Download citation
Download citation
link to html
Single crystals of monoclinic Nd:LaVO4 with dimensions up to Ø28 × 21 mm have been grown from the near-stoichiometric melt by the Czochralski method, making use of various seed orientations that are perpendicular to the (010), (10{\overline 1}), (001) and (00{\overline 1}) crystal planes. A sample was also prepared with the seed orientation in an arbitrary direction relative to the crystal. The anisotropic properties of the crystal are manifested in the growth morphology of the as-grown crystals, where different degrees of bulk spiral growth were observed. It was also found that employing the (001) or (00{\overline 1}) seed faces severely suppressed the bulk spiral growth, and thus high quality and large-scale Nd:LaVO4 crystals were obtained. The constituent segregation coefficients and high-temperature stability, including the melting point, were determined and evaluated. Based on the attachment energy model of Hartman-Perdok theory, morphology predictions were made for monoclinic LaVO4 and tetragonal YVO4 ortho­vanadate single crystals. Correlating with the as-grown morphology of both crystals developed along different seed orientations, a theoretical explanation is provided for the influences of seed crystals on bulk spiral formation, crystal quality and utilization ratio. It suggests that breaking the axial symmetry of the ideal atomic level interface between crystal and melt plays a crucial triggering role in bulk spiral formation in the Czochralski growth of lanthanide orthovanadate single crystals. Selecting a proper seed orientation that yields such a highly axially symmetric surface structure consisting of a series of large-area facets with similar growth velocities can greatly reduce bulk spiral formation and thus is preferable in the Czochralski growth of large-sized low-symmetry oxide crystals.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0021889809052339/wf5051sup1.cif
Contains datablocks LaVO4, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0021889809052339/wf5051sup2.hkl
Contains datablock cong

Computing details top

Data collection: APEX2 Software Suite (Bruker,2005); cell refinement: APEX2 Software Suite (Bruker,2005); data reduction: APEX2 Software Suite (Bruker,2005); program(s) used to solve structure: SIR97 (Altomare,1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: WinGX (Farrugia,1999).

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
[Figure 6]
[Figure 7]
[Figure 8]
(LaVO4) top
Crystal data top
LaO4VF(000) = 448
Mr = 253.85Dx = 5.054 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.0492 (3) ÅCell parameters from 2959 reflections
b = 7.2827 (3) Åθ = 3.7–33.2°
c = 6.7250 (3) ŵ = 15.26 mm1
β = 104.901 (2)°T = 293 K
V = 333.63 (2) Å3Prism, colourless
Z = 40.09 × 0.08 × 0.06 mm
Data collection top
Bruker APEX2 CCD area-detector
diffractometer
1265 independent reflections
Radiation source: fine-focus sealed tube1170 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
φ and ω scansθmax = 33.2°, θmin = 3.7°
Absorption correction: numerical
APEX2 Software Suite (Bruker,2005)
h = 1010
Tmin = 0.344, Tmax = 0.466k = 1111
6077 measured reflectionsl = 109
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.016 w = 1/[σ2(Fo2) + (0.015P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.034(Δ/σ)max < 0.001
S = 1.06Δρmax = 1.16 e Å3
1265 reflectionsΔρmin = 0.73 e Å3
56 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0420 (9)
Crystal data top
LaO4VV = 333.63 (2) Å3
Mr = 253.85Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.0492 (3) ŵ = 15.26 mm1
b = 7.2827 (3) ÅT = 293 K
c = 6.7250 (3) Å0.09 × 0.08 × 0.06 mm
β = 104.901 (2)°
Data collection top
Bruker APEX2 CCD area-detector
diffractometer
1265 independent reflections
Absorption correction: numerical
APEX2 Software Suite (Bruker,2005)
1170 reflections with I > 2σ(I)
Tmin = 0.344, Tmax = 0.466Rint = 0.027
6077 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.01656 parameters
wR(F2) = 0.0340 restraints
S = 1.06Δρmax = 1.16 e Å3
1265 reflectionsΔρmin = 0.73 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
La10.276224 (17)0.157198 (16)0.103623 (17)0.00767 (6)
O10.2554 (2)0.4979 (2)0.0725 (2)0.0124 (3)
O20.6179 (2)0.2795 (2)0.2277 (2)0.0117 (3)
O30.5171 (2)0.1050 (2)0.1758 (2)0.0134 (3)
O40.1143 (3)0.1564 (2)0.0041 (3)0.0121 (3)
V10.30083 (5)0.16481 (5)0.38488 (5)0.00678 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.00755 (7)0.00725 (8)0.00790 (7)0.00017 (4)0.00144 (4)0.00099 (3)
O10.0169 (8)0.0095 (8)0.0100 (7)0.0018 (6)0.0021 (6)0.0004 (5)
O20.0090 (7)0.0159 (8)0.0108 (7)0.0021 (6)0.0040 (5)0.0017 (6)
O30.0130 (8)0.0137 (8)0.0109 (7)0.0044 (6)0.0019 (6)0.0012 (5)
O40.0114 (8)0.0104 (8)0.0154 (7)0.0005 (6)0.0052 (6)0.0021 (5)
V10.00672 (15)0.00713 (18)0.00646 (15)0.00018 (11)0.00163 (12)0.00020 (10)
Geometric parameters (Å, º) top
La1—O12.4912 (17)O2—V1ix1.7039 (16)
La1—O22.5015 (16)O2—La1ix2.5292 (16)
La1—O32.5182 (17)O3—V1iv1.6990 (16)
La1—O1i2.5275 (16)O3—La1iv2.6845 (17)
La1—O2ii2.5292 (16)O4—V1x1.7154 (16)
La1—O42.5640 (16)O4—La1iii2.6604 (17)
La1—O4iii2.6604 (17)O4—La1i2.8898 (17)
La1—O3iv2.6845 (17)V1—O3iv1.6990 (16)
La1—O4v2.8898 (17)V1—O2ii1.7039 (16)
La1—V13.3345 (4)V1—O4viii1.7154 (16)
La1—V1vi3.3998 (4)V1—O1x1.7233 (17)
La1—V1vii3.6124 (4)V1—La1xi3.3998 (4)
O1—V1viii1.7233 (17)V1—La1xii3.6124 (4)
O1—La1v2.5275 (16)
O1—La1—O272.80 (6)O4iii—La1—V1vi93.18 (4)
O1—La1—O3142.54 (6)O3iv—La1—V1vi144.57 (4)
O2—La1—O370.25 (6)O4v—La1—V1vi30.29 (3)
O1—La1—O1i120.87 (4)V1—La1—V1vi173.988 (13)
O2—La1—O1i99.59 (5)O1—La1—V1vii67.01 (4)
O3—La1—O1i71.96 (5)O2—La1—V1vii133.16 (4)
O1—La1—O2ii74.53 (6)O3—La1—V1vii148.34 (4)
O2—La1—O2ii114.09 (5)O1i—La1—V1vii81.86 (4)
O3—La1—O2ii115.67 (5)O2ii—La1—V1vii77.45 (4)
O1i—La1—O2ii146.18 (5)O4—La1—V1vii88.40 (4)
O1—La1—O4148.50 (6)O4iii—La1—V1vii26.61 (3)
O2—La1—O4136.89 (6)O3iv—La1—V1vii137.67 (4)
O3—La1—O466.89 (5)O4v—La1—V1vii80.99 (3)
O1i—La1—O471.59 (5)V1—La1—V1vii107.379 (10)
O2ii—La1—O481.32 (6)V1vi—La1—V1vii77.218 (7)
O1—La1—O4iii86.84 (5)V1viii—O1—La1139.59 (9)
O2—La1—O4iii158.71 (5)V1viii—O1—La1v104.63 (8)
O3—La1—O4iii130.54 (5)La1—O1—La1v113.65 (6)
O1i—La1—O4iii85.37 (5)V1ix—O2—La1135.25 (8)
O2ii—La1—O4iii64.44 (5)V1ix—O2—La1ix102.18 (7)
O4—La1—O4iii64.34 (6)La1—O2—La1ix122.54 (6)
O1—La1—O3iv96.49 (5)V1iv—O3—La1133.02 (9)
O2—La1—O3iv68.57 (5)V1iv—O3—La1iv96.46 (7)
O3—La1—O3iv64.35 (6)La1—O3—La1iv115.65 (6)
O1i—La1—O3iv136.24 (5)V1x—O4—La1127.79 (9)
O2ii—La1—O3iv60.37 (5)V1x—O4—La1iii109.38 (8)
O4—La1—O3iv88.66 (5)La1—O4—La1iii115.66 (6)
O4iii—La1—O3iv121.27 (5)V1x—O4—La1i91.53 (7)
O1—La1—O4v66.73 (5)La1—O4—La1i100.58 (6)
O2—La1—O4v61.31 (5)La1iii—O4—La1i105.20 (5)
O3—La1—O4v99.89 (5)O3iv—V1—O2ii100.96 (8)
O1i—La1—O4v59.40 (5)O3iv—V1—O4viii107.53 (9)
O2ii—La1—O4v140.57 (5)O2ii—V1—O4viii114.95 (8)
O4—La1—O4v130.78 (4)O3iv—V1—O1x114.08 (8)
O4iii—La1—O4v105.32 (5)O2ii—V1—O1x115.82 (8)
O3iv—La1—O4v129.78 (5)O4viii—V1—O1x103.61 (8)
O1—La1—V185.27 (4)O3iv—V1—La153.13 (6)
O2—La1—V191.91 (4)O2ii—V1—La147.85 (5)
O3—La1—V189.95 (4)O4viii—V1—La1125.86 (6)
O1i—La1—V1153.51 (4)O1x—V1—La1130.49 (6)
O2ii—La1—V129.96 (4)O3iv—V1—La1xi131.64 (6)
O4—La1—V183.69 (4)O2ii—V1—La1xi127.31 (6)
O4iii—La1—V192.53 (4)O4viii—V1—La1xi58.18 (6)
O3iv—La1—V130.42 (3)O1x—V1—La1xi46.00 (5)
O4v—La1—V1145.31 (3)La1—V1—La1xi173.988 (13)
O1—La1—V1vi93.17 (4)O3iv—V1—La1xii66.55 (6)
O2—La1—V1vi82.09 (4)O2ii—V1—La1xii137.42 (6)
O3—La1—V1vi87.76 (4)O4viii—V1—La1xii44.00 (6)
O1i—La1—V1vi29.37 (4)O1x—V1—La1xii106.11 (5)
O2ii—La1—V1vi154.53 (4)La1—V1—La1xii108.096 (10)
O4—La1—V1vi100.49 (4)La1xi—V1—La1xii77.904 (7)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x1/2, y+1/2, z1/2; (iii) x, y, z; (iv) x+1, y, z; (v) x+1/2, y+1/2, z+1/2; (vi) x, y, z+1; (vii) x1/2, y+1/2, z+1/2; (viii) x+1/2, y+1/2, z1/2; (ix) x+1/2, y+1/2, z+1/2; (x) x+1/2, y1/2, z1/2; (xi) x, y, z1; (xii) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaLaO4V
Mr253.85
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)7.0492 (3), 7.2827 (3), 6.7250 (3)
β (°) 104.901 (2)
V3)333.63 (2)
Z4
Radiation typeMo Kα
µ (mm1)15.26
Crystal size (mm)0.09 × 0.08 × 0.06
Data collection
DiffractometerBruker APEX2 CCD area-detector
diffractometer
Absorption correctionNumerical
APEX2 Software Suite (Bruker,2005)
Tmin, Tmax0.344, 0.466
No. of measured, independent and
observed [I > 2σ(I)] reflections
6077, 1265, 1170
Rint0.027
(sin θ/λ)max1)0.770
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.016, 0.034, 1.06
No. of reflections1265
No. of parameters56
Δρmax, Δρmin (e Å3)1.16, 0.73

Computer programs: APEX2 Software Suite (Bruker,2005), SIR97 (Altomare,1999), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997), WinGX (Farrugia,1999).

 

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds