organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Diiso­propyl­ammonium 3,5,6-tri­chloro­pyridin-2-olate

aSchool of Science, Zhejiang Forestry University, Linan, Hangzhou 311300, People's Republic of China, and bState Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
*Correspondence e-mail: zhenghui86@gmail.com

(Received 7 January 2008; accepted 22 January 2008; online 30 January 2008)

In the title salt, C6H16N+·C5HCl3NO, the cation links to the anion, which is almost planar, through an N—H⋯O hydrogen bond. Inter­molecular hydrogen bonds link two cations and two anions into a centrosymmetric cluster. The atoms involved in the hydrogen bonding form a planar octa­gonal arrangement in the crystal structure.

Related literature

For related literature, see: Fox et al. (2002[Fox, A. M., Haller, W. T., Getsinger, K. D. & Petty, D. G. (2002). Pest Manag. Sci. 58, 677-686.]); Baughman (1989[Baughman, R. G. (1989). J. Agric. Food Chem. 37, 1505-1507.]); Fakhraian et al. (2004[Fakhraian, H., Moghimi, A., Ghadiri, H., Dehnavi, M. A. & Sadeghi, M. (2004). Org. Process Res. Dev. 8, 680-684.]); Zheng, Liu, Li et al. (2006[Zheng, H., Liu, Y. K., Li, Y. B., Xiao, L. & Xu, Z. Y. (2006). Chin. J. Pest. Sci. 9, 215-219.]); Zheng, Liu, Xu et al. (2006a[Zheng, H., Liu, Y.-K., Xu, D.-Q. & Xu, Z.-Y. (2006a). Acta Cryst. E62, o1532-o1533.],b[Zheng, H., Liu, Y.-K., Xu, D.-Q. & Xu, Z.-Y. (2006b). Acta Cryst. E62, o3101-o3102.]).

[Scheme 1]

Experimental

Crystal data
  • C6H16N+·C5HCl3NO

  • Mr = 299.63

  • Monoclinic, P 21 /c

  • a = 8.087 (3) Å

  • b = 11.066 (3) Å

  • c = 16.389 (5) Å

  • β = 94.540 (15)°

  • V = 1462.1 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.61 mm−1

  • T = 298 (1) K

  • 0.39 × 0.18 × 0.16 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.794, Tmax = 0.907

  • 14096 measured reflections

  • 3357 independent reflections

  • 2081 reflections with F2 > 2σ(F2)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.081

  • S = 1.04

  • 3357 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H201⋯O1 0.96 1.94 2.8803 (15) 166
N2—H201⋯N1 0.96 2.53 3.2556 (16) 133
N2—H202⋯O1i 0.96 1.85 2.7424 (16) 152
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Version 3.7.0. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. L., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

Many compounds containing the 3,5,6-trichloro-pyridin-2-ol group have potential bioactivity (Fakhraian et al., 2004; Baughman, 1989; Fox et al., 2002). Similar compounds has been synthesized in our laboratory and some bioactive compounds have been found (Zheng et al., 2006). In a continuation of our work into structure–activity relationships (Zheng, Liu, Xu & Xu, 2006a,b), we obtained a colorless crystalline compound, (I), by mixing sodium 3,5,6-trichloropyridin-2-olate with diisopropylammonium chloride, which was crystallized from diethyl ether. In the crystal structure, there are two independent structural units. The diisopropylammonium cation has an N2—C10 distance of 1.5009 (19)Å and a C10—N2—C7 angle of 117.47 (11)° (Table 1). The 3,5,6-trichloropyridin-2-olate anion has a C1—O1 distance of 1.2716 (18) Å, which is shorter than normal C—O distance for a smallar covalent radius with Csp2. The interesting feature of the crystal structure is the intermolecular hydrogen bonds N2—H201···O1 and N2—H202···O1i, which link two cations and two anions into a centrosymmetric cluster and form a planar octagon (Table 2 and Fig. 1).

Related literature top

For related literature, see: Fox et al. (2002); Baughman (1989); Fakhraian et al. (2004); Zheng et al. (2006); Zheng et al. (2006a,b).

Experimental top

Sodium 3,5,6-trichloropyridin-2-olate (2.2 g, 10 mmol) was dissolved in the distilled water (30 ml) at 370 K, cooled to room temperature, and diisopropylammonium chloride, which was generated from diisopropylamine (1.8 ml, 12 mmol) with HCl (36%) (2 ml), was added dropwise with stirring for 0.5 h. The solution was extracted with diethyl ether 2 × 15 ml. and dried over anhydrous magnesium sulfate. Suitable crystals (m.p. 442–443 K) were obtained from a diethyl ether solution.

Refinement top

All H atoms were placed in calculated positions, with C—H distances in the range 0.93–0.98 Å and N—H distance of 0.96 Å. All H atoms were refined using a riding model, with Uiso(H)= 1.2Ueq.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: CRYSTALS (Watkin et al., 1996); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2004).

Figures top
[Figure 1] Fig. 1. The centrosymmetric hydrogen-bonded (dashed lines) cluster in (I), showing the atom-numbering scheme and 40% probability displacement ellipsoids. [Symmetry code: (i) -x + 1, -y + 1, -z + 1.]
Diisopropylammonium 3,5,6-trichloropyridin-2-olate top
Crystal data top
C6H16N+·C5HCl3NOF(000) = 624.00
Mr = 299.63Dx = 1.361 Mg m3
Monoclinic, P21/cMelting point: 443 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71075 Å
a = 8.087 (3) ÅCell parameters from 10937 reflections
b = 11.066 (3) Åθ = 3.1–27.5°
c = 16.389 (5) ŵ = 0.61 mm1
β = 94.540 (15)°T = 298 K
V = 1462.1 (8) Å3Block, colorless
Z = 40.39 × 0.18 × 0.16 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2081 reflections with F2 > 2σ(F2)
Detector resolution: 10.00 pixels mm-1Rint = 0.027
ω scansθmax = 27.5°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 910
Tmin = 0.794, Tmax = 0.907k = 1414
14096 measured reflectionsl = 2121
3357 independent reflections
Refinement top
Refinement on F2 w = 1/[0.0002Fo2 + σ(Fo2)]/(4Fo2)
R[F2 > 2σ(F2)] = 0.035(Δ/σ)max < 0.001
wR(F2) = 0.081Δρmax = 0.29 e Å3
S = 1.05Δρmin = 0.31 e Å3
3357 reflectionsExtinction correction: Larson (1970), equation 22
155 parametersExtinction coefficient: 143 (15)
H-atom parameters constrained
Crystal data top
C6H16N+·C5HCl3NOV = 1462.1 (8) Å3
Mr = 299.63Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.087 (3) ŵ = 0.61 mm1
b = 11.066 (3) ÅT = 298 K
c = 16.389 (5) Å0.39 × 0.18 × 0.16 mm
β = 94.540 (15)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3357 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2081 reflections with F2 > 2σ(F2)
Tmin = 0.794, Tmax = 0.907Rint = 0.027
14096 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035155 parameters
wR(F2) = 0.081H-atom parameters constrained
S = 1.05Δρmax = 0.29 e Å3
3357 reflectionsΔρmin = 0.31 e Å3
Special details top

Refinement. Refinement using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.39967 (6)0.13293 (4)0.40436 (3)0.08518 (18)
Cl20.05102 (6)0.02373 (5)0.65045 (3)0.08680 (17)
Cl30.06254 (8)0.24633 (5)0.71793 (4)0.1034 (2)
O10.36820 (13)0.36964 (9)0.49068 (6)0.0604 (3)
N10.22849 (16)0.29782 (11)0.59411 (9)0.0566 (4)
N20.37423 (14)0.57219 (10)0.60126 (6)0.0469 (3)
C10.30288 (18)0.28003 (12)0.52456 (10)0.0498 (4)
C20.30287 (19)0.16000 (13)0.49307 (10)0.0529 (4)
C30.2269 (2)0.06825 (13)0.53135 (11)0.0595 (5)
C40.1497 (2)0.09140 (13)0.60194 (10)0.0573 (4)
C50.1557 (2)0.20776 (14)0.62985 (10)0.0573 (5)
C60.5796 (2)0.46023 (17)0.68652 (12)0.0771 (6)
C70.4207 (2)0.53190 (13)0.68790 (9)0.0561 (4)
C80.4384 (2)0.63777 (17)0.74638 (11)0.0780 (6)
C90.0708 (2)0.58893 (18)0.60955 (12)0.0764 (6)
C100.2255 (2)0.65272 (13)0.58681 (10)0.0570 (4)
C110.2132 (2)0.69139 (17)0.49810 (11)0.0742 (6)
H30.22740.00970.51010.071*
H70.33330.47840.70510.067*
H100.24330.72450.62140.068*
H610.66350.51110.66640.091*
H620.56250.39110.65150.092*
H630.61460.43400.74100.092*
H810.33470.68000.74660.093*
H820.47130.60940.80060.093*
H830.52160.69140.72860.093*
H910.02340.64090.59880.093*
H920.05570.51670.57740.092*
H930.08190.56810.66660.093*
H1110.19260.62140.46420.088*
H1120.31520.72870.48540.088*
H1130.12370.74790.48830.088*
H2010.35490.50150.56800.056*
H2020.46890.61250.58200.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1051 (4)0.0724 (3)0.0820 (3)0.0167 (2)0.0323 (2)0.0223 (2)
Cl20.1076 (4)0.0690 (3)0.0828 (3)0.0353 (2)0.0014 (2)0.0219 (2)
Cl30.1362 (5)0.0953 (4)0.0860 (4)0.0262 (3)0.0534 (3)0.0126 (2)
O10.0653 (7)0.0426 (5)0.0749 (7)0.0111 (5)0.0165 (5)0.0024 (5)
N10.0615 (8)0.0436 (7)0.0654 (9)0.0082 (6)0.0109 (6)0.0044 (6)
N20.0512 (7)0.0390 (6)0.0509 (7)0.0053 (5)0.0052 (5)0.0037 (5)
C10.0464 (8)0.0419 (8)0.0603 (10)0.0055 (6)0.0003 (7)0.0006 (7)
C20.0559 (9)0.0458 (8)0.0570 (9)0.0060 (7)0.0036 (7)0.0039 (7)
C30.0691 (10)0.0399 (8)0.0675 (11)0.0095 (7)0.0064 (8)0.0031 (7)
C40.0622 (10)0.0498 (9)0.0582 (10)0.0147 (7)0.0059 (8)0.0108 (8)
C50.0611 (10)0.0559 (9)0.0552 (10)0.0084 (8)0.0063 (8)0.0022 (7)
C60.0878 (13)0.0710 (11)0.0703 (12)0.0083 (10)0.0086 (10)0.0142 (10)
C70.0666 (10)0.0507 (8)0.0511 (9)0.0089 (7)0.0052 (7)0.0077 (7)
C80.1041 (15)0.0719 (12)0.0562 (10)0.0103 (10)0.0058 (10)0.0070 (9)
C90.0577 (11)0.0899 (13)0.0834 (13)0.0033 (9)0.0158 (9)0.0142 (11)
C100.0581 (9)0.0469 (8)0.0652 (10)0.0045 (7)0.0003 (8)0.0107 (7)
C110.0690 (12)0.0679 (11)0.0833 (13)0.0045 (9)0.0092 (10)0.0105 (10)
Geometric parameters (Å, º) top
Cl1—C21.7310 (17)C6—H620.960
Cl2—C41.7297 (17)C6—H630.960
Cl3—C51.7337 (18)C7—C81.513 (2)
O1—C11.2716 (18)C7—H70.980
N1—C11.345 (2)C8—H810.960
N1—C51.318 (2)C8—H820.960
N2—C71.5072 (18)C8—H830.960
N2—C101.5009 (19)C9—C101.508 (2)
N2—H2010.959C9—H910.960
N2—H2020.961C9—H920.960
C1—C21.425 (2)C9—H930.960
C2—C31.365 (2)C10—C111.511 (2)
C3—C41.382 (2)C10—H100.980
C3—H30.930C11—H1110.960
C4—C51.366 (2)C11—H1120.960
C6—C71.512 (2)C11—H1130.960
C6—H610.960
C1—N1—C5120.76 (13)N2—C7—C8111.82 (12)
C7—N2—C10117.47 (11)N2—C7—H7108.5
C7—N2—H201108.2C6—C7—C8112.20 (14)
C7—N2—H202107.5C6—C7—H7108.7
C10—N2—H201107.6C8—C7—H7108.6
C10—N2—H202108.8C7—C8—H81109.9
H201—N2—H202106.8C7—C8—H82109.8
O1—C1—N1119.02 (13)C7—C8—H83108.7
O1—C1—C2123.84 (14)H81—C8—H82109.5
N1—C1—C2117.14 (13)H81—C8—H83109.5
Cl1—C2—C1118.58 (12)H82—C8—H83109.5
Cl1—C2—C3120.48 (12)C10—C9—H91109.7
C1—C2—C3120.93 (15)C10—C9—H92109.0
C2—C3—C4119.79 (14)C10—C9—H93109.7
C2—C3—H3120.1H91—C9—H92109.5
C4—C3—H3120.1H91—C9—H93109.5
Cl2—C4—C3120.26 (12)H92—C9—H93109.5
Cl2—C4—C5123.09 (13)N2—C10—C9110.68 (12)
C3—C4—C5116.66 (14)N2—C10—C11108.09 (13)
Cl3—C5—N1115.00 (12)N2—C10—H10108.1
Cl3—C5—C4120.30 (13)C9—C10—C11112.20 (14)
N1—C5—C4124.70 (15)C9—C10—H10108.9
C7—C6—H61108.8C11—C10—H10108.8
C7—C6—H62110.2C10—C11—H111108.9
C7—C6—H63109.4C10—C11—H112109.8
H61—C6—H62109.5C10—C11—H113109.7
H61—C6—H63109.5H111—C11—H112109.5
H62—C6—H63109.5H111—C11—H113109.5
N2—C7—C6106.86 (13)H112—C11—H113109.5
C1—N1—C5—Cl3178.90 (11)N1—C1—C2—Cl1179.19 (11)
C1—N1—C5—C40.7 (2)N1—C1—C2—C31.5 (2)
C5—N1—C1—O1178.24 (13)Cl1—C2—C3—C4179.77 (12)
C5—N1—C1—C21.6 (2)C1—C2—C3—C40.4 (2)
C7—N2—C10—C962.42 (16)C2—C3—C4—Cl2179.30 (12)
C7—N2—C10—C11174.34 (12)C2—C3—C4—C50.5 (2)
C10—N2—C7—C6176.04 (12)Cl2—C4—C5—Cl30.2 (2)
C10—N2—C7—C852.90 (18)Cl2—C4—C5—N1179.41 (12)
O1—C1—C2—Cl11.0 (2)C3—C4—C5—Cl3179.98 (9)
O1—C1—C2—C3178.36 (14)C3—C4—C5—N10.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H201···O10.961.942.8803 (15)166
N2—H201···N10.962.533.2556 (16)133
N2—H202···O1i0.961.862.7424 (16)152
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC6H16N+·C5HCl3NO
Mr299.63
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)8.087 (3), 11.066 (3), 16.389 (5)
β (°) 94.540 (15)
V3)1462.1 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.61
Crystal size (mm)0.39 × 0.18 × 0.16
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.794, 0.907
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
14096, 3357, 2081
Rint0.027
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.081, 1.05
No. of reflections3357
No. of parameters155
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.31

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SIR97 (Altomare et al., 1999), CRYSTALS (Watkin et al., 1996), ORTEP-3 for Windows (Farrugia, 1997).

Selected geometric parameters (Å, º) top
Cl1—C21.7310 (17)N2—C71.5072 (18)
O1—C11.2716 (18)N2—C101.5009 (19)
C7—N2—C10117.47 (11)Cl2—C4—C3120.26 (12)
O1—C1—N1119.02 (13)Cl3—C5—N1115.00 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H201···O10.9591.9412.8803 (15)165.7
N2—H201···N10.9592.5263.2556 (16)132.9
N2—H202···O1i0.9611.8552.7424 (16)152.3
Symmetry code: (i) x+1, y+1, z+1.
 

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBaughman, R. G. (1989). J. Agric. Food Chem. 37, 1505–1507.  CrossRef CAS Web of Science Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. L., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationFakhraian, H., Moghimi, A., Ghadiri, H., Dehnavi, M. A. & Sadeghi, M. (2004). Org. Process Res. Dev. 8, 680–684.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFox, A. M., Haller, W. T., Getsinger, K. D. & Petty, D. G. (2002). Pest Manag. Sci. 58, 677–686.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Version 3.7.0. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationZheng, H., Liu, Y. K., Li, Y. B., Xiao, L. & Xu, Z. Y. (2006). Chin. J. Pest. Sci. 9, 215–219.  Google Scholar
First citationZheng, H., Liu, Y.-K., Xu, D.-Q. & Xu, Z.-Y. (2006a). Acta Cryst. E62, o1532–o1533.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZheng, H., Liu, Y.-K., Xu, D.-Q. & Xu, Z.-Y. (2006b). Acta Cryst. E62, o3101–o3102.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds