Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
For X-ray absorption spectroscopy, either in transmission mode with concentrated samples or for dilute samples in fluorescence mode, it is advantageous to improve the signal-to-noise ratio by implementing a slit apparatus. Several investigations into the improvement of measurements when slits and filters are employed have been reported; however, these have always been for a particular design and are not transferable between dissimilar systems. A generalized approach to Soller slit design will be presented which enables a target level of noise rejection to be achieved by varying the number, size and placement of the filter and Soller slit assembly. A procedure for determining the reduction in efficiency of the Soller slits with respect to misalignment with the sample will also be discussed.

Subscribe to Journal of Synchrotron Radiation

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Synchrotron Rad.
Sign up for e-alerts
Follow J. Synchrotron Rad. on Twitter
Follow us on facebook
Sign up for RSS feeds