Download citation
Download citation
link to html
The new title pyrrole–pyrazole derivative, C16H16BrN3, was synthesized through a citric acid-catalyzed Paal–Knorr reaction between acetonylacetone and 1-(4-bromo­phen­yl)-3-methyl-1H-pyrazol-5-amine under mild reaction conditions. This synthetic protocol is noteworthy for its utilization of stoichiometric amounts of the reactants, an ecofriendly solvent and a cost-effective, non-toxic and biodegradable organocatalyst. A comprehensive understanding of the mol­ecular structure was gained through spectroscopic, thermal and X-ray crystallographic analyses. The crystal structure is characterized by weak inter­actions, where only C—H...π connections contribute to the hydro­gen-bond contacts. The supra­molecular assembly is controlled by dispersion forces. However, the energy frameworks demonstrate that these forces act in three dimensions, providing enough stability, as observed in TGA–DSC (thermogravimetric analysis–differential scanning calorimetry) studies.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229623009221/vx3003sup1.cif
Contains datablocks 3, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229623009221/vx30033sup2.hkl
Contains datablock 3

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229623009221/vx3003sup3.pdf
Additional figures and tables

CCDC reference: 2302406

Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

1-(4-Bromophenyl)-5-(2,5-dimethyl-1H-pyrrol-1-yl)-3-methyl-1H-pyrazole top
Crystal data top
C16H16BrN3Z = 2
Mr = 330.23F(000) = 336
Triclinic, P1Dx = 1.442 Mg m3
a = 7.8073 (9) ÅCu Kα radiation, λ = 1.54184 Å
b = 9.8003 (11) ÅCell parameters from 4699 reflections
c = 10.7900 (9) Åθ = 4.3–75.6°
α = 72.964 (9)°µ = 3.62 mm1
β = 85.084 (8)°T = 298 K
γ = 74.448 (10)°Parallelepiped, colorless
V = 760.43 (15) Å30.18 × 0.15 × 0.13 mm
Data collection top
Rigaku OD SuperNova Dual source
diffractometer with an Atlas detector
3159 independent reflections
Radiation source: SuperNova (Cu) micro-focus sealed X-ray Source2788 reflections with I > 2σ(I)
Detector resolution: 10.6144 pixels mm-1Rint = 0.036
ω scansθmax = 76.8°, θmin = 4.3°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2018)
h = 99
Tmin = 0.675, Tmax = 1.000k = 1212
9437 measured reflectionsl = 1312
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0576P)2 + 0.1134P]
where P = (Fo2 + 2Fc2)/3
3159 reflections(Δ/σ)max < 0.001
184 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.50 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2490 (3)0.5663 (2)0.1542 (2)0.0450 (4)
C20.1722 (3)0.4688 (3)0.1220 (2)0.0572 (5)
H20.1666640.4715560.0354670.069*
C30.1041 (4)0.3680 (3)0.2168 (3)0.0609 (6)
H30.0524740.3033240.1944330.073*
C40.1131 (3)0.3637 (2)0.3451 (2)0.0501 (4)
C50.1883 (3)0.4587 (3)0.3795 (2)0.0542 (5)
H50.1930690.4551540.4662310.065*
C60.2572 (3)0.5602 (3)0.2841 (2)0.0544 (5)
H60.3090640.6242460.3071920.065*
N70.3132 (2)0.6699 (2)0.05201 (16)0.0471 (4)
C80.3810 (3)0.7853 (2)0.05202 (19)0.0453 (4)
C90.4197 (3)0.8512 (3)0.0734 (2)0.0526 (5)
H90.4671350.9326230.1036850.063*
C100.3727 (3)0.7701 (3)0.1471 (2)0.0509 (5)
N110.3074 (3)0.6622 (2)0.07258 (17)0.0526 (4)
N120.4014 (2)0.82314 (19)0.16522 (16)0.0448 (4)
C130.5529 (3)0.7721 (3)0.2396 (2)0.0534 (5)
C140.5152 (4)0.8267 (3)0.3435 (2)0.0592 (5)
H140.5932790.8098460.4099460.071*
C150.3375 (3)0.9135 (3)0.3341 (2)0.0560 (5)
H150.2786180.9640190.3925020.067*
C160.2683 (3)0.9097 (2)0.2242 (2)0.0490 (4)
C170.7186 (4)0.6760 (4)0.1996 (3)0.0771 (8)
H17A0.6963010.5846790.1984220.116*
H17B0.8114560.6561950.2601710.116*
H17C0.7544140.7253150.1146470.116*
C180.0884 (4)0.9773 (4)0.1678 (3)0.0700 (7)
H18A0.0968141.0429310.0830650.105*
H18B0.0150521.0316190.2224570.105*
H18C0.0366890.9011750.1613020.105*
C190.3871 (4)0.7952 (3)0.2908 (2)0.0642 (6)
H19A0.3536680.7181650.3132390.096*
H19B0.5074480.7948240.3182360.096*
H19C0.3094070.8888830.3330100.096*
Br200.01414 (4)0.22824 (3)0.47636 (3)0.06862 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0475 (10)0.0455 (10)0.0442 (10)0.0134 (8)0.0025 (7)0.0154 (8)
C20.0696 (13)0.0664 (14)0.0473 (11)0.0298 (11)0.0041 (10)0.0237 (10)
C30.0728 (14)0.0642 (14)0.0596 (13)0.0356 (12)0.0058 (11)0.0240 (11)
C40.0488 (10)0.0468 (10)0.0546 (11)0.0148 (8)0.0069 (8)0.0138 (9)
C50.0699 (13)0.0536 (12)0.0425 (10)0.0211 (10)0.0040 (9)0.0148 (9)
C60.0748 (14)0.0525 (11)0.0439 (10)0.0286 (10)0.0008 (9)0.0140 (9)
N70.0560 (9)0.0513 (9)0.0379 (8)0.0184 (7)0.0023 (7)0.0149 (7)
C80.0495 (10)0.0469 (10)0.0418 (9)0.0143 (8)0.0008 (8)0.0143 (8)
C90.0599 (12)0.0559 (12)0.0440 (10)0.0218 (10)0.0040 (9)0.0120 (9)
C100.0505 (11)0.0601 (12)0.0412 (10)0.0129 (9)0.0018 (8)0.0147 (9)
N110.0625 (10)0.0618 (11)0.0394 (8)0.0210 (9)0.0019 (7)0.0191 (8)
N120.0507 (9)0.0448 (9)0.0421 (8)0.0160 (7)0.0009 (7)0.0137 (7)
C130.0544 (11)0.0555 (12)0.0512 (11)0.0147 (9)0.0053 (9)0.0143 (9)
C140.0725 (14)0.0630 (14)0.0462 (11)0.0218 (11)0.0067 (10)0.0158 (10)
C150.0695 (13)0.0582 (12)0.0453 (10)0.0192 (10)0.0069 (9)0.0214 (9)
C160.0543 (11)0.0469 (10)0.0482 (10)0.0163 (9)0.0060 (8)0.0158 (8)
C170.0590 (14)0.090 (2)0.0817 (19)0.0015 (14)0.0105 (13)0.0359 (16)
C180.0598 (14)0.0768 (18)0.0707 (16)0.0045 (12)0.0019 (12)0.0283 (14)
C190.0724 (15)0.0813 (17)0.0406 (11)0.0231 (13)0.0045 (10)0.0179 (11)
Br200.0813 (2)0.06456 (19)0.06563 (19)0.03669 (15)0.01681 (13)0.01529 (13)
Geometric parameters (Å, º) top
C1—C21.390 (3)C10—C191.496 (3)
C1—C61.392 (3)N12—C131.380 (3)
C1—N71.421 (3)N12—C161.391 (3)
C2—C31.379 (4)C13—C141.357 (4)
C2—H20.9300C13—C171.495 (4)
C3—C41.380 (3)C14—C151.414 (4)
C3—H30.9300C14—H140.9300
C4—C51.371 (3)C15—C161.358 (3)
C4—Br201.904 (2)C15—H150.9300
C5—C61.390 (3)C16—C181.481 (4)
C5—H50.9300C17—H17A0.9600
C6—H60.9300C17—H17B0.9600
N7—C81.371 (3)C17—H17C0.9600
N7—N111.374 (2)C18—H18A0.9600
C8—C91.365 (3)C18—H18B0.9600
C8—N121.409 (3)C18—H18C0.9600
C9—C101.405 (3)C19—H19A0.9600
C9—H90.9300C19—H19B0.9600
C10—N111.321 (3)C19—H19C0.9600
C2—C1—C6118.9 (2)C13—N12—C8125.24 (19)
C2—C1—N7118.14 (19)C16—N12—C8125.32 (18)
C6—C1—N7122.90 (18)C14—C13—N12107.0 (2)
C3—C2—C1120.7 (2)C14—C13—C17131.7 (2)
C3—C2—H2119.6N12—C13—C17121.3 (2)
C1—C2—H2119.6C13—C14—C15108.7 (2)
C2—C3—C4119.5 (2)C13—C14—H14125.6
C2—C3—H3120.2C15—C14—H14125.6
C4—C3—H3120.2C16—C15—C14107.6 (2)
C5—C4—C3120.9 (2)C16—C15—H15126.2
C5—C4—Br20119.27 (18)C14—C15—H15126.2
C3—C4—Br20119.80 (17)C15—C16—N12107.4 (2)
C4—C5—C6119.7 (2)C15—C16—C18131.0 (2)
C4—C5—H5120.2N12—C16—C18121.6 (2)
C6—C5—H5120.2C13—C17—H17A109.5
C5—C6—C1120.22 (19)C13—C17—H17B109.5
C5—C6—H6119.9H17A—C17—H17B109.5
C1—C6—H6119.9C13—C17—H17C109.5
C8—N7—N11109.87 (17)H17A—C17—H17C109.5
C8—N7—C1131.61 (17)H17B—C17—H17C109.5
N11—N7—C1118.51 (17)C16—C18—H18A109.5
C9—C8—N7107.56 (18)C16—C18—H18B109.5
C9—C8—N12129.0 (2)H18A—C18—H18B109.5
N7—C8—N12123.44 (18)C16—C18—H18C109.5
C8—C9—C10105.4 (2)H18A—C18—H18C109.5
C8—C9—H9127.3H18B—C18—H18C109.5
C10—C9—H9127.3C10—C19—H19A109.5
N11—C10—C9111.16 (19)C10—C19—H19B109.5
N11—C10—C19120.9 (2)H19A—C19—H19B109.5
C9—C10—C19127.9 (2)C10—C19—H19C109.5
C10—N11—N7106.00 (18)H19A—C19—H19C109.5
C13—N12—C16109.31 (18)H19B—C19—H19C109.5
C6—C1—C2—C30.4 (4)C9—C10—N11—N70.9 (3)
N7—C1—C2—C3178.6 (2)C19—C10—N11—N7179.9 (2)
C1—C2—C3—C40.3 (4)C8—N7—N11—C100.7 (2)
C2—C3—C4—C50.2 (4)C1—N7—N11—C10179.52 (19)
C2—C3—C4—Br20178.4 (2)C9—C8—N12—C1388.5 (3)
C3—C4—C5—C60.4 (4)N7—C8—N12—C1392.2 (3)
Br20—C4—C5—C6178.54 (19)C9—C8—N12—C1696.0 (3)
C4—C5—C6—C10.5 (4)N7—C8—N12—C1683.3 (3)
C2—C1—C6—C50.5 (4)C16—N12—C13—C140.3 (3)
N7—C1—C6—C5178.4 (2)C8—N12—C13—C14176.3 (2)
C2—C1—N7—C8174.1 (2)C16—N12—C13—C17179.8 (3)
C6—C1—N7—C84.8 (4)C8—N12—C13—C174.1 (4)
C2—C1—N7—N114.4 (3)N12—C13—C14—C150.1 (3)
C6—C1—N7—N11176.7 (2)C17—C13—C14—C15179.4 (3)
N11—N7—C8—C90.3 (3)C13—C14—C15—C160.4 (3)
C1—N7—C8—C9178.9 (2)C14—C15—C16—N120.6 (3)
N11—N7—C8—N12179.10 (19)C14—C15—C16—C18178.5 (3)
C1—N7—C8—N120.5 (4)C13—N12—C16—C150.5 (3)
N7—C8—C9—C100.2 (3)C8—N12—C16—C15176.6 (2)
N12—C8—C9—C10179.6 (2)C13—N12—C16—C18178.6 (2)
C8—C9—C10—N110.7 (3)C8—N12—C16—C182.6 (3)
C8—C9—C10—C19179.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···pyrrole-ring0.932.463.317 (3)153
C9—H9···pyrrole-ringi0.932.643.536 (3)162
C19—H19B···bromophenyl-ringii0.962.973.612 (3)125
C15—H15···Br20iii0.933.164.022 (3)155
Symmetry codes: (i) x+1, y+2, z; (ii) x+1, y+1, z; (iii) x, y+1, z.
1D and 2D NMR assignments and correlations of 3 top
NumberδH (mult, J in Hz)δC (ppm)COSYHMBC
Me (Pyrazole)2.40 (s)14.4
3149.7H-4 (2J)
149.7Me Pyrazole (2J)
46.23 (s)106.6Me Pyrazole (3J)
5136.5H-4 (2J)
136.5H-3' and H–4' (4J)
2' and 5'129.1Me Pyrrole (2J)
129.1H-3' and H-4' (2J)
3' and 4'5.90 (s)107.9Me Pyrrole (3J)
Me (Pyrrole)1.91 (s)12.5H-3' and H-4' (3J)
i137.9o-H (2J)
137.9m-H (3J)
o6.82 (d, J = 8.4)122.5m-H (3J)
m7.38 (d, J = 8.4)132.4o-H (3J)
p120.1m-H (2J)
120.1o-H (3J)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds