)P—O2—Rb193.9 (2)
O3vii—Rb2—O4i56.59 (12)Y1—O2—Rb186.81 (15)
O3viii—Rb2—O4i147.05 (12)Rb1x—O2—Rb1172.95 (16)
O2i—Rb2—O4i44.08 (11)Rb2—O2—Rb173.39 (11)
O2ii—Rb2—O4i82.89 (12)P—O3—Y2137.5 (3)
O2—Rb2—O4i133.15 (12)P—O3—Rb2xiv108.8 (3)
O3vi—Rb2—O456.59 (12)Y2—O3—Rb2xiv102.50 (17)
O3vii—Rb2—O4147.05 (13)P—O4—Ti2vi172.4 (3)
O3viii—Rb2—O482.25 (13)P—O4—Y2vi172.4 (3)
O2i—Rb2—O482.89 (12)P—O4—Rb1x91.3 (2)
O2ii—Rb2—O4133.15 (12)Ti2vi—O4—Rb1x96.25 (18)
O2—Rb2—O444.08 (11)Y2vi—O4—Rb1x96.25 (18)
O4i—Rb2—O4119.18 (2)P—O4—Rb286.8 (2)
O3vi—Rb2—O4ii147.05 (13)Ti2vi—O4—Rb292.8 (2)
O3vii—Rb2—O4ii82.25 (13)Y2vi—O4—Rb292.8 (2)
O3viii—Rb2—O4ii56.59 (12)Rb1x—O4—Rb299.72 (16)
O2i—Rb2—O4ii133.15 (12)P—O4—Rb2xiv89.7 (3)
O2ii—Rb2—O4ii44.08 (11)Ti2vi—O4—Rb2xiv88.62 (19)
O2—Rb2—O4ii82.89 (12)Y2vi—O4—Rb2xiv88.62 (19)
O4i—Rb2—O4ii119.18 (2)Rb1x—O4—Rb2xiv96.60 (16)
O4—Rb2—O4ii119.18 (2)Rb2—O4—Rb2xiv163.36 (17)
Symmetry codes: (i) z+3/2, x+1, y+1/2; (ii) y+1, z1/2, x+3/2; (iii) y1/2, z+3/2, x+1; (iv) z1/2, x+1/2, y+2; (v) x+1/2, y+3/2, z+2; (vi) x+1/2, y+2, z+1/2; (vii) z+1, x+1/2, y+5/2; (viii) y1, z, x+1; (ix) z1, x, y; (x) x1/2, y+3/2, z+2; (xi) z+1, x+1/2, y+3/2; (xii) x+1/2, y+1, z1/2; (xiii) y+3/2, z+2, x+1/2; (xiv) x+1/2, y+2, z1/2; (xv) z+3/2, x+1, y1/2; (xvi) x+1, y+1/2, z+3/2; (xvii) x, y, z1.
Bond distances of Rb2TiY(PO4)3 compared to Rb2TiYb(PO4)3 (Gustafsson et al., 2005) K2TiY(PO4)3 and K2TiYb(PO4)3 (Norberg, 2002) (Å) (M = Y, Yb) top
Rb2TiY(PO4)3Rb2TiYb(PO4)3K2TiY(PO4)3K2TiYb(PO4)3
Rb1/K1—O12.978 (5)2.966 (5)2.886 (17)2.882 (8)
Rb1/K1—O23.359 (5)3.306 (6)--
Rb1/K1—O2ii3.135 (5)3.153 (6)3.146 (19)3.112 (9)
Rb1/K1—O4i3.084 (5)3.064 (5)3.054 (19)3.023 (9)
Rb2/K2—O23.240 (5)3.222 (5)3.246 (17)3.240 (9)
Rb2/K2—O3iii3.004 (5)2.990 (5)2.921 (14)2.902 (7)
Rb2/K2—O43.326 (7)3.305 (6)3.15 (2)3.199 (9)
M1/Ti1—O1iv2.149 (4)2.115 (5)2.100 (15)2.087 (7)
M1/Ti1—O22.163 (5)2.128 (5)2.097 (16)2.085 (8)
M2/Ti2—O32.046 (5)2.019 (6)2.047 (14)2.014 (7)
M2/Ti2—O4v2.036 (4)2.041 (5)2.066 (18)2.030 (8)
Symmetry codes: (i) 1/2+x, 3/2-y, 2-z; (ii) y-1/2, 3/2-z, 1-x; (iii) 1/2-x, 2-y, 1/2+z; (iv) x-1/2, 3/2-y, 2-z; (v) 1/2-x, 2-y, z-1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds