Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the crystal structure of the title compound, C10H14N2O2S·H2O, there are inter­molecular O—H...O and N—H...O hydrogen bonds between the hydrazide O and N atoms and the water H atoms. These help to stabilize the structure and link the mol­ecules to form a two-dimensional grid.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807028498/wk2059sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807028498/wk2059Isup2.hkl
Contains datablock I

CCDC reference: 654967

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.044
  • wR factor = 0.123
  • Data-to-parameter ratio = 14.7

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.98
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

A number of thiophene derivatives have been widely investigated in chemistry due to their wide range of medicinal applications. (Xiao et al., 2004).

The molecular structure of the compound is illustrated in Figure 1 and selected bond distances and angles are given in Table 1. The bond distances are consistent with conjugation in the molecule.

The atoms C(1) C(2) C(3) C(4) S(1) C(5) O(1) lie in a plane with a r.m.s. deviation from planarity of 0.0340 Å. The atoms of N(1) N(2) C(6) O(2) are also in a plane, with 0.0124 Å) of r.m.s deviation and forms an angle of 78.95 (6)° to the previous plane.

N—H···O, O—H···O intermolecular hydrogen bonds in the compound lead to a two-dimensional grid structure (shown in Figure 2) and detailed in Table 2. Atom O3 is involved as a acceptor in four intermolecular hydrogen bonds (Figure 2).

Related literature top

For related literature, see: Wu et al. (2004); Xiao & Wang (2004).

Experimental top

The compound was synthesized according to the method of Wu et al. (2004). The white powder of N,N'-thienylhydrazide (1 mmol) and the Isovaleric anhydride (1 mmol) were dissolved in ethanol, stirred in an ice bath for 15 min. Transparent colourless crystals of (I) grew from the mother liquor by slow evaporation at room temperature after one week.

Refinement top

The C-bound H atoms were included in the riding model approximation with C—H = 0.93 Å. all these H atoms included in the final refinement. The positions of the water O-bound H atoms were located from a difference Fourier map and fixed.

Structure description top

A number of thiophene derivatives have been widely investigated in chemistry due to their wide range of medicinal applications. (Xiao et al., 2004).

The molecular structure of the compound is illustrated in Figure 1 and selected bond distances and angles are given in Table 1. The bond distances are consistent with conjugation in the molecule.

The atoms C(1) C(2) C(3) C(4) S(1) C(5) O(1) lie in a plane with a r.m.s. deviation from planarity of 0.0340 Å. The atoms of N(1) N(2) C(6) O(2) are also in a plane, with 0.0124 Å) of r.m.s deviation and forms an angle of 78.95 (6)° to the previous plane.

N—H···O, O—H···O intermolecular hydrogen bonds in the compound lead to a two-dimensional grid structure (shown in Figure 2) and detailed in Table 2. Atom O3 is involved as a acceptor in four intermolecular hydrogen bonds (Figure 2).

For related literature, see: Wu et al. (2004); Xiao & Wang (2004).

Computing details top

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 2000); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme, with 30% displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of (I), showing hydrogen bonds as dashed lines.
3-Methyl-N'-(2-thienylcarboxyl)butyrohydrazide top
Crystal data top
C10H14N2O2S·H2OF(000) = 520
Mr = 244.31Dx = 1.305 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2785 reflections
a = 6.5648 (5) Åθ = 2.8–27.5°
b = 7.3451 (7) ŵ = 0.26 mm1
c = 25.956 (2) ÅT = 293 K
β = 96.387 (4)°Prism, white
V = 1243.81 (18) Å30.60 × 0.30 × 0.10 mm
Z = 4
Data collection top
Rigaku Mercury70 (2x2 bin mode)
diffractometer
2849 independent reflections
Radiation source: Sealed Tube2423 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 14.6306 pixels mm-1θmax = 27.5°, θmin = 2.9°
CCD_Profile_fitting scansh = 88
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2000)
k = 99
Tmin = 0.801, Tmax = 1.000l = 3314
8853 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0607P)2 + 0.5306P]
where P = (Fo2 + 2Fc2)/3
2849 reflections(Δ/σ)max = 0.006
194 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C10H14N2O2S·H2OV = 1243.81 (18) Å3
Mr = 244.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.5648 (5) ŵ = 0.26 mm1
b = 7.3451 (7) ÅT = 293 K
c = 25.956 (2) Å0.60 × 0.30 × 0.10 mm
β = 96.387 (4)°
Data collection top
Rigaku Mercury70 (2x2 bin mode)
diffractometer
2849 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2000)
2423 reflections with I > 2σ(I)
Tmin = 0.801, Tmax = 1.000Rint = 0.021
8853 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.40 e Å3
2849 reflectionsΔρmin = 0.29 e Å3
194 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.81975 (8)0.28733 (9)0.210206 (18)0.0589 (2)
N10.8807 (2)0.15490 (19)0.06560 (5)0.0356 (3)
H1A1.01160.14230.06820.043*
N20.7661 (2)0.14048 (19)0.01749 (5)0.0358 (3)
H2B0.72930.03530.00520.043*
O10.59982 (18)0.1910 (2)0.10851 (5)0.0484 (3)
O20.7541 (2)0.44417 (16)0.00794 (5)0.0480 (3)
C10.9259 (2)0.2181 (2)0.15619 (6)0.0351 (3)
C21.1373 (3)0.2035 (2)0.16588 (6)0.0409 (4)
H2A1.22290.16780.14150.049*
C31.2057 (3)0.2505 (3)0.21810 (8)0.0549 (5)
C41.0527 (4)0.2977 (3)0.24551 (8)0.0613 (6)
C50.7868 (2)0.1886 (2)0.10829 (6)0.0331 (3)
C60.7127 (2)0.2931 (2)0.01001 (6)0.0348 (3)
C70.5979 (3)0.2597 (3)0.06275 (7)0.0429 (4)
C80.6887 (3)0.3566 (3)0.10687 (7)0.0471 (4)
O30.27168 (19)0.21322 (16)0.03360 (5)0.0376 (3)
C90.9125 (4)0.3120 (4)0.10852 (10)0.0646 (6)
H9A0.960 (5)0.370 (4)0.1390 (12)0.095 (9)*
H9B0.924 (6)0.192 (5)0.1161 (14)0.114*
H9C1.004 (5)0.348 (5)0.0758 (14)0.114*
C100.5614 (5)0.3099 (4)0.15790 (9)0.0717 (7)
H3A1.349 (4)0.253 (3)0.2300 (10)0.064 (7)*
H4A1.060 (4)0.340 (4)0.2795 (11)0.082 (8)*
H7A0.591 (3)0.127 (4)0.0702 (9)0.065 (7)*
H7B0.467 (5)0.303 (4)0.0612 (11)0.085 (9)*
H8A0.680 (3)0.493 (3)0.1014 (9)0.068 (7)*
H10A0.566 (4)0.174 (4)0.1630 (11)0.081*
H10B0.426 (5)0.344 (4)0.1543 (12)0.093 (10)*
H10C0.615 (5)0.375 (4)0.1879 (12)0.096 (9)*
H30.375 (4)0.210 (3)0.0532 (10)0.054 (7)*
H40.261 (4)0.327 (3)0.0205 (10)0.064 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0568 (3)0.0872 (4)0.0332 (3)0.0112 (3)0.0069 (2)0.0078 (2)
N10.0335 (6)0.0469 (7)0.0256 (6)0.0043 (6)0.0004 (5)0.0002 (6)
N20.0428 (7)0.0371 (7)0.0262 (6)0.0009 (6)0.0025 (5)0.0018 (5)
O10.0340 (6)0.0745 (9)0.0364 (6)0.0005 (6)0.0022 (5)0.0027 (6)
O20.0644 (8)0.0380 (6)0.0392 (6)0.0027 (6)0.0043 (6)0.0000 (5)
C10.0401 (8)0.0401 (8)0.0248 (7)0.0004 (6)0.0027 (6)0.0027 (6)
C20.0392 (9)0.0543 (10)0.0282 (8)0.0023 (7)0.0002 (6)0.0034 (7)
C30.0506 (11)0.0732 (13)0.0378 (10)0.0087 (10)0.0098 (8)0.0061 (9)
C40.0738 (15)0.0779 (15)0.0300 (9)0.0049 (11)0.0045 (9)0.0052 (9)
C50.0347 (8)0.0351 (7)0.0289 (7)0.0010 (6)0.0017 (6)0.0025 (6)
C60.0366 (8)0.0415 (8)0.0263 (7)0.0013 (6)0.0031 (6)0.0008 (6)
C70.0453 (10)0.0540 (10)0.0277 (8)0.0046 (8)0.0028 (7)0.0016 (7)
C80.0697 (12)0.0411 (9)0.0301 (8)0.0038 (8)0.0039 (8)0.0010 (7)
O30.0354 (6)0.0389 (6)0.0378 (6)0.0016 (5)0.0009 (5)0.0010 (5)
C90.0687 (14)0.0740 (15)0.0538 (13)0.0077 (12)0.0191 (11)0.0054 (12)
C100.093 (2)0.0873 (18)0.0314 (10)0.0056 (15)0.0071 (11)0.0036 (11)
Geometric parameters (Å, º) top
S1—C41.695 (2)C6—C71.507 (2)
S1—C11.7110 (16)C7—C81.525 (3)
N1—C51.349 (2)C7—H7A0.99 (3)
N1—N21.3883 (17)C7—H7B0.92 (3)
N1—H1A0.8600C8—C91.511 (3)
N2—C61.354 (2)C8—C101.524 (3)
N2—H2B0.8600C8—H8A1.02 (3)
O1—C51.228 (2)O3—H30.80 (3)
O2—C61.222 (2)O3—H40.90 (3)
C1—C21.387 (2)C9—H9A0.98 (3)
C1—C51.474 (2)C9—H9B0.91 (3)
C2—C31.422 (2)C9—H9C1.02 (4)
C2—H2A0.9300C10—H10A1.00 (3)
C3—C41.339 (3)C10—H10B0.94 (3)
C3—H3A0.95 (3)C10—H10C1.01 (3)
C4—H4A0.93 (3)
C4—S1—C191.77 (10)C6—C7—C8114.11 (15)
C5—N1—N2120.11 (13)C6—C7—H7A110.2 (13)
C5—N1—H1A119.9C8—C7—H7A109.1 (14)
N2—N1—H1A119.9C6—C7—H7B106.1 (18)
C6—N2—N1119.57 (13)C8—C7—H7B108.3 (17)
C6—N2—H2B120.2H7A—C7—H7B109 (2)
N1—N2—H2B120.2C9—C8—C10111.6 (2)
C2—C1—C5130.92 (15)C9—C8—C7112.47 (18)
C2—C1—S1111.41 (12)C10—C8—C7108.98 (19)
C5—C1—S1117.65 (12)C9—C8—H8A106.7 (13)
C1—C2—C3110.95 (16)C10—C8—H8A108.1 (13)
C1—C2—H2A124.5C7—C8—H8A108.9 (13)
C3—C2—H2A124.5H3—O3—H4107 (2)
C4—C3—C2113.15 (18)C8—C9—H9A109.1 (18)
C4—C3—H3A126.2 (15)C8—C9—H9B109 (2)
C2—C3—H3A120.5 (15)H9A—C9—H9B102 (3)
C3—C4—S1112.71 (16)C8—C9—H9C114 (2)
C3—C4—H4A128.9 (17)H9A—C9—H9C110 (3)
S1—C4—H4A118.2 (17)H9B—C9—H9C112 (3)
O1—C5—N1123.64 (15)C8—C10—H10A108.5 (16)
O1—C5—C1121.31 (15)C8—C10—H10B106.6 (19)
N1—C5—C1115.02 (13)H10A—C10—H10B109 (2)
O2—C6—N2121.14 (14)C8—C10—H10C111.1 (17)
O2—C6—C7124.16 (15)H10A—C10—H10C110 (2)
N2—C6—C7114.69 (14)H10B—C10—H10C111 (3)
C5—N1—N2—C683.78 (19)C2—C1—C5—O1172.76 (17)
C4—S1—C1—C20.11 (15)S1—C1—C5—O19.0 (2)
C4—S1—C1—C5178.45 (14)C2—C1—C5—N15.6 (3)
C5—C1—C2—C3178.30 (17)S1—C1—C5—N1172.61 (12)
S1—C1—C2—C30.0 (2)N1—N2—C6—O24.0 (2)
C1—C2—C3—C40.1 (3)N1—N2—C6—C7177.00 (14)
C2—C3—C4—S10.2 (3)O2—C6—C7—C852.8 (2)
C1—S1—C4—C30.2 (2)N2—C6—C7—C8128.14 (17)
N2—N1—C5—O17.2 (2)C6—C7—C8—C955.0 (2)
N2—N1—C5—C1174.48 (13)C6—C7—C8—C10179.19 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.862.082.8173 (18)143
N2—H2B···O3ii0.862.082.9147 (18)162
O3—H3···O10.80 (3)1.95 (3)2.7416 (18)171 (2)
O3—H4···O2iii0.90 (3)1.83 (3)2.7355 (17)178 (2)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z; (iii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC10H14N2O2S·H2O
Mr244.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)6.5648 (5), 7.3451 (7), 25.956 (2)
β (°) 96.387 (4)
V3)1243.81 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.60 × 0.30 × 0.10
Data collection
DiffractometerRigaku Mercury70 (2x2 bin mode)
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2000)
Tmin, Tmax0.801, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8853, 2849, 2423
Rint0.021
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.123, 1.00
No. of reflections2849
No. of parameters194
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.29

Computer programs: CrystalClear (Rigaku, 2000), CrystalClear, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Sheldrick, 2000), SHELXTL.

Selected geometric parameters (Å, º) top
N1—C51.349 (2)O1—C51.228 (2)
N1—N21.3883 (17)O2—C61.222 (2)
N2—C61.354 (2)C1—C51.474 (2)
C4—S1—C191.77 (10)C2—C1—S1111.41 (12)
C5—N1—N2120.11 (13)C5—C1—S1117.65 (12)
C2—C1—C5130.92 (15)
C4—S1—C1—C20.11 (15)C2—C3—C4—S10.2 (3)
C4—S1—C1—C5178.45 (14)C1—S1—C4—C30.2 (2)
C5—C1—C2—C3178.30 (17)N2—N1—C5—O17.2 (2)
S1—C1—C2—C30.0 (2)N1—N2—C6—O24.0 (2)
C1—C2—C3—C40.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.862.082.8173 (18)143.2
N2—H2B···O3ii0.862.082.9147 (18)162.0
O3—H3···O10.80 (3)1.95 (3)2.7416 (18)171 (2)
O3—H4···O2iii0.90 (3)1.83 (3)2.7355 (17)178 (2)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z; (iii) x+1, y+1, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds