Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Ab initio phasing is one of the remaining challenges in protein crystallography. Recent progress in computational structure prediction has enabled the generation of de novo models with high enough accuracy to solve the phase problem ab initio. This `ab initio phasing with de novo models' method first generates a huge number of de novo models and then selects some lowest energy models to solve the phase problem using molecular replacement. The amount of CPU time required is huge even for small proteins and this has limited the utility of this method. Here, an approach is described that significantly reduces the computing time required to perform ab initio phasing with de novo models. Instead of performing molecular replacement after the completion of all models, molecular replacement is initiated during the course of each simulation. The approach principally focuses on avoiding the refinement of the best and the worst models and terminating the entire simulation early once suitable models for phasing have been obtained. In a benchmark data set of 20 proteins, this method is over two orders of magnitude faster than the conventional approach. It was observed that in most cases molecular-replacement solutions were determined soon after the coarse-grained models were turned into full-atom representations. It was also found that all-atom refinement was hardly able to change the models sufficiently to enable successful molecular replacement if the coarse-grained models were not very close to the native structure. Therefore, it remains critical to generate good-quality coarse-grained models to enable sub­sequent all-atom refinement for successful ab initio phasing by molecular replacement.

Subscribe to Acta Crystallographica Section D: Biological Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. D
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds