Download citation
Download citation
link to html
Seven-coordinated (NH4)2TaF7, Rb2TaF7 and Rb3TaOF6 were synthesized in single-crystal form and their structures were determined. A monocapped trigonal prism (CTP) or a pentagonal bipyramid (PB) of the TaF72− anion are stereochemically nonrigid and coexist in the first two compounds as a result of strong intraspheric dynamics. Upon cooling, tetragonal Rb2TaF7 undergoes a first-order phase transition at 145 K and the seven-coordinated polyhedron transforms into a regular CTP. The seven-coordinated polyhedron in (NH4)2TaF7 approaches the PB configuration as the temperature decreases. Cubic elpasolite-like Rb3TaOF6 is characterized by the simultaneous two-state coexistence of TaOF63− of the PB shape as rigidly reoriented and as fluxional. In the former case, the central atom is disordered over the octahedron in the unit cell, allowing the determination of the short Ta—O distance, whereas in the latter case, tantalum remains in the polyhedron center, resulting in synchronous Ta—O and Ta—F stretching vibrations appearing as the infrared band at 723 cm−1.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2052520619013465/wf5151sup1.cif
Contains datablocks publ, I, II-LT, II-RT, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520619013465/wf5151Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520619013465/wf5151II-RTsup3.hkl
Contains datablock II-RT

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520619013465/wf5151II-LTsup4.hkl
Contains datablock II-LT

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520619013465/wf5151IIIsup5.hkl
Contains datablock III

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2052520619013465/wf5151sup6.pdf
Supplementary material

CCDC references: 1790343; 1790344; 1790345; 1790346

Computing details top

For all structures, data collection: Bruker APEX2; cell refinement: Bruker SAINT; data reduction: Bruker SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2014); molecular graphics: Bruker SHELXTL; software used to prepare material for publication: Bruker SHELXTL.

ammonium heptafluorotantalate (I) top
Crystal data top
F7Ta·H8N2Dx = 3.198 Mg m3
Mr = 350.03Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P4/nmmCell parameters from 7755 reflections
a = 5.8613 (2) Åθ = 3.5–40.1°
c = 10.5817 (3) ŵ = 15.19 mm1
V = 363.53 (3) Å3T = 120 K
Z = 2Sphere, colourless
F(000) = 3160.25 × 0.25 × 0.25 mm
Data collection top
Bruker APEX-II CCD
diffractometer
710 reflections with I > 2σ(I)
Detector resolution: 8.33 pixels mm-1Rint = 0.033
φ and ω scansθmax = 40.1°, θmin = 3.9°
Absorption correction: multi-scan
Bruker SADABS
h = 910
Tmin = 0.116, Tmax = 0.116k = 109
8074 measured reflectionsl = 1819
712 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.012Only H-atom displacement parameters refined
wR(F2) = 0.031 w = 1/[σ2(Fo2) + (0.0086P)2 + 0.8194P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.006
712 reflectionsΔρmax = 1.40 e Å3
30 parametersΔρmin = 1.26 e Å3
0 restraintsExtinction correction: SHELXL-2014/7 (Sheldrick 2014, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0070 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ta10.25000.25000.26030 (2)0.00887 (2)
N10.25000.75000.50000.0142 (3)
N20.25000.25000.8658 (3)0.0350 (8)
F10.25000.25000.44913 (14)0.0146 (3)
F20.02111 (13)0.47889 (13)0.30015 (14)0.0341 (3)
F30.1764 (6)0.4341 (5)0.1132 (2)0.0357 (8)0.25
H10.25000.84780.53850.074 (14)*
H20.25000.25000.93570.12 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ta10.01037 (2)0.01037 (2)0.00586 (3)0.0000.0000.000
N10.0162 (5)0.0162 (5)0.0101 (6)0.0000.0000.000
N20.0483 (12)0.0483 (12)0.0083 (8)0.0000.0000.000
F10.0180 (4)0.0180 (4)0.0077 (5)0.0000.0000.000
F20.0234 (3)0.0234 (3)0.0555 (7)0.0132 (4)0.0004 (3)0.0004 (3)
F30.061 (2)0.0370 (13)0.0095 (7)0.0245 (12)0.0052 (9)0.0086 (8)
Geometric parameters (Å, º) top
Ta1—F31.943 (2)N2—F2xiii2.852 (2)
Ta1—F3i1.943 (2)N2—F3xviii2.864 (3)
Ta1—F3ii1.943 (2)N2—F3xix2.864 (3)
Ta1—F3iii1.943 (2)N2—F3xx2.864 (3)
Ta1—F3iv1.943 (2)N2—F3xxi2.864 (3)
Ta1—F3v1.943 (2)N2—F3xxii2.864 (3)
Ta1—F3vi1.943 (2)N2—F3xxiii2.864 (3)
Ta1—F3vii1.943 (2)N2—H20.7397
Ta1—F2vii1.9436 (11)F1—F2ii2.4668 (16)
Ta1—F2ii1.9436 (11)F1—F2iv2.4668 (16)
N1—F22.9660 (11)F1—F2vii2.4668 (16)
N1—F2viii2.9660 (11)F1—F22.4668 (16)
N1—F2ix2.9660 (11)F1—N1xiv2.9797 (3)
N1—F2vii2.9660 (11)F1—N1xiii2.9797 (3)
N1—F2x2.9660 (11)F1—N1xxiv2.9797 (3)
N1—F2xi2.9660 (11)F2—F3iii2.194 (3)
N1—F2xii2.9660 (11)F2—F32.194 (3)
N1—F2xiii2.9660 (11)F2—F3ii2.669 (3)
N1—F1xiv2.9797 (3)F2—F3vi2.669 (3)
N1—F1xv2.9797 (3)F2—F2vii2.6832 (15)
N1—H10.7033F2—F2ii2.6832 (15)
N2—F2xvi2.852 (2)F2—N2xiii2.852 (2)
N2—F2ix2.852 (2)F3—F3iv2.324 (6)
N2—F2xvii2.852 (2)F3—F2vii2.669 (3)
F3—Ta1—F3i67.50 (18)F2x—N1—F2xi91.36 (4)
F3—Ta1—F3iv73.49 (17)F2—N1—F2xii89.04 (4)
F3i—Ta1—F3vi73.49 (17)F2viii—N1—F2xii91.36 (4)
F3ii—Ta1—F3vi66.70 (17)F2ix—N1—F2xii120.56 (2)
F3ii—Ta1—F3vii73.49 (17)F2vii—N1—F2xii64.79 (4)
F3iii—Ta1—F3vii67.50 (18)F2—N1—F2xiii91.36 (4)
F3—Ta1—F2vii86.76 (11)F2viii—N1—F2xiii89.04 (4)
F3v—Ta1—F2vii86.76 (11)F2ix—N1—F2xiii64.79 (4)
F3vi—Ta1—F2vii68.73 (9)F2vii—N1—F1xiv71.57 (3)
F3vii—Ta1—F2vii68.73 (9)F2xii—N1—F1xiv71.57 (3)
F3i—Ta1—F2ii68.73 (9)F1xiv—N1—F1xv91.870 (10)
F3ii—Ta1—F2ii68.73 (9)F2ix—N1—H187.5
F3iii—Ta1—F2ii86.76 (11)F2xi—N1—H188.7
F3iv—Ta1—F2ii86.76 (11)F2xii—N1—H188.7
F2ix—N1—F2vii91.36 (4)F2xiii—N1—H187.5
F2viii—N1—F2x64.79 (4)F1xiv—N1—H184.0
F2ix—N1—F2x89.04 (4)F1xv—N1—H145.8
F2vii—N1—F2xi89.04 (4)
Symmetry codes: (i) x, y+1/2, z; (ii) y+1/2, x, z; (iii) y+1/2, x+1/2, z; (iv) x+1/2, y+1/2, z; (v) y, x, z; (vi) x+1/2, y, z; (vii) y, x+1/2, z; (viii) x+1/2, y+1/2, z+1; (ix) y+1, x+1/2, z+1; (x) y1/2, x+1, z+1; (xi) y+1/2, x+1, z; (xii) x+1/2, y+3/2, z; (xiii) x, y+1, z+1; (xiv) x+1, y+1, z+1; (xv) x, y+1, z; (xvi) y1/2, x, z+1; (xvii) x+1/2, y1/2, z+1; (xviii) x+1/2, y, z+1; (xix) y, x+1/2, z+1; (xx) y, x, z+1; (xxi) x, y, z+1; (xxii) y+1/2, x+1/2, z+1; (xxiii) x+1/2, y+1/2, z+1; (xxiv) x, y1, z.
rubidium heptafluorotantalate (II-LT) top
Crystal data top
(F7Ta)·2(Rb)Dx = 4.468 Mg m3
Mr = 484.89Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, CmmaCell parameters from 512 reflections
a = 8.2419 (5) Åθ = 3.9–32.1°
b = 8.2749 (5) ŵ = 28.72 mm1
c = 10.5694 (7) ÅT = 123 K
V = 720.84 (8) Å3Prism, colorless
Z = 40.26 × 0.14 × 0.14 mm
F(000) = 840
Data collection top
Bruker P4
diffractometer
661 reflections with I > 2σ(I)
Detector resolution: 8.33 pixels mm-1Rint = 0.038
ω scansθmax = 32.1°, θmin = 3.9°
Absorption correction: multi-scan
SADABS v.2.03; Bruker 1999
h = 1112
Tmin = 0.050, Tmax = 0.108k = 1112
4382 measured reflectionsl = 1515
693 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022 w = 1/[σ2(Fo2) + (0.0298P)2 + 5.6867P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.060(Δ/σ)max < 0.001
S = 1.15Δρmax = 2.23 e Å3
693 reflectionsΔρmin = 3.30 e Å3
39 parametersExtinction correction: SHELXL-2014/7 (Sheldrick 2014, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
6 restraintsExtinction coefficient: 0.0013 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ta10.00000.75000.24367 (2)0.01309 (13)
Rb10.25000.50000.00000.01505 (16)
Rb20.00000.75000.63582 (7)0.02155 (18)
F10.00000.75000.0548 (4)0.0181 (9)
F20.00000.5222 (5)0.2033 (4)0.0283 (8)
F30.1029 (8)0.6509 (9)0.3895 (4)0.0378 (15)0.5
F40.2286 (5)0.75000.2014 (4)0.0277 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ta10.01576 (18)0.01582 (18)0.00769 (16)0.0000.0000.000
Rb10.0161 (3)0.0167 (3)0.0123 (3)0.0000.0000.000
Rb20.0272 (4)0.0289 (4)0.0086 (3)0.0000.0000.000
F10.023 (2)0.024 (2)0.0076 (18)0.0000.0000.000
F20.036 (2)0.0187 (17)0.030 (2)0.0000.0000.0026 (15)
F30.050 (3)0.055 (4)0.008 (2)0.029 (3)0.005 (2)0.006 (2)
F40.0167 (16)0.040 (2)0.0269 (19)0.0000.0018 (14)0.000
Geometric parameters (Å, º) top
Ta1—F21.933 (4)Rb2—F3ix3.385 (7)
Ta1—F2i1.933 (4)F1—F42.440 (5)
Ta1—F4i1.936 (4)F1—F4i2.440 (5)
Ta1—F41.936 (4)F1—F22.453 (5)
Ta1—F31.941 (5)F1—F2i2.453 (5)
Ta1—F3ii1.941 (5)F1—Rb1iv2.9766 (9)
Ta1—F3i1.941 (5)F1—Rb1vii2.9766 (9)
Ta1—F3iii1.941 (5)F1—Rb1xiii2.9766 (9)
Ta1—F11.997 (4)F1—F4xiv3.512 (5)
Ta1—Rb1iv3.8933 (2)F2—F32.393 (7)
Rb1—F42.974 (3)F2—F3iii2.393 (7)
Rb1—F4v2.974 (3)F2—F42.665 (4)
Rb1—F4vi2.974 (3)F2—F4i2.665 (4)
Rb1—F4vii2.974 (3)F2—Rb2xii2.822 (4)
Rb1—F1iv2.9766 (9)F2—Rb1iv2.983 (3)
Rb1—F12.9766 (9)F2—F4xv3.174 (4)
Rb1—F1vii2.9766 (9)F3—F3ii1.640 (15)
Rb1—F1viii2.9766 (9)F3—F3iii1.696 (14)
Rb1—F22.983 (3)F3—F3i2.359 (12)
Rb1—F2iv2.983 (3)F3—F42.387 (7)
Rb2—F4ix2.822 (4)F3—F3xvi3.367 (11)
Rb2—F4x2.822 (4)F3—Rb2ix3.385 (7)
Rb2—F2xi2.822 (4)F3—F3xvii3.420 (12)
Rb2—F2xii2.822 (4)F4—F3ii2.387 (7)
Rb2—F3iii2.858 (5)F4—F2i2.665 (4)
Rb2—F3i2.858 (5)F4—Rb2ix2.822 (4)
Rb2—F3ii2.858 (5)F4—Rb1vii2.974 (3)
Rb2—F32.858 (5)F4—F2xviii3.174 (4)
Rb2—F3x3.385 (7)
F2—Ta1—F4i87.08 (4)F4i—Ta1—F3i76.0 (2)
F2i—Ta1—F4i87.08 (4)F4i—Ta1—F3iii76.0 (2)
F2—Ta1—F487.08 (4)F3ii—Ta1—F3iii74.8 (4)
F2i—Ta1—F487.08 (4)F2—Ta1—F177.25 (12)
F4i—Ta1—F4153.3 (2)F2i—Ta1—F177.25 (12)
F2—Ta1—F376.3 (2)F4i—Ta1—F176.67 (11)
F4—Ta1—F376.0 (2)F4—Ta1—F176.67 (11)
F2i—Ta1—F3ii76.3 (2)F3iii—Ta1—Rb1iv93.99 (18)
F4—Ta1—F3ii76.0 (2)F1—Ta1—Rb1iv48.586 (4)
F2i—Ta1—F3i76.3 (2)
Symmetry codes: (i) x, y+3/2, z; (ii) x, y+3/2, z; (iii) x, y, z; (iv) x, y+1, z; (v) x, y1/2, z; (vi) x+1/2, y+1, z; (vii) x+1/2, y+3/2, z; (viii) x+1/2, y1/2, z; (ix) x+1/2, y+3/2, z+1; (x) x1/2, y, z+1; (xi) x, y+1/2, z+1; (xii) x, y+1, z+1; (xiii) x1/2, y+1/2, z; (xiv) x1/2, y, z; (xv) x1/2, y1/2, z; (xvi) x+1/2, y, z+1; (xvii) x, y+1, z+1; (xviii) x+1/2, y+1/2, z.
rubidium heptafluorotantalate (II-RT) top
Crystal data top
(F7Ta)·Rb2Dx = 4.340 Mg m3
Mr = 484.89Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P4/nmmCell parameters from 512 reflections
a = 5.9118 (3) Åθ = 3.8–38.0°
c = 10.6173 (10) ŵ = 27.90 mm1
V = 371.07 (5) Å3T = 297 K
Z = 2Prism, colorless
F(000) = 4200.26 × 0.14 × 0.14 mm
Data collection top
Bruker P4
diffractometer
562 reflections with I > 2σ(I)
Detector resolution: 8.33 pixels mm-1Rint = 0.044
ω scansθmax = 38.0°, θmin = 3.8°
Absorption correction: multi-scan
Bruker SADABS
h = 108
Tmin = 0.052, Tmax = 0.112k = 1010
9610 measured reflectionsl = 1818
638 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023 w = 1/[σ2(Fo2) + (0.0244P)2 + 0.6642P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.058(Δ/σ)max < 0.001
S = 1.18Δρmax = 1.51 e Å3
638 reflectionsΔρmin = 1.89 e Å3
28 parametersExtinction correction: SHELXL-2014/7 (Sheldrick 2014, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0205 (13)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ta10.25000.25000.25483 (2)0.02409 (10)
Rb10.25000.75000.50000.02940 (15)
Rb20.25000.25000.86308 (8)0.0425 (2)
F10.25000.25000.4444 (4)0.0378 (11)
F20.0243 (4)0.4757 (4)0.2991 (3)0.0518 (8)
F30.204 (5)0.4466 (14)0.1096 (5)0.067 (9)0.25
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ta10.02581 (12)0.02581 (12)0.02066 (13)0.0000.0000.000
Rb10.0294 (2)0.0294 (2)0.0294 (3)0.0000.0000.000
Rb20.0520 (3)0.0520 (3)0.0234 (3)0.0000.0000.000
F10.0461 (18)0.0461 (18)0.0213 (18)0.0000.0000.000
F20.0447 (11)0.0447 (11)0.0660 (19)0.0183 (14)0.0005 (9)0.0005 (9)
F30.13 (3)0.052 (4)0.024 (2)0.035 (10)0.007 (4)0.014 (2)
Geometric parameters (Å, º) top
Ta1—F2i1.945 (3)Rb2—F2ix2.868 (3)
Ta1—F2ii1.945 (3)Rb2—F3xix2.877 (7)
Ta1—F2iii1.945 (3)Rb2—F3xx2.877 (7)
Ta1—F21.945 (3)Rb2—F3xxi2.877 (7)
Ta1—F3iv1.949 (8)Rb2—F3xxii2.877 (7)
Ta1—F3ii1.949 (8)Rb2—F3xxiii2.877 (7)
Ta1—F3v1.949 (8)Rb2—F3xxiv2.877 (7)
Ta1—F3iii1.949 (8)Rb2—F3xxv2.877 (7)
Ta1—F3vi1.949 (8)Rb2—F3xxvi2.877 (7)
Ta1—F3vii1.949 (8)Rb2—F3xxvii3.24 (3)
Ta1—F3i1.949 (8)Rb2—F3xii3.24 (3)
Ta1—F31.949 (8)Rb2—F3xvii3.24 (3)
Ta1—F12.013 (5)Rb2—F3xxviii3.24 (3)
Ta1—Rb1viii3.9387 (3)Rb2—F3xxix3.24 (3)
Ta1—Rb13.9387 (3)Rb2—F3xviii3.24 (3)
Ta1—Rb1ix3.9387 (3)Rb2—F3xxx3.24 (3)
Ta1—Rb1x3.9387 (3)Rb2—F3ix3.24 (3)
Rb1—F22.993 (3)F1—F2ii2.437 (4)
Rb1—F2xi2.993 (3)F1—F2iii2.437 (4)
Rb1—F2xii2.993 (3)F1—F2i2.437 (4)
Rb1—F2i2.993 (3)F1—F22.437 (4)
Rb1—F2xiii2.993 (3)F1—Rb1viii3.0143 (9)
Rb1—F2xiv2.993 (3)F1—Rb1ix3.0143 (9)
Rb1—F2ix2.993 (3)F1—Rb1x3.0143 (9)
Rb1—F2xv2.993 (3)F2—F32.282 (16)
Rb1—F1viii3.0143 (9)F2—F3v2.282 (16)
Rb1—F1ix3.0143 (9)F2—F3ii2.58 (2)
Rb1—F1xvi3.0143 (9)F2—F3vii2.58 (2)
Rb1—F13.0143 (9)F2—F2i2.669 (4)
Rb1—Ta1viii3.9387 (3)F2—F2ii2.669 (4)
Rb1—Ta1xvi3.9387 (3)F3—F3iv2.324 (17)
Rb1—Ta1ix3.9387 (3)F3—F3iii2.39 (2)
Rb2—F2xvii2.868 (3)F3—F2i2.58 (2)
Rb2—F2xii2.868 (3)F3—Rb2xxxi2.877 (7)
Rb2—F2xviii2.868 (3)
F2i—Ta1—F2ii152.0 (2)F3vi—Ta1—F3vii51.3 (4)
F2i—Ta1—F2iii86.65 (5)F2i—Ta1—F3i71.8 (7)
F2ii—Ta1—F2iii86.65 (5)F2iii—Ta1—F3i83.0 (7)
F2i—Ta1—F286.65 (5)F2—Ta1—F3i120.3 (8)
F2ii—Ta1—F286.65 (5)F3iv—Ta1—F3i62.6 (14)
F2ii—Ta1—F3iv71.8 (7)F3ii—Ta1—F3i75.5 (6)
F2iii—Ta1—F3iv83.0 (7)F3v—Ta1—F3i73.2 (5)
F2ii—Ta1—F3ii71.8 (7)F2i—Ta1—F383.0 (7)
F2—Ta1—F3ii83.0 (7)F2—Ta1—F371.8 (6)
F2ii—Ta1—F3v83.0 (7)F3iv—Ta1—F373.2 (5)
F2—Ta1—F3v71.8 (7)F3ii—Ta1—F351.3 (4)
F2ii—Ta1—F3iii83.0 (7)F3v—Ta1—F337.7 (15)
F2iii—Ta1—F3iii71.8 (6)F3iii—Ta1—F375.5 (6)
F3v—Ta1—F3iii62.6 (14)F3vi—Ta1—F362.6 (14)
F2i—Ta1—F3vi83.0 (7)F3vii—Ta1—F316.0 (18)
F2—Ta1—F3vii83.0 (7)F3i—Ta1—F351.3 (4)
F3iv—Ta1—F3vii75.5 (6)F2i—Ta1—F176.01 (11)
F3ii—Ta1—F3vii62.6 (14)F2ii—Ta1—F176.01 (11)
F3v—Ta1—F3vii51.3 (4)F2iii—Ta1—F176.01 (11)
F3iii—Ta1—F3vii73.2 (5)F2—Ta1—F176.01 (11)
Symmetry codes: (i) y, x+1/2, z; (ii) y+1/2, x, z; (iii) x+1/2, y+1/2, z; (iv) x, y+1/2, z; (v) y+1/2, x+1/2, z; (vi) y, x, z; (vii) x+1/2, y, z; (viii) x+1, y+1, z+1; (ix) x, y+1, z+1; (x) x, y1, z; (xi) x+1/2, y+1/2, z+1; (xii) y+1, x+1/2, z+1; (xiii) y1/2, x+1, z+1; (xiv) y+1/2, x+1, z; (xv) x+1/2, y+3/2, z; (xvi) x, y+1, z; (xvii) y1/2, x, z+1; (xviii) x+1/2, y1/2, z+1; (xix) x+1/2, y, z+1; (xx) y, x+1/2, z+1; (xxi) y, x, z+1; (xxii) x, y, z+1; (xxiii) y+1/2, x+1/2, z+1; (xxiv) x+1/2, y+1/2, z+1; (xxv) x, y+1/2, z+1; (xxvi) y+1/2, x, z+1; (xxvii) x+1/2, y+1, z+1; (xxviii) x, y1/2, z+1; (xxix) y1/2, x+1/2, z+1; (xxx) y+1, x, z+1; (xxxi) x, y, z1.
(III) top
Crystal data top
(OF6Ta)·3RbMo Kα radiation, λ = 0.71073 Å
Mr = 567.36Cell parameters from 3898 reflections
Cubic, Fm3mθ = 3.8–37.5°
a = 9.1842 (2) ŵ = 32.96 mm1
V = 774.68 (5) Å3T = 293 K
Z = 4Plate, colourless
F(000) = 9840.25 × 0.25 × 0.13 mm
Dx = 4.865 Mg m3
Data collection top
Bruker APEX-II CCD
diffractometer
204 reflections with I > 2σ(I)
Detector resolution: 8.33 pixels mm-1Rint = 0.039
φ and ω scansθmax = 44.8°, θmin = 3.8°
Absorption correction: multi-scan
Bruker SADABS
h = 1817
Tmin = 0.045, Tmax = 0.100k = 1718
5883 measured reflectionsl = 1817
204 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.010 w = 1/[σ2(Fo2) + 1.7182P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.020(Δ/σ)max = 0.018
S = 1.06Δρmax = 0.83 e Å3
204 reflectionsΔρmin = 0.51 e Å3
27 parametersExtinction correction: SHELXL-2014/7 (Sheldrick 2014, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00043 (7)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ta10.00000.00000.00000.007 (14)0.03 (5)
Ta20.00000.00000.0169 (6)0.0078 (4)0.162 (9)
Rb10.26262 (12)0.26262 (12)0.26262 (12)0.0274 (4)0.25
Rb20.50000.50000.50000.0382 (2)0.947 (4)
F10.00000.00000.2103 (9)0.037 (2)0.5
F20.00000.0595 (15)0.2051 (17)0.041 (5)0.0833
F30.00000.1272 (13)0.1859 (18)0.046 (7)0.0833
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ta10.007 (14)0.007 (14)0.007 (14)0.0000.0000.000
Ta20.0094 (4)0.0094 (4)0.0046 (6)0.0000.0000.000
Rb10.0274 (4)0.0274 (4)0.0274 (4)0.0004 (2)0.0004 (2)0.0004 (2)
Rb20.0382 (2)0.0382 (2)0.0382 (2)0.0000.0000.000
F10.051 (3)0.051 (3)0.0097 (13)0.0000.0000.000
F20.043 (6)0.058 (16)0.021 (5)0.0000.0000.009 (10)
F30.039 (5)0.060 (12)0.039 (11)0.0000.0000.033 (11)
Geometric parameters (Å, º) top
Ta1—F1i1.932 (9)Rb1—F3xiv2.505 (7)
Ta1—F1ii1.932 (9)Rb1—F3xv2.505 (7)
Ta1—F1iii1.932 (9)Rb1—F3xvi2.505 (7)
Ta1—F1iv1.932 (9)Rb1—F3xvii2.554 (6)
Ta1—F1v1.932 (9)Rb1—F3xviii2.554 (6)
Ta1—F11.932 (9)Rb1—F3xix2.554 (6)
Ta1—F21.961 (15)Rb2—F1xx2.660 (9)
Ta2—F11.777 (10)Rb2—F1xxi2.660 (9)
Ta2—F21.813 (16)Rb2—F1xxii2.660 (9)
Ta2—F2vi1.813 (16)Rb2—F1xxiii2.660 (9)
Ta2—F2vii1.813 (16)Rb2—F1xxiv2.660 (9)
Ta2—F2viii1.813 (16)Rb2—F1xxv2.660 (9)
Ta2—F2ix1.924 (15)Rb2—F2xxvi2.763 (15)
Ta2—F2iv1.924 (15)Rb2—F2xiii2.763 (15)
Rb1—Rb1x0.328 (3)Rb2—F2xxvii2.763 (15)
Rb1—F3xi2.505 (7)Rb2—F2xii2.763 (15)
Rb1—F3xii2.505 (7)Rb2—F2xxviii2.763 (15)
Rb1—F3xiii2.505 (7)Rb2—F2xv2.763 (15)
Ta2v—Ta1—F1ii90.0F1i—Ta1—F1iv90.0
F1i—Ta1—F1ii180.0F1ii—Ta1—F1iv90.0
F1i—Ta1—F1iii90.0F1iii—Ta1—F1iv180.0
F1ii—Ta1—F1iii90.0F2viii—Ta2—F2ix95.8 (2)
Ta2i—Ta1—F1iv90.0F2—Ta2—F2iv78.8 (4)
Symmetry codes: (i) y, z, x; (ii) y, z, x; (iii) z, x, y; (iv) z, x, y; (v) x, y, z; (vi) y, x, z; (vii) y, x, z; (viii) x, y, z; (ix) x, z, y; (x) x, y+1/2, z+1/2; (xi) z, y+1/2, x+1/2; (xii) y+1/2, z, x+1/2; (xiii) x+1/2, z, y+1/2; (xiv) y+1/2, x+1/2, z; (xv) z, x+1/2, y+1/2; (xvi) x+1/2, y+1/2, z; (xvii) z+1/2, y, x+1/2; (xviii) x+1/2, z+1/2, y; (xix) y, x+1/2, z+1/2; (xx) y+1/2, z+1, x+1/2; (xxi) y+1/2, z, x+1/2; (xxii) z+1, x+1/2, y+1/2; (xxiii) z, x+1/2, y+1/2; (xxiv) x+1/2, y+1/2, z+1; (xxv) x+1/2, y+1/2, z; (xxvi) x+1/2, z+1, y+1/2; (xxvii) y+1/2, z+1, x+1/2; (xxviii) z+1, x+1/2, y+1/2.
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds