Download citation
Download citation
link to html
In the crystal structure of the centrosymmetric title complex, bis­[μ-(E)-1,5-dimethyl-2-phenyl-4-(3-pyridyl­methyl­eneamino)pyrazol-3(2H)-one]bis­{dibromido­[(E)-1,5-dimethyl-2-phenyl-4-(3-pyridylmethyl­ene­amino)­pyrazol-3(2H)-one]manganese(II)}, [Mn2Br4(C17H16N4O)4], the Mn atom adopts a trigonal–bipyramidal geometry and the ligand adopts two coordination modes, monodentate and bidentate bridging.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807032461/wk2058sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807032461/wk2058Isup2.hkl
Contains datablock I

CCDC reference: 657549

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.008 Å
  • R factor = 0.058
  • wR factor = 0.114
  • Data-to-parameter ratio = 17.9

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.95 PLAT152_ALERT_1_C Supplied and Calc Volume s.u. Inconsistent ..... ? PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 3000 Deg. PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 8 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 54 N5 -MN1 -N1 -C5 168.50 0.80 2.666 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 58 N5 -MN1 -N1 -C1 -10.80 1.20 2.666 1.555 1.555 1.555
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Mn1 (2) 2.13
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 6 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Great effort is currently being devoted to the design and syntheses of metal Schiff base complexes due to their potential applications as functional materials (O'Donnell, 2004). The Schiff bases of 4-aminoantipyrine and their complexes have been extensively investigated because of their biological, clinical and pharmacological applications (Rajendran & Sreeletha, 2002; Raman et al., 2001). However, only a few structurally characterized metal complexes with 4-aminoantipyrine Schiff base derived ligands have been reported, and its coordination chemistry remains largely unexplored (Liang et al., 2004; Liang et al., 2002; Wang et al., 2003). Herein we report the synthesis and crystal structure of a new dinuclear manganese(II) complex with a 4-aminoantipyrine derived Schiff base ligand: Mn2(L4)Br4 (L = (E)-1,5-dimethyl-2-phenyl-4-(pyridin-3-ylmethyleneamino)-1,2-dihydropyrazol-3-one) (I).

The ligand L was synthesized as reported previously by the base condensation of 4-aminoantipyrine with pyridine-3-carboxaldehyde (Montalvo-Gonzalez & Arisa-Castolo 2003). The title complex (I) was obtained under solvothermal conditions and characterized by X-ray crystallography. The molecular structure of (I) is shown in Fig. 1. Selected bond distances and bond angles are normal and listed in Table 1. (I) is a dinuclear MnII complex arranged around an inversion center. Each Mn atom is coordinated by two pyridine N atoms from two ligands, and one pyrazole O atom from another ligand, and two Br anions in a trigonal-bipyramidal geometry. There are two kinds of coordination modes of ligand L: one is monodentately linked to the Mn center through the N atom of the pyridine group, the other bidentately bridges two Mn centers by pyridine N atom and pyrazole O atom. The dimer Mn2L2 ring is formed with Mn···Mn separation of 8.878 (4) Å.

Related literature top

For related literature, see: Liang et al. (2002, 2004); Montalvo-Gonzalez & Arisa-Castolo (2003); O'Donnell (2004); Rajendran & Sreeletha (2002); Raman et al. (2001); Wang et al. (2003).

Experimental top

A 25 ml Teflon-lined stainless steel autoclave was charged with 0.215 g (1 mmol) MnBr2, 0.260 g (1 mmol) L and 15 ml CH3OH and heated at 80 °C for 24 h in oven, then cooled to room temperature. Red crystals were obtained in 60% yield based on the initial MnBr2.

Refinement top

All H atoms on sp2 C atoms were positioned geometrically and allowed to ride on their respective parent atoms, with C—H = 0.93 and Uiso(H) = 1.2 Ueq(C); All H atoms on sp3 C (Me groups) atoms were located and refined by using the hfix 137 command.

Structure description top

Great effort is currently being devoted to the design and syntheses of metal Schiff base complexes due to their potential applications as functional materials (O'Donnell, 2004). The Schiff bases of 4-aminoantipyrine and their complexes have been extensively investigated because of their biological, clinical and pharmacological applications (Rajendran & Sreeletha, 2002; Raman et al., 2001). However, only a few structurally characterized metal complexes with 4-aminoantipyrine Schiff base derived ligands have been reported, and its coordination chemistry remains largely unexplored (Liang et al., 2004; Liang et al., 2002; Wang et al., 2003). Herein we report the synthesis and crystal structure of a new dinuclear manganese(II) complex with a 4-aminoantipyrine derived Schiff base ligand: Mn2(L4)Br4 (L = (E)-1,5-dimethyl-2-phenyl-4-(pyridin-3-ylmethyleneamino)-1,2-dihydropyrazol-3-one) (I).

The ligand L was synthesized as reported previously by the base condensation of 4-aminoantipyrine with pyridine-3-carboxaldehyde (Montalvo-Gonzalez & Arisa-Castolo 2003). The title complex (I) was obtained under solvothermal conditions and characterized by X-ray crystallography. The molecular structure of (I) is shown in Fig. 1. Selected bond distances and bond angles are normal and listed in Table 1. (I) is a dinuclear MnII complex arranged around an inversion center. Each Mn atom is coordinated by two pyridine N atoms from two ligands, and one pyrazole O atom from another ligand, and two Br anions in a trigonal-bipyramidal geometry. There are two kinds of coordination modes of ligand L: one is monodentately linked to the Mn center through the N atom of the pyridine group, the other bidentately bridges two Mn centers by pyridine N atom and pyrazole O atom. The dimer Mn2L2 ring is formed with Mn···Mn separation of 8.878 (4) Å.

For related literature, see: Liang et al. (2002, 2004); Montalvo-Gonzalez & Arisa-Castolo (2003); O'Donnell (2004); Rajendran & Sreeletha (2002); Raman et al. (2001); Wang et al. (2003).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level. H atoms were omitted for clarity. (Symmetry codes: (A) -x + 1, -y + 1, -z + 1.)
bis[µ-(E)-1,5-dimethyl-2-phenyl-4-(3-pyridylmethyleneamino)pyrazol-\3(2H)-one]bis{dibromido[(E)-1,5-dimethyl-2-phenyl-4-(3-πyridylmethyleneamino)pyrazol-3(2H)-one]manganese(II)} top
Crystal data top
[Mn2Br4(C17H16N4O)4]V = 1699.2 (6) Å3
Mr = 1598.87Z = 1
Triclinic, P1F(000) = 806
Hall symbol: -P 1Dx = 1.563 Mg m3
a = 10.052 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.372 (3) Åθ = 3.1–27.5°
c = 15.257 (3) ŵ = 2.78 mm1
α = 72.68 (3)°T = 298 K
β = 77.66 (3)°Block, red
γ = 71.09 (3)°0.24 × 0.20 × 0.18 mm
Data collection top
Bruker SMART APEX II CCD
diffractometer
7658 independent reflections
Radiation source: fine-focus sealed tube4058 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.073
Detector resolution: 8.40 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 1312
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1613
Tmin = 0.555, Tmax = 0.634l = 1919
16756 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: geom, Me from difmap
wR(F2) = 0.114H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0306P)2 + 1.9264P]
where P = (Fo2 + 2Fc2)/3
7658 reflections(Δ/σ)max = 0.001
428 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.53 e Å3
Crystal data top
[Mn2Br4(C17H16N4O)4]γ = 71.09 (3)°
Mr = 1598.87V = 1699.2 (6) Å3
Triclinic, P1Z = 1
a = 10.052 (2) ÅMo Kα radiation
b = 12.372 (3) ŵ = 2.78 mm1
c = 15.257 (3) ÅT = 298 K
α = 72.68 (3)°0.24 × 0.20 × 0.18 mm
β = 77.66 (3)°
Data collection top
Bruker SMART APEX II CCD
diffractometer
7658 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4058 reflections with I > 2σ(I)
Tmin = 0.555, Tmax = 0.634Rint = 0.073
16756 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 0.99Δρmax = 0.48 e Å3
7658 reflectionsΔρmin = 0.53 e Å3
428 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.63805 (6)0.05458 (5)0.35815 (4)0.04788 (16)
Br20.63104 (6)0.44060 (5)0.23134 (4)0.05393 (18)
Mn10.51827 (8)0.27528 (6)0.31633 (5)0.03622 (19)
C10.4160 (5)0.1657 (5)0.1809 (4)0.0478 (14)
H1A0.40310.11230.23730.057*
C20.3812 (5)0.1489 (5)0.1036 (3)0.0441 (13)
C30.4052 (6)0.2288 (5)0.0195 (4)0.0579 (16)
H3A0.38570.22030.03460.069*
C40.4569 (6)0.3189 (5)0.0165 (4)0.0592 (16)
H4A0.47250.37250.03940.071*
C50.4861 (6)0.3296 (5)0.0976 (4)0.0511 (14)
H5A0.52040.39200.09510.061*
C60.3263 (5)0.0506 (5)0.1086 (4)0.0503 (14)
H6A0.32320.00830.16310.060*
C70.2306 (5)0.0400 (5)0.0312 (3)0.0444 (13)
C80.2039 (6)0.1426 (5)0.1000 (4)0.0532 (15)
C90.1419 (7)0.1849 (6)0.1123 (4)0.0653 (17)
H9A0.17590.14080.17130.098*
H9B0.04490.18130.11160.098*
H9C0.19850.26560.10190.098*
C100.1982 (6)0.0416 (5)0.0504 (3)0.0478 (14)
C110.2115 (7)0.0452 (5)0.1417 (4)0.0659 (17)
H11A0.27740.00570.18560.099*
H11B0.24500.10610.13460.099*
H11C0.12050.07950.16350.099*
C120.1099 (6)0.3036 (5)0.0855 (3)0.0456 (13)
C130.1934 (6)0.4053 (6)0.1355 (4)0.0611 (17)
H13A0.27900.40590.14980.073*
C140.1494 (7)0.5066 (6)0.1643 (4)0.0684 (19)
H14A0.20550.57520.19880.082*
C150.0245 (8)0.5076 (6)0.1429 (4)0.0716 (19)
H15A0.00330.57660.16140.086*
C160.0588 (7)0.4060 (5)0.0940 (4)0.0633 (17)
H16A0.14430.40590.07980.076*
C170.0176 (6)0.3035 (5)0.0656 (4)0.0537 (15)
H17A0.07570.23450.03310.064*
C180.5023 (5)0.7949 (4)0.4609 (4)0.0428 (13)
H18A0.54130.84950.46870.051*
C190.5012 (6)0.7883 (5)0.3727 (4)0.0475 (13)
H19A0.54080.83700.32210.057*
C200.4414 (5)0.7093 (4)0.3593 (4)0.0464 (13)
H20A0.44090.70360.29990.056*
C210.3823 (5)0.6389 (4)0.4360 (3)0.0379 (12)
C220.3906 (5)0.6490 (4)0.5229 (3)0.0388 (12)
H22A0.35350.60000.57460.047*
C230.3187 (5)0.5523 (4)0.4278 (4)0.0415 (12)
H23A0.32800.53570.37090.050*
C240.1985 (5)0.4090 (4)0.4968 (3)0.0350 (11)
C250.2266 (5)0.3429 (4)0.4310 (3)0.0342 (11)
C260.1086 (5)0.3641 (4)0.5703 (3)0.0405 (12)
C270.0579 (6)0.3964 (5)0.6601 (4)0.0620 (16)
H27A0.04200.43520.66390.093*
H27B0.10740.44850.66500.093*
H27C0.07550.32650.70980.093*
C280.0008 (6)0.1944 (5)0.6100 (4)0.0629 (17)
H28A0.06840.12020.63110.094*
H28B0.06190.18410.57570.094*
H28C0.05310.22360.66240.094*
C290.1161 (5)0.1969 (4)0.4157 (3)0.0371 (11)
C300.2016 (5)0.0863 (4)0.4116 (4)0.0475 (14)
H30A0.28000.05200.44370.057*
C310.1695 (6)0.0269 (5)0.3593 (4)0.0592 (16)
H31A0.22770.04760.35490.071*
C320.0524 (6)0.0767 (5)0.3135 (4)0.0578 (16)
H32A0.03180.03600.27810.069*
C330.0341 (6)0.1856 (5)0.3195 (4)0.0664 (18)
H33A0.11440.21840.28930.080*
C340.0025 (6)0.2472 (5)0.3706 (4)0.0548 (15)
H34A0.06060.32180.37450.066*
N10.4672 (4)0.2542 (4)0.1794 (3)0.0422 (10)
N20.2830 (4)0.0471 (4)0.0375 (3)0.0460 (11)
N30.1569 (5)0.2006 (4)0.0520 (3)0.0510 (12)
N40.1516 (5)0.1351 (4)0.0398 (3)0.0498 (12)
N50.4485 (4)0.7247 (3)0.5364 (3)0.0376 (10)
N60.2502 (4)0.4994 (3)0.4991 (3)0.0408 (10)
N70.1511 (4)0.2608 (3)0.4669 (3)0.0390 (10)
N80.0750 (4)0.2783 (4)0.5509 (3)0.0434 (10)
O10.2122 (5)0.1777 (4)0.1843 (3)0.0763 (13)
O20.3029 (3)0.3472 (3)0.3532 (2)0.0402 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0660 (4)0.0392 (3)0.0413 (3)0.0147 (3)0.0104 (3)0.0116 (2)
Br20.0723 (4)0.0535 (3)0.0454 (3)0.0370 (3)0.0010 (3)0.0092 (3)
Mn10.0430 (4)0.0372 (4)0.0343 (4)0.0177 (4)0.0038 (3)0.0111 (3)
C10.054 (3)0.048 (3)0.043 (3)0.015 (3)0.015 (3)0.008 (3)
C20.046 (3)0.053 (3)0.039 (3)0.013 (3)0.009 (3)0.018 (3)
C30.069 (4)0.073 (4)0.032 (3)0.022 (3)0.011 (3)0.009 (3)
C40.071 (4)0.069 (4)0.036 (3)0.027 (3)0.009 (3)0.002 (3)
C50.058 (4)0.052 (3)0.045 (3)0.021 (3)0.008 (3)0.006 (3)
C60.056 (3)0.061 (4)0.040 (3)0.015 (3)0.015 (3)0.017 (3)
C70.037 (3)0.063 (4)0.036 (3)0.011 (3)0.006 (2)0.020 (3)
C80.057 (4)0.078 (4)0.035 (3)0.023 (3)0.006 (3)0.023 (3)
C90.083 (4)0.086 (5)0.046 (4)0.039 (4)0.010 (3)0.027 (3)
C100.051 (3)0.056 (3)0.037 (3)0.008 (3)0.007 (3)0.020 (3)
C110.098 (5)0.063 (4)0.041 (3)0.023 (4)0.014 (3)0.016 (3)
C120.051 (3)0.056 (3)0.033 (3)0.016 (3)0.005 (3)0.014 (3)
C130.048 (3)0.086 (5)0.042 (3)0.002 (4)0.007 (3)0.022 (3)
C140.074 (5)0.062 (4)0.049 (4)0.007 (4)0.009 (3)0.013 (3)
C150.096 (5)0.054 (4)0.062 (4)0.025 (4)0.000 (4)0.014 (3)
C160.067 (4)0.064 (4)0.069 (4)0.024 (3)0.013 (3)0.022 (3)
C170.054 (3)0.056 (4)0.052 (3)0.010 (3)0.017 (3)0.012 (3)
C180.052 (3)0.039 (3)0.047 (3)0.019 (3)0.013 (3)0.013 (2)
C190.059 (3)0.049 (3)0.038 (3)0.022 (3)0.009 (3)0.006 (2)
C200.057 (3)0.045 (3)0.039 (3)0.013 (3)0.011 (3)0.011 (2)
C210.040 (3)0.039 (3)0.042 (3)0.013 (2)0.009 (2)0.015 (2)
C220.043 (3)0.039 (3)0.040 (3)0.015 (2)0.010 (2)0.012 (2)
C230.050 (3)0.040 (3)0.042 (3)0.015 (3)0.014 (3)0.014 (2)
C240.036 (3)0.038 (3)0.035 (3)0.013 (2)0.008 (2)0.011 (2)
C250.037 (3)0.038 (3)0.033 (3)0.014 (2)0.006 (2)0.011 (2)
C260.040 (3)0.044 (3)0.039 (3)0.012 (2)0.002 (2)0.016 (2)
C270.076 (4)0.067 (4)0.047 (3)0.021 (3)0.004 (3)0.026 (3)
C280.059 (4)0.061 (4)0.062 (4)0.032 (3)0.010 (3)0.002 (3)
C290.040 (3)0.038 (3)0.043 (3)0.020 (2)0.005 (2)0.013 (2)
C300.048 (3)0.044 (3)0.060 (4)0.013 (3)0.019 (3)0.019 (3)
C310.065 (4)0.041 (3)0.080 (4)0.016 (3)0.021 (4)0.017 (3)
C320.079 (4)0.053 (4)0.057 (4)0.034 (3)0.020 (3)0.012 (3)
C330.065 (4)0.056 (4)0.090 (5)0.019 (3)0.044 (4)0.010 (4)
C340.051 (3)0.043 (3)0.074 (4)0.008 (3)0.028 (3)0.013 (3)
N10.047 (3)0.047 (2)0.035 (2)0.013 (2)0.006 (2)0.014 (2)
N20.045 (3)0.061 (3)0.041 (3)0.014 (2)0.005 (2)0.026 (2)
N30.057 (3)0.074 (3)0.033 (2)0.028 (3)0.007 (2)0.017 (2)
N40.062 (3)0.060 (3)0.033 (2)0.011 (2)0.013 (2)0.021 (2)
N50.045 (2)0.032 (2)0.042 (2)0.0137 (19)0.012 (2)0.0093 (18)
N60.044 (2)0.043 (2)0.044 (3)0.016 (2)0.009 (2)0.017 (2)
N70.043 (2)0.043 (2)0.038 (2)0.017 (2)0.003 (2)0.0165 (19)
N80.051 (3)0.050 (3)0.035 (2)0.025 (2)0.004 (2)0.012 (2)
O10.114 (4)0.101 (3)0.035 (2)0.056 (3)0.019 (2)0.013 (2)
O20.0418 (19)0.054 (2)0.0354 (19)0.0218 (17)0.0022 (16)0.0186 (16)
Geometric parameters (Å, º) top
Br1—Mn12.5441 (12)C17—H17A0.9300
Br2—Mn12.5387 (12)C18—N51.348 (6)
Mn1—O22.080 (3)C18—C191.374 (7)
Mn1—N5i2.341 (4)C18—H18A0.9300
Mn1—N12.360 (4)C19—C201.384 (7)
C1—N11.345 (6)C19—H19A0.9300
C1—C21.386 (7)C20—C211.383 (7)
C1—H1A0.9300C20—H20A0.9300
C2—C31.395 (7)C21—C221.389 (6)
C2—C61.467 (7)C21—C231.459 (6)
C3—C41.360 (8)C22—N51.334 (6)
C3—H3A0.9300C22—H22A0.9300
C4—C51.384 (7)C23—N61.279 (6)
C4—H4A0.9300C23—H23A0.9300
C5—N11.336 (6)C24—C261.380 (7)
C5—H5A0.9300C24—N61.389 (6)
C6—N21.270 (6)C24—C251.405 (7)
C6—H6A0.9300C25—O21.265 (5)
C7—C101.361 (7)C25—N71.378 (6)
C7—N21.378 (7)C26—N81.337 (6)
C7—C81.446 (8)C26—C271.482 (7)
C8—O11.241 (6)C27—H27A0.9600
C8—N31.399 (7)C27—H27B0.9600
C9—N41.450 (7)C27—H27C0.9600
C9—H9A0.9600C28—N81.450 (6)
C9—H9B0.9600C28—H28A0.9600
C9—H9C0.9600C28—H28B0.9600
C10—N41.339 (7)C28—H28C0.9600
C10—C111.494 (7)C29—C301.371 (7)
C11—H11A0.9600C29—C341.378 (6)
C11—H11B0.9600C29—N71.423 (6)
C11—H11C0.9600C30—C311.377 (7)
C12—C131.374 (7)C30—H30A0.9300
C12—C171.378 (7)C31—C321.370 (7)
C12—N31.418 (7)C31—H31A0.9300
C13—C141.381 (9)C32—C331.364 (8)
C13—H13A0.9300C32—H32A0.9300
C14—C151.368 (9)C33—C341.379 (8)
C14—H14A0.9300C33—H33A0.9300
C15—C161.365 (8)C34—H34A0.9300
C15—H15A0.9300N3—N41.395 (5)
C16—C171.380 (8)N5—Mn1i2.341 (4)
C16—H16A0.9300N7—N81.383 (5)
O2—Mn1—N5i87.27 (13)C21—C20—C19118.5 (5)
O2—Mn1—N189.45 (14)C21—C20—H20A120.7
N5i—Mn1—N1171.60 (15)C19—C20—H20A120.7
O2—Mn1—Br2109.22 (10)C20—C21—C22117.9 (5)
N5i—Mn1—Br294.75 (10)C20—C21—C23121.9 (5)
N1—Mn1—Br293.63 (11)C22—C21—C23120.1 (5)
O2—Mn1—Br1122.63 (10)N5—C22—C21123.9 (5)
N5i—Mn1—Br186.76 (10)N5—C22—H22A118.1
N1—Mn1—Br188.51 (11)C21—C22—H22A118.1
Br2—Mn1—Br1128.13 (4)N6—C23—C21119.8 (5)
N1—C1—C2124.3 (5)N6—C23—H23A120.1
N1—C1—H1A117.9C21—C23—H23A120.1
C2—C1—H1A117.9C26—C24—N6121.0 (4)
C1—C2—C3116.5 (5)C26—C24—C25107.5 (4)
C1—C2—C6122.2 (5)N6—C24—C25131.4 (5)
C3—C2—C6121.3 (5)O2—C25—N7121.1 (4)
C4—C3—C2120.2 (5)O2—C25—C24132.7 (5)
C4—C3—H3A119.9N7—C25—C24106.2 (4)
C2—C3—H3A119.9N8—C26—C24109.2 (4)
C3—C4—C5119.1 (5)N8—C26—C27122.4 (5)
C3—C4—H4A120.4C24—C26—C27128.3 (5)
C5—C4—H4A120.4C26—C27—H27A109.5
N1—C5—C4122.7 (5)C26—C27—H27B109.5
N1—C5—H5A118.6H27A—C27—H27B109.5
C4—C5—H5A118.6C26—C27—H27C109.5
N2—C6—C2119.0 (5)H27A—C27—H27C109.5
N2—C6—H6A120.5H27B—C27—H27C109.5
C2—C6—H6A120.5N8—C28—H28A109.5
C10—C7—N2121.4 (5)N8—C28—H28B109.5
C10—C7—C8107.6 (5)H28A—C28—H28B109.5
N2—C7—C8131.0 (5)N8—C28—H28C109.5
O1—C8—N3123.0 (5)H28A—C28—H28C109.5
O1—C8—C7132.3 (5)H28B—C28—H28C109.5
N3—C8—C7104.7 (4)C30—C29—C34121.0 (5)
N4—C9—H9A109.5C30—C29—N7119.4 (4)
N4—C9—H9B109.5C34—C29—N7119.6 (5)
H9A—C9—H9B109.5C29—C30—C31118.9 (5)
N4—C9—H9C109.5C29—C30—H30A120.5
H9A—C9—H9C109.5C31—C30—H30A120.5
H9B—C9—H9C109.5C32—C31—C30120.4 (5)
N4—C10—C7110.6 (5)C32—C31—H31A119.8
N4—C10—C11122.3 (5)C30—C31—H31A119.8
C7—C10—C11127.2 (6)C33—C32—C31120.4 (5)
C10—C11—H11A109.5C33—C32—H32A119.8
C10—C11—H11B109.5C31—C32—H32A119.8
H11A—C11—H11B109.5C32—C33—C34120.0 (5)
C10—C11—H11C109.5C32—C33—H33A120.0
H11A—C11—H11C109.5C34—C33—H33A120.0
H11B—C11—H11C109.5C29—C34—C33119.2 (5)
C13—C12—C17119.6 (6)C29—C34—H34A120.4
C13—C12—N3120.1 (5)C33—C34—H34A120.4
C17—C12—N3120.2 (5)C5—N1—C1117.2 (4)
C12—C13—C14119.6 (6)C5—N1—Mn1121.8 (4)
C12—C13—H13A120.2C1—N1—Mn1121.0 (3)
C14—C13—H13A120.2C6—N2—C7125.6 (5)
C15—C14—C13120.9 (6)N4—N3—C8108.8 (4)
C15—C14—H14A119.5N4—N3—C12121.6 (4)
C13—C14—H14A119.5C8—N3—C12129.4 (4)
C16—C15—C14119.2 (6)C10—N4—N3108.2 (4)
C16—C15—H15A120.4C10—N4—C9127.0 (5)
C14—C15—H15A120.4N3—N4—C9122.0 (5)
C15—C16—C17120.7 (6)C22—N5—C18117.5 (4)
C15—C16—H16A119.6C22—N5—Mn1i122.6 (3)
C17—C16—H16A119.6C18—N5—Mn1i119.5 (3)
C12—C17—C16119.8 (5)C23—N6—C24122.0 (4)
C12—C17—H17A120.1C25—N7—N8108.7 (4)
C16—C17—H17A120.1C25—N7—C29125.7 (4)
N5—C18—C19122.1 (5)N8—N7—C29122.4 (4)
N5—C18—H18A118.9C26—N8—N7108.3 (4)
C19—C18—H18A118.9C26—N8—C28129.9 (5)
C18—C19—C20120.0 (5)N7—N8—C28120.4 (5)
C18—C19—H19A120.0C25—O2—Mn1132.0 (3)
C20—C19—H19A120.0
N1—C1—C2—C31.6 (8)Br2—Mn1—N1—C57.7 (4)
N1—C1—C2—C6179.7 (5)Br1—Mn1—N1—C5135.8 (4)
C1—C2—C3—C41.5 (8)O2—Mn1—N1—C177.7 (4)
C6—C2—C3—C4179.6 (5)N5i—Mn1—N1—C110.8 (12)
C2—C3—C4—C50.4 (9)Br2—Mn1—N1—C1173.1 (4)
C3—C4—C5—N10.8 (9)Br1—Mn1—N1—C144.9 (4)
C1—C2—C6—N2172.9 (5)C2—C6—N2—C7179.1 (5)
C3—C2—C6—N29.1 (8)C10—C7—N2—C6174.2 (5)
C10—C7—C8—O1177.1 (6)C8—C7—N2—C63.6 (9)
N2—C7—C8—O14.8 (11)O1—C8—N3—N4176.4 (5)
C10—C7—C8—N30.6 (6)C7—C8—N3—N41.6 (6)
N2—C7—C8—N3177.5 (5)O1—C8—N3—C120.9 (9)
N2—C7—C10—N4179.0 (4)C7—C8—N3—C12177.1 (5)
C8—C7—C10—N40.7 (6)C13—C12—N3—N4131.6 (5)
N2—C7—C10—C110.5 (9)C17—C12—N3—N446.3 (7)
C8—C7—C10—C11178.8 (5)C13—C12—N3—C853.4 (8)
C17—C12—C13—C140.7 (8)C17—C12—N3—C8128.7 (6)
N3—C12—C13—C14177.2 (5)C7—C10—N4—N31.8 (6)
C12—C13—C14—C150.8 (9)C11—C10—N4—N3177.8 (5)
C13—C14—C15—C161.4 (10)C7—C10—N4—C9162.7 (5)
C14—C15—C16—C170.6 (10)C11—C10—N4—C916.9 (8)
C13—C12—C17—C161.5 (9)C8—N3—N4—C102.1 (6)
N3—C12—C17—C16176.4 (5)C12—N3—N4—C10178.1 (5)
C15—C16—C17—C120.9 (9)C8—N3—N4—C9164.2 (5)
N5—C18—C19—C201.2 (8)C12—N3—N4—C919.9 (7)
C18—C19—C20—C210.6 (8)C21—C22—N5—C180.2 (7)
C19—C20—C21—C222.1 (7)C21—C22—N5—Mn1i173.3 (4)
C19—C20—C21—C23179.2 (4)C19—C18—N5—C221.4 (7)
C20—C21—C22—N51.9 (7)C19—C18—N5—Mn1i172.0 (4)
C23—C21—C22—N5179.2 (4)C21—C23—N6—C24174.2 (4)
C20—C21—C23—N6171.5 (5)C26—C24—N6—C23171.0 (4)
C22—C21—C23—N611.4 (7)C25—C24—N6—C2313.1 (7)
C26—C24—C25—O2179.0 (5)O2—C25—N7—N8178.5 (4)
N6—C24—C25—O22.6 (8)C24—C25—N7—N81.9 (5)
C26—C24—C25—N70.6 (5)O2—C25—N7—C2918.5 (7)
N6—C24—C25—N7176.9 (4)C24—C25—N7—C29161.9 (4)
N6—C24—C26—N8179.8 (4)C30—C29—N7—C2595.3 (6)
C25—C24—C26—N83.0 (5)C34—C29—N7—C2584.4 (6)
N6—C24—C26—C272.6 (8)C30—C29—N7—N8107.3 (5)
C25—C24—C26—C27174.2 (5)C34—C29—N7—N872.9 (6)
C34—C29—C30—C311.9 (8)C24—C26—N8—N74.2 (5)
N7—C29—C30—C31177.8 (5)C27—C26—N8—N7173.2 (4)
C29—C30—C31—C321.3 (9)C24—C26—N8—C28170.5 (5)
C30—C31—C32—C330.3 (9)C27—C26—N8—C286.9 (8)
C31—C32—C33—C341.2 (10)C25—N7—N8—C263.8 (5)
C30—C29—C34—C331.0 (8)C29—N7—N8—C26164.6 (4)
N7—C29—C34—C33178.8 (5)C25—N7—N8—C28171.7 (4)
C32—C33—C34—C290.6 (9)C29—N7—N8—C2827.6 (6)
C4—C5—N1—C10.7 (8)N7—C25—O2—Mn195.7 (5)
C4—C5—N1—Mn1180.0 (4)C24—C25—O2—Mn183.8 (6)
C2—C1—N1—C50.5 (8)N5i—Mn1—O2—C2524.9 (4)
C2—C1—N1—Mn1178.8 (4)N1—Mn1—O2—C25147.3 (4)
O2—Mn1—N1—C5101.5 (4)Br2—Mn1—O2—C25119.0 (4)
N5i—Mn1—N1—C5168.5 (8)Br1—Mn1—O2—C2559.4 (4)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Mn2Br4(C17H16N4O)4]
Mr1598.87
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)10.052 (2), 12.372 (3), 15.257 (3)
α, β, γ (°)72.68 (3), 77.66 (3), 71.09 (3)
V3)1699.2 (6)
Z1
Radiation typeMo Kα
µ (mm1)2.78
Crystal size (mm)0.24 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART APEX II CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.555, 0.634
No. of measured, independent and
observed [I > 2σ(I)] reflections
16756, 7658, 4058
Rint0.073
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.114, 0.99
No. of reflections7658
No. of parameters428
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.53

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SAINT, SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b), SHELXTL.

Selected geometric parameters (Å, º) top
Br1—Mn12.5441 (12)Mn1—N5i2.341 (4)
Br2—Mn12.5387 (12)Mn1—N12.360 (4)
Mn1—O22.080 (3)
O2—Mn1—N5i87.27 (13)N1—Mn1—Br293.63 (11)
O2—Mn1—N189.45 (14)O2—Mn1—Br1122.63 (10)
N5i—Mn1—N1171.60 (15)N5i—Mn1—Br186.76 (10)
O2—Mn1—Br2109.22 (10)N1—Mn1—Br188.51 (11)
N5i—Mn1—Br294.75 (10)Br2—Mn1—Br1128.13 (4)
Symmetry code: (i) x+1, y+1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds