Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The multipurpose portable ultra-high-vacuum-compatible chamber described in detail in this article has been designed to carry out grazing-incidence X-ray scattering techniques on the BM25-SpLine CRG beamline at the ESRF. The chamber has a cylindrical form, built on a 360° beryllium double-ended conflate flange (CF) nipple. The main advantage of this chamber design is the wide sample temperature range, which may be varied between 60 and 1000 K. Other advantages of using a cylinder are that the wall thickness is reduced to a minimum value, keeping maximal solid angle accessibility and keeping wall absorption of the incoming X-ray beam constant. The heat exchanger is a customized compact liquid-nitrogen (LN2) continuous-flow cryostat. LN2 is transferred from a storage Dewar through a vacuum-isolated transfer line to the heat exchanger. The sample is mounted on a molybdenum support on the heat exchanger, which is equipped with a BORALECTRIC heater element. The chamber versatility extends to the operating pressure, ranging from ultra-high vacuum (<10-10 mbar) to high pressure (up to 3 × 103 mbar). In addition, it is equipped with several CF ports to allocate auxiliary components such as capillary gas-inlet, viewports, leak valves, ion gun, turbo pump, etc., responding to a large variety of experiment requirements. A movable slits set-up has been foreseen to reduce the background and diffuse scattering produced at the beryllium wall. Diffraction data can be recorded either with a point detector or with a bi-dimensional CCD detector, or both detectors simultaneously. The system has been designed to carry out a multitude of experiments in a large variety of environments. The system feasibility is demonstrated by showing temperature-dependence grazing-incidence X-ray diffraction and conductivity measurements on a 20 nm-thick La0.7Ca0.3MnO3 thin film grown on a SrTiO3(001) substrate.

Subscribe to Journal of Synchrotron Radiation

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Synchrotron Rad.
Sign up for e-alerts
Follow J. Synchrotron Rad. on Twitter
Follow us on facebook
Sign up for RSS feeds