Download citation
Download citation
link to html
Poly-stoichiometry of hydrated phases is relatively uncommon for organic materials and extended libraries of such species adopting different aqua-to-substrate ratios are still rare. The kinetically controlled higher hydrates could be particularly inter­esting for their structural relationships, which presumably may imprint some features of the substrate/substrate and aqua/substrate bonding in solutions, and provide insights into the nucleation stage. Two metastable high hydrates are pre­pared by crash crystallization. The crystal structures of 3,3′,5,5′-tetra­nitro-4,4′-bi­pyrazole tetra­hydrate, C6H2N8O8·4H2O, (1), and 3,3′,5,5′-tetra­nitro-4,4′-bi­pyrazole penta­hydrate, C6H2N8O8·5H2O, (2), are intrinsically related to the previously reported anhydrate and monohydrate, while displaying natural evolution of the patterns upon progressive watering. The accumulation of the water mol­ecules causes their clustering, with the generation of one-dimensional tapes and two-dimensional layers in the genuine channel hydrates (1) and (2), respectively, versus the pocket hydrate structure of C6H2N8O8·H2O. The hydration primarily affects the pyrazole sites. It conditions the emergence of N—H...O and O—H...N hydrogen bonds, which is a destructive factor for pyrazole/pyrazole N—H...N hydrogen bonding. At the same time, extensive noncovalent inter­actions of the organic mol­ecules, namely, lone pair–π-hole O...N inter­actions of the NO2/NO2 and NO2/pyrazole types, are more com­petitive to the hydrogen bonding and the motifs of mutual organic/organic stacks remain intact with the increase in hydration. These trends agree with the results of Hirshfeld surface analysis. The contributions of the contacts involving H atoms are increased in line with the growing number of water mol­ecules, while the fraction of O...N/N...O (NO2) contacts is nearly invariant. One may postulate the significance of the lone pair–π-hole inter­actions to the aggregation of nitro species in solutions and their relevance for the sebsequent development of the solid-state patterns through nucleation.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229624003346/vp3035sup1.cif
Contains datablocks global, 1, 2

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229624003346/vp30351sup2.hkl
Contains datablock 1

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229624003346/vp30352sup3.hkl
Contains datablock 2

CCDC references: 2348676; 2348675

Computing details top

3,3',5,5'-Tetranitro-4,4'-bipyrazole tetrahydrate (1) top
Crystal data top
C6H2N8O8·4H2ODx = 1.764 Mg m3
Mr = 386.22Cu Kα radiation, λ = 1.54186 Å
Orthorhombic, PbcaCell parameters from 14295 reflections
a = 21.4196 (8) Åθ = 4.0–79.7°
b = 6.1927 (2) ŵ = 1.53 mm1
c = 21.9265 (8) ÅT = 183 K
V = 2908.44 (18) Å3Needle, colorless
Z = 80.10 × 0.07 × 0.05 mm
F(000) = 1584
Data collection top
STOE STADIVARI
diffractometer
3101 independent reflections
Radiation source: GeniX 3D HF Cu2195 reflections with I > 2σ(I)
Graded multilayer mirror monochromatorRint = 0.038
Detector resolution: 5.81 pixels mm-1θmax = 79.8°, θmin = 4.0°
rotation method, ω scansh = 2627
Absorption correction: multi-scan
(LANA; Koziskova et al., 2016)
k = 72
Tmin = 0.771, Tmax = 0.927l = 2725
20365 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035All H-atom parameters refined
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0519P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.90(Δ/σ)max < 0.001
3101 reflectionsΔρmax = 0.20 e Å3
276 parametersΔρmin = 0.23 e Å3
32 restraintsExtinction correction: SHELXL2019 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00205 (15)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.14098 (7)0.6584 (2)0.57023 (6)0.0348 (3)
O20.06762 (7)0.4647 (2)0.52816 (6)0.0344 (3)
O30.25768 (7)0.5011 (3)0.29894 (7)0.0392 (3)
O40.16120 (7)0.4025 (3)0.28851 (6)0.0382 (3)
O50.00180 (7)0.7610 (3)0.28928 (7)0.0383 (3)
O60.09120 (7)0.8045 (2)0.32791 (6)0.0336 (3)
O70.02799 (7)0.1219 (2)0.44849 (6)0.0360 (3)
O80.11324 (7)0.0525 (2)0.47155 (7)0.0390 (3)
N10.21495 (8)0.6041 (3)0.47257 (7)0.0268 (3)
N20.24037 (7)0.5836 (3)0.41701 (7)0.0266 (3)
N30.11831 (8)0.5552 (3)0.52746 (7)0.0266 (3)
N40.20511 (8)0.4678 (3)0.31930 (7)0.0285 (3)
N50.01516 (7)0.3807 (3)0.34525 (7)0.0270 (3)
N60.01111 (7)0.1998 (2)0.37827 (7)0.0267 (3)
N70.04235 (8)0.7030 (3)0.32128 (7)0.0283 (3)
N80.06291 (8)0.0349 (3)0.44517 (7)0.0280 (3)
C10.15489 (8)0.5422 (3)0.47268 (8)0.0243 (3)
C20.13753 (8)0.4775 (3)0.41480 (7)0.0234 (3)
C30.19343 (8)0.5102 (3)0.38276 (7)0.0243 (3)
C40.03595 (8)0.5028 (3)0.35335 (7)0.0240 (3)
C50.07673 (8)0.4020 (3)0.39341 (7)0.0234 (3)
C60.04372 (8)0.2129 (3)0.40688 (7)0.0235 (3)
O1W0.28405 (7)0.7280 (2)0.56554 (6)0.0330 (3)
O2W0.37886 (7)0.5771 (3)0.64017 (7)0.0385 (3)
O3W0.21480 (8)0.7967 (3)0.67571 (7)0.0364 (3)
O4W0.12499 (8)0.4908 (3)0.70570 (7)0.0361 (3)
H1N0.2402 (13)0.644 (5)0.5067 (10)0.060 (9)*
H2N0.0520 (12)0.431 (5)0.3242 (13)0.071 (10)*
H10.2626 (13)0.751 (5)0.5985 (10)0.065 (10)*
H20.3174 (11)0.661 (5)0.5777 (13)0.055 (9)*
H30.4142 (12)0.517 (5)0.6312 (15)0.074 (11)*
H40.3835 (17)0.697 (5)0.6616 (15)0.097 (13)*
H50.2375 (17)0.851 (7)0.7040 (14)0.102 (14)*
H60.1853 (12)0.892 (4)0.6691 (13)0.067 (10)*
H70.1577 (13)0.570 (5)0.6966 (16)0.084 (12)*
H80.127 (2)0.474 (7)0.7456 (11)0.130 (17)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0352 (8)0.0409 (9)0.0284 (6)0.0001 (6)0.0029 (5)0.0098 (5)
O20.0297 (8)0.0396 (9)0.0340 (7)0.0074 (6)0.0051 (6)0.0027 (5)
O30.0309 (8)0.0486 (10)0.0383 (7)0.0059 (6)0.0113 (6)0.0026 (6)
O40.0352 (9)0.0482 (10)0.0312 (7)0.0031 (6)0.0007 (6)0.0073 (5)
O50.0353 (8)0.0393 (9)0.0402 (8)0.0038 (6)0.0093 (6)0.0113 (6)
O60.0324 (8)0.0314 (8)0.0370 (7)0.0056 (5)0.0016 (6)0.0063 (5)
O70.0411 (9)0.0247 (8)0.0421 (7)0.0071 (6)0.0053 (6)0.0024 (5)
O80.0345 (8)0.0344 (9)0.0481 (8)0.0002 (6)0.0106 (6)0.0082 (6)
N10.0266 (8)0.0261 (8)0.0278 (7)0.0022 (6)0.0003 (6)0.0002 (5)
N20.0240 (8)0.0267 (9)0.0292 (7)0.0024 (6)0.0008 (6)0.0019 (5)
N30.0283 (8)0.0256 (9)0.0259 (7)0.0016 (6)0.0011 (6)0.0000 (5)
N40.0272 (8)0.0292 (9)0.0289 (7)0.0003 (6)0.0034 (6)0.0003 (5)
N50.0253 (8)0.0265 (9)0.0291 (7)0.0000 (6)0.0001 (6)0.0001 (5)
N60.0251 (8)0.0228 (8)0.0321 (7)0.0006 (5)0.0007 (6)0.0003 (5)
N70.0290 (8)0.0289 (9)0.0270 (7)0.0016 (6)0.0016 (6)0.0023 (5)
N80.0296 (8)0.0246 (9)0.0299 (7)0.0004 (6)0.0026 (6)0.0001 (5)
C10.0238 (9)0.0229 (9)0.0263 (8)0.0003 (6)0.0016 (6)0.0010 (6)
C20.0251 (9)0.0203 (9)0.0248 (7)0.0007 (6)0.0011 (6)0.0017 (5)
C30.0238 (9)0.0237 (9)0.0254 (8)0.0004 (6)0.0010 (6)0.0001 (6)
C40.0257 (9)0.0224 (10)0.0238 (7)0.0005 (6)0.0007 (6)0.0008 (5)
C50.0227 (9)0.0237 (9)0.0239 (7)0.0014 (6)0.0003 (6)0.0003 (5)
C60.0234 (8)0.0212 (9)0.0261 (8)0.0000 (6)0.0003 (6)0.0003 (5)
O1W0.0296 (8)0.0383 (9)0.0312 (7)0.0018 (6)0.0023 (5)0.0008 (5)
O2W0.0308 (8)0.0362 (9)0.0484 (8)0.0016 (6)0.0038 (6)0.0076 (6)
O3W0.0344 (8)0.0396 (9)0.0353 (7)0.0019 (6)0.0040 (6)0.0034 (5)
O4W0.0351 (8)0.0388 (9)0.0344 (7)0.0054 (6)0.0034 (6)0.0024 (6)
Geometric parameters (Å, º) top
O1—N31.2343 (19)N6—C61.334 (2)
O2—N31.222 (2)N7—C41.432 (2)
O3—N41.229 (2)N8—C61.445 (2)
O4—N41.226 (2)C1—C21.382 (2)
O5—N71.231 (2)C2—C31.403 (2)
O6—N71.229 (2)C2—C51.461 (2)
O7—N81.228 (2)C4—C51.387 (2)
O8—N81.228 (2)C5—C61.399 (2)
N1—N21.340 (2)O1W—H10.87 (2)
N1—C11.342 (2)O1W—H20.87 (2)
N1—H1N0.96 (2)O2W—H30.87 (2)
N2—C31.335 (2)O2W—H40.88 (2)
N3—C11.436 (2)O3W—H50.86 (2)
N4—C31.438 (2)O3W—H60.88 (2)
N5—N61.337 (2)O4W—H70.88 (2)
N5—C41.342 (2)O4W—H80.88 (2)
N5—H2N0.97 (2)
N2—N1—C1111.34 (14)N1—C1—N3120.54 (15)
N2—N1—H1N120.4 (17)C2—C1—N3129.62 (16)
C1—N1—H1N127.9 (17)C1—C2—C3100.85 (15)
C3—N2—N1103.74 (14)C1—C2—C5128.86 (16)
O2—N3—O1125.27 (16)C3—C2—C5130.27 (15)
O2—N3—C1118.00 (15)N2—C3—C2114.24 (15)
O1—N3—C1116.74 (15)N2—C3—N4118.40 (16)
O4—N4—O3123.93 (16)C2—C3—N4127.34 (16)
O4—N4—C3117.35 (16)N5—C4—C5110.10 (16)
O3—N4—C3118.71 (16)N5—C4—N7120.07 (16)
N6—N5—C4110.35 (15)C5—C4—N7129.82 (17)
N6—N5—H2N125.7 (19)C4—C5—C6101.07 (15)
C4—N5—H2N123 (2)C4—C5—C2128.37 (16)
C6—N6—N5105.11 (15)C6—C5—C2130.56 (16)
O6—N7—O5124.88 (17)N6—C6—C5113.37 (15)
O6—N7—C4117.78 (16)N6—C6—N8118.48 (16)
O5—N7—C4117.33 (16)C5—C6—N8128.11 (16)
O7—N8—O8125.24 (17)H1—O1W—H2105 (3)
O7—N8—C6117.68 (16)H3—O2W—H4112 (3)
O8—N8—C6117.09 (16)H5—O3W—H6105 (4)
N1—C1—C2109.82 (15)H7—O4W—H8105 (3)
C1—N1—N2—C31.0 (2)N6—N5—C4—N7178.71 (14)
C4—N5—N6—C60.10 (19)O6—N7—C4—N5176.65 (16)
N2—N1—C1—C20.5 (2)O5—N7—C4—N53.7 (2)
N2—N1—C1—N3178.74 (15)O6—N7—C4—C51.7 (3)
O2—N3—C1—N1168.07 (16)O5—N7—C4—C5177.98 (18)
O1—N3—C1—N112.1 (2)N5—C4—C5—C60.02 (19)
O2—N3—C1—C214.1 (3)N7—C4—C5—C6178.48 (17)
O1—N3—C1—C2165.77 (18)N5—C4—C5—C2179.92 (16)
N1—C1—C2—C30.23 (19)N7—C4—C5—C21.5 (3)
N3—C1—C2—C3177.82 (18)C1—C2—C5—C4112.2 (2)
N1—C1—C2—C5178.66 (17)C3—C2—C5—C465.7 (3)
N3—C1—C2—C50.6 (3)C1—C2—C5—C667.8 (3)
N1—N2—C3—C21.2 (2)C3—C2—C5—C6114.2 (2)
N1—N2—C3—N4179.43 (16)N5—N6—C6—C50.1 (2)
C1—C2—C3—N20.9 (2)N5—N6—C6—N8177.89 (14)
C5—C2—C3—N2179.30 (18)C4—C5—C6—N60.04 (19)
C1—C2—C3—N4178.95 (18)C2—C5—C6—N6179.98 (17)
C5—C2—C3—N42.7 (3)C4—C5—C6—N8177.70 (17)
O4—N4—C3—N2179.33 (17)C2—C5—C6—N82.2 (3)
O3—N4—C3—N20.2 (3)O7—N8—C6—N61.3 (2)
O4—N4—C3—C22.7 (3)O8—N8—C6—N6179.11 (16)
O3—N4—C3—C2178.14 (18)O7—N8—C6—C5176.33 (17)
N6—N5—C4—C50.1 (2)O8—N8—C6—C53.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1W0.96 (2)1.68 (2)2.634 (2)177 (3)
N5—H2N···O4Wi0.97 (2)1.76 (2)2.723 (2)172 (3)
O1W—H1···O3W0.87 (2)2.00 (2)2.866 (2)178 (3)
O1W—H2···O2W0.87 (2)1.97 (2)2.771 (2)153 (3)
O2W—H3···N6ii0.87 (2)2.10 (2)2.942 (2)164 (3)
O2W—H4···O4Wiii0.88 (2)2.07 (2)2.939 (2)168 (3)
O3W—H5···O3iv0.86 (2)2.31 (3)3.116 (2)156 (4)
O3W—H6···O2Wiii0.88 (2)1.90 (2)2.766 (2)170 (3)
O4W—H7···O3W0.88 (2)1.92 (2)2.779 (2)166 (3)
O4W—H8···O4v0.88 (2)2.62 (4)3.136 (2)118 (3)
O4W—H8···O6iv0.88 (2)2.39 (4)3.051 (2)132 (4)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1/2, y+1/2, z+1; (iii) x+1/2, y+1/2, z; (iv) x, y+3/2, z+1/2; (v) x, y+1/2, z+1/2.
3,3',5,5'-Tetranitro-4,4'-bipyrazole pentahydrate (2) top
Crystal data top
C6H2N8O8·5H2OF(000) = 832
Mr = 404.24Dx = 1.726 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54186 Å
a = 11.2164 (5) ÅCell parameters from 14313 reflections
b = 20.8114 (6) Åθ = 3.9–80.1°
c = 6.6646 (3) ŵ = 1.51 mm1
β = 90.435 (4)°T = 183 K
V = 1555.67 (11) Å3Needle, colorless
Z = 40.09 × 0.07 × 0.03 mm
Data collection top
STOE STADIVARI
diffractometer
3321 independent reflections
Radiation source: GeniX 3D HF Cu2619 reflections with I > 2σ(I)
Graded multilayer mirror monochromatorRint = 0.041
Detector resolution: 5.81 pixels mm-1θmax = 79.5°, θmin = 3.9°
rotation method, ω scansh = 1314
Absorption correction: multi-scan
(LANA; Koziskova et al., 2016)
k = 925
Tmin = 0.787, Tmax = 0.963l = 88
14058 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: difference Fourier map
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0939P)2]
where P = (Fo2 + 2Fc2)/3
3321 reflections(Δ/σ)max < 0.001
296 parametersΔρmax = 0.42 e Å3
53 restraintsΔρmin = 0.32 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.28035 (12)0.04718 (6)0.3996 (2)0.0386 (3)
O20.13306 (12)0.01590 (6)0.5861 (2)0.0392 (3)
O30.37077 (12)0.25979 (6)0.3829 (2)0.0403 (3)
O40.19788 (12)0.25621 (6)0.5233 (2)0.0387 (3)
O50.13642 (12)0.21076 (8)0.3560 (2)0.0467 (4)
O60.03913 (12)0.18784 (7)0.2445 (2)0.0399 (3)
O70.07786 (14)0.04766 (7)1.1095 (2)0.0438 (4)
O80.23648 (12)0.07031 (7)0.9392 (2)0.0405 (3)
N10.36281 (13)0.07172 (7)0.3696 (2)0.0280 (3)
N20.38173 (13)0.13466 (7)0.3548 (2)0.0283 (3)
N30.22147 (13)0.00586 (7)0.4864 (2)0.0304 (3)
N40.28528 (13)0.23088 (7)0.4509 (2)0.0296 (3)
N50.09369 (13)0.15151 (7)0.7006 (2)0.0286 (3)
N60.05416 (14)0.11939 (7)0.8599 (2)0.0308 (3)
N70.03690 (13)0.18720 (7)0.3731 (2)0.0307 (3)
N80.12899 (14)0.07156 (7)0.9660 (2)0.0318 (3)
C10.26111 (14)0.05963 (7)0.4645 (2)0.0265 (3)
C20.20628 (15)0.11677 (7)0.5198 (2)0.0259 (3)
C30.28840 (14)0.16143 (8)0.4436 (2)0.0263 (3)
C40.00963 (14)0.15605 (8)0.5601 (3)0.0267 (3)
C50.09402 (15)0.12615 (7)0.6253 (2)0.0257 (3)
C60.05760 (15)0.10474 (8)0.8161 (2)0.0278 (3)
O1W0.54652 (12)0.00552 (6)0.2491 (2)0.0359 (3)
O3W0.61658 (12)0.18711 (6)0.2917 (2)0.0379 (3)
O2W0.71826 (17)0.08688 (8)0.0706 (3)0.0375 (4)0.86
O2WA0.7582 (16)0.0942 (9)0.123 (3)0.059 (4)*0.14
H3A0.7879300.0704530.2144960.089*0.14
H4A0.8127700.1031030.0397560.089*0.14
O4W0.67352 (12)0.31146 (6)0.1914 (2)0.0356 (3)
O5W0.49162 (15)0.38334 (7)0.3636 (3)0.0486 (4)
H30.7943 (17)0.0863 (18)0.042 (5)0.058 (10)*0.86
H40.685 (3)0.088 (2)0.041 (4)0.098 (15)*0.86
H10.603 (2)0.0235 (11)0.179 (4)0.046 (7)*
H20.540 (3)0.0326 (10)0.202 (4)0.071 (10)*
H50.5436 (16)0.1760 (12)0.283 (4)0.044 (7)*
H60.6573 (19)0.1615 (11)0.226 (4)0.043 (6)*
H70.661 (2)0.3132 (13)0.062 (3)0.053 (8)*
H80.658 (3)0.2735 (10)0.228 (4)0.063 (8)*
H90.5443 (19)0.3606 (13)0.306 (4)0.070 (9)*
H100.434 (2)0.3591 (14)0.402 (5)0.074 (10)*
H1N0.423 (2)0.0455 (13)0.328 (4)0.048 (7)*
H2N0.1678 (19)0.1639 (11)0.697 (3)0.034 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0394 (7)0.0202 (6)0.0562 (8)0.0021 (5)0.0040 (6)0.0097 (5)
O20.0367 (7)0.0237 (7)0.0575 (8)0.0042 (5)0.0111 (6)0.0005 (5)
O30.0370 (7)0.0225 (7)0.0616 (9)0.0065 (5)0.0125 (6)0.0006 (5)
O40.0366 (7)0.0219 (6)0.0577 (8)0.0029 (5)0.0114 (6)0.0038 (5)
O50.0273 (7)0.0508 (9)0.0620 (9)0.0069 (6)0.0011 (6)0.0231 (7)
O60.0334 (7)0.0463 (8)0.0401 (7)0.0019 (6)0.0057 (5)0.0096 (6)
O70.0470 (8)0.0434 (8)0.0409 (7)0.0028 (6)0.0021 (6)0.0133 (6)
O80.0334 (7)0.0438 (8)0.0445 (7)0.0067 (6)0.0006 (5)0.0055 (6)
N10.0267 (7)0.0191 (7)0.0382 (7)0.0014 (5)0.0022 (5)0.0027 (5)
N20.0290 (7)0.0189 (7)0.0369 (7)0.0001 (5)0.0010 (6)0.0005 (5)
N30.0303 (7)0.0190 (7)0.0419 (8)0.0003 (5)0.0008 (6)0.0020 (5)
N40.0308 (7)0.0190 (7)0.0390 (7)0.0001 (5)0.0021 (6)0.0012 (5)
N50.0252 (7)0.0198 (7)0.0408 (7)0.0010 (5)0.0049 (5)0.0007 (5)
N60.0321 (8)0.0232 (7)0.0372 (7)0.0000 (5)0.0035 (6)0.0012 (5)
N70.0249 (7)0.0246 (7)0.0425 (8)0.0025 (5)0.0000 (6)0.0055 (6)
N80.0365 (8)0.0233 (7)0.0358 (7)0.0018 (6)0.0004 (6)0.0002 (5)
C10.0270 (8)0.0179 (8)0.0346 (8)0.0003 (6)0.0006 (6)0.0011 (6)
C20.0269 (8)0.0187 (7)0.0319 (7)0.0011 (6)0.0009 (6)0.0010 (5)
C30.0269 (8)0.0176 (8)0.0343 (8)0.0000 (6)0.0011 (6)0.0016 (6)
C40.0257 (8)0.0181 (8)0.0364 (8)0.0008 (5)0.0020 (6)0.0009 (6)
C50.0258 (8)0.0166 (7)0.0347 (8)0.0012 (5)0.0020 (6)0.0013 (5)
C60.0317 (8)0.0190 (7)0.0327 (8)0.0001 (6)0.0012 (6)0.0007 (6)
O1W0.0340 (7)0.0238 (7)0.0500 (7)0.0026 (5)0.0070 (6)0.0027 (5)
O3W0.0277 (7)0.0249 (7)0.0611 (9)0.0023 (5)0.0034 (6)0.0020 (5)
O2W0.0347 (9)0.0337 (9)0.0442 (10)0.0025 (7)0.0040 (8)0.0027 (7)
O4W0.0305 (7)0.0222 (7)0.0542 (8)0.0005 (5)0.0048 (5)0.0046 (5)
O5W0.0492 (9)0.0228 (7)0.0741 (11)0.0007 (6)0.0115 (8)0.0004 (6)
Geometric parameters (Å, º) top
O1—N31.2313 (19)N8—C61.451 (2)
O2—N31.216 (2)C1—C21.390 (2)
O3—N41.2221 (19)C2—C31.406 (2)
O4—N41.2161 (19)C2—C51.460 (2)
O5—N71.2236 (19)C4—C51.386 (2)
O6—N71.2134 (19)C5—C61.411 (2)
O7—N81.224 (2)O1W—H10.872 (18)
O8—N81.220 (2)O1W—H20.855 (19)
N1—N21.331 (2)O3W—H50.852 (17)
N1—C11.332 (2)O3W—H60.828 (17)
N1—H1N0.92 (3)O2W—H30.875 (19)
N2—C31.329 (2)O2W—H40.83 (2)
N3—C11.441 (2)O2WA—H3A0.8500
N4—C31.447 (2)O2WA—H4A0.8500
N5—N61.328 (2)O4W—H70.875 (17)
N5—C41.337 (2)O4W—H80.845 (19)
N5—H2N0.87 (2)O5W—H90.851 (19)
N6—C61.325 (2)O5W—H100.861 (19)
N7—C41.436 (2)
N2—N1—C1111.01 (13)C5—C4—N7130.37 (15)
N2—N1—H1N116.4 (17)C4—C5—C6100.17 (14)
C1—N1—H1N132.1 (17)C4—C5—C2129.33 (15)
C3—N2—N1104.66 (14)C6—C5—C2130.42 (15)
O2—N3—O1125.39 (15)N6—C6—C5114.03 (15)
O2—N3—C1118.13 (14)N6—C6—N8118.41 (15)
O1—N3—C1116.48 (15)C5—C6—N8127.53 (15)
O4—N4—O3124.81 (15)H1—O1W—H2105 (2)
O4—N4—C3117.78 (14)H5—O3W—H6109 (2)
O3—N4—C3117.40 (14)O2WA—O2W—H3A33.1
N6—N5—C4111.26 (14)O2WA—O2W—H4A47.1
N6—N5—H2N119.0 (15)H3A—O2W—H4A69.4
C4—N5—H2N129.6 (14)O2WA—O2W—H353 (2)
C6—N6—N5104.48 (14)H3A—O2W—H364.5
O6—N7—O5125.14 (16)H4A—O2W—H318.2
O6—N7—C4118.13 (14)O2WA—O2W—H4149 (3)
O5—N7—C4116.72 (15)H3A—O2W—H4161.5
O8—N8—O7125.10 (16)H4A—O2W—H4103.8
O8—N8—C6116.73 (15)H3—O2W—H4104 (3)
O7—N8—C6118.17 (15)O2W—O2WA—H3A124.8
N1—C1—C2110.28 (14)O2W—O2WA—H4A102.5
N1—C1—N3119.50 (14)H3A—O2WA—H4A108.4
C2—C1—N3130.14 (15)O2W—O2WA—H386 (3)
C1—C2—C3100.21 (14)H3A—O2WA—H3101.1
C1—C2—C5128.84 (15)H4A—O2WA—H328.3
C3—C2—C5130.94 (14)O2W—O2WA—H418 (2)
N2—C3—C2113.84 (14)H3A—O2WA—H4138.6
N2—C3—N4116.95 (14)H4A—O2WA—H485.7
C2—C3—N4129.21 (15)H3—O2WA—H473 (3)
N5—C4—C5110.06 (15)H7—O4W—H8107 (2)
N5—C4—N7119.54 (15)H9—O5W—H10110 (2)
C1—N1—N2—C30.03 (18)N6—N5—C4—N7177.78 (14)
C4—N5—N6—C60.81 (18)O6—N7—C4—N5176.42 (15)
N2—N1—C1—C20.29 (19)O5—N7—C4—N53.1 (2)
N2—N1—C1—N3176.78 (14)O6—N7—C4—C51.5 (3)
O2—N3—C1—N1174.75 (15)O5—N7—C4—C5178.95 (17)
O1—N3—C1—N16.0 (2)N5—C4—C5—C60.08 (18)
O2—N3—C1—C28.8 (3)N7—C4—C5—C6178.03 (17)
O1—N3—C1—C2170.46 (17)N5—C4—C5—C2177.08 (15)
N1—C1—C2—C30.46 (17)N7—C4—C5—C21.0 (3)
N3—C1—C2—C3176.22 (17)C1—C2—C5—C4117.2 (2)
N1—C1—C2—C5179.77 (16)C3—C2—C5—C461.9 (3)
N3—C1—C2—C53.1 (3)C1—C2—C5—C658.9 (3)
N1—N2—C3—C20.35 (19)C3—C2—C5—C6122.0 (2)
N1—N2—C3—N4179.72 (14)N5—N6—C6—C50.78 (19)
C1—C2—C3—N20.50 (18)N5—N6—C6—N8177.12 (14)
C5—C2—C3—N2179.79 (16)C4—C5—C6—N60.44 (19)
C1—C2—C3—N4179.78 (16)C2—C5—C6—N6176.50 (15)
C5—C2—C3—N40.9 (3)C4—C5—C6—N8177.23 (16)
O4—N4—C3—N2176.67 (15)C2—C5—C6—N85.8 (3)
O3—N4—C3—N23.1 (2)O8—N8—C6—N6165.51 (15)
O4—N4—C3—C24.1 (3)O7—N8—C6—N613.8 (2)
O3—N4—C3—C2176.20 (17)O8—N8—C6—C512.1 (3)
N6—N5—C4—C50.57 (19)O7—N8—C6—C5168.60 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1W0.92 (3)1.70 (3)2.610 (2)173 (3)
N5—H2N···O4Wi0.87 (2)1.85 (2)2.723 (2)179 (2)
O1W—H1···O2W0.87 (2)1.99 (2)2.833 (2)163 (2)
O1W—H2···O5Wii0.86 (2)1.84 (2)2.685 (2)170 (3)
O2W—H3···N6iii0.88 (2)2.21 (3)3.000 (2)151 (3)
O2W—H4···O5Wiv0.83 (2)2.33 (3)2.949 (3)131 (3)
O2W—H4···O1v0.83 (2)2.57 (3)3.241 (3)139 (3)
O3W—H5···N20.85 (2)2.07 (2)2.885 (2)160 (2)
O3W—H6···O2W0.83 (2)1.99 (2)2.802 (2)166 (2)
O4W—H7···O3Wiv0.88 (2)1.87 (2)2.735 (2)173 (2)
O4W—H8···O3W0.85 (2)1.91 (2)2.749 (2)176 (3)
O5W—H9···O4W0.85 (2)1.94 (2)2.784 (2)175 (3)
O5W—H10···O30.86 (2)2.19 (3)2.910 (2)141 (3)
O5W—H10···O8iv0.86 (2)2.67 (3)3.065 (2)109 (2)
Symmetry codes: (i) x1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x+1, y, z1; (iv) x, y+1/2, z1/2; (v) x+1, y, z.
Geometry of lone pair–π-hole interactions (Å, °) for (1) and (2) top
CompoundO-atom donorGroupO···NO···planeφ
O···N (nitro)
(1)O3(C3/N4/O3/O4)iii3.031 (2)2.8316 (16)69.10 (3)
O6(C6/N8/O7/O8)vii3.002 (2)2.8835 (18)73.85 (3)
O7(C4/N7/O5/O6)ix3.008 (2)2.8201 (19)69.64 (4)
O7(C1/N3/O1/O2)ix3.277 (2)3.098 (2)70.98 (5)
O7(C6/N8/O7/O8)viii3.085 (2)2.951 (2)73.05 (5)
O1w(C1/N3/O1/O2)iii3.029 (2)2.8845 (19)72.23 (4)
(2)O3(C3/N4/O3/O4)iv3.034 (2)2.9979 (16)81.16 (2)
O4(C3/N4/O3/O4)vii3.019 (2)2.9866 (16)81.65 (2)
O6(C6/N8/O7/O8)viii3.217 (2)2.911 (2)64.81 (4)
O7(C1/N3/O1/O2)ix3.175 (2)3.0653 (18)74.89 (3)
O1w(C1/N3/O1/O2)vi3.132 (2)2.9153 (19)68.56 (4)
O···N(H) (ring)
(1)O2(N5/N6/C4/C5/C6)i3.144 (2)3.0726 (16)77.77 (3)
O5(N5/N6/C4/C5/C6)xiii3.063 (2)2.770 (3)64.73 (5)
(2)O1(N5/N6/C4/C5/C6)iv3.087 (2)2.738 (3)62.49 (5)
O5(N5/N6/C4/C5/C6)x3.0857 (19)2.781 (2)64.32 (5)
O8(N1/N2/C1/C2/C3)ix3.190 (2)3.1830 (19)86.20 (4)
Notes: O···plane is a distance of the O-atom donor to the mean plane of the nitro (pyrazole) group and φ is an angle of the O···N axis to the plane of the nitro (pyrazole) group. [Symmetry codes for (1): (iii) -x+1/2, y+1/2, z; (vii) x, y+1, z; (viii) -x, -y, -z+1; (ix) x, y-1, z, (xiii) -x, y+1/2, -z+1/2. Symmetry codes for (2): (iv) x, -y+1/2, z?1/2; (vi) -x+1, -y, -z+1; (vii) x, -y+1/2, z+1/2; (viii) x, y, z-1; (ix) x, y, z+1; (x) -x, -y, -z+1.]
Number of the identified interactions per single H2Tnbpz molecule adopted for different hydrate environments in the structures of anhydrate PITGEH, monohydrate PITGIL and high hydrates (1) and (2) top
Bond typePITGEHPITGIL(1)(2)
NH···N/N···HN22--
NH···O/O···HN4---
NH···Ow-122
N···HOw-122
O···HOw-234
N···O/O···N (NO2)8476
N···O/O···N (ring)101046
O2N···Ow-111
π···Ow---1
O(N)···π/π···O(N)224-
N···NO2/O2N···N2---
O···O (NO2)a4463
Note: (a) number of O···O contacts below 3.05 Å adopted by nitro groups.
Contributions of the different kinds of the contacts (%) to the Hirshfeld surfaces of individual organic molecules in anhydrate PITGEH, monohydrate PITGIL and high hydrates (1) and (2). top
ContactsPITGEHPITGIL(1)(2)
All···O,N80.769.356.754.5
All···H14.126.738.540.8
O···H/H···O20.327.037.935.3
N···H/H···N5.28.75.08.8
C···H/H···C0.00.30.41.2
N···O/O···N27.821.921.219.3
C···O/O···C11.08.18.510.3
C···N/N···C0.00.32.30.1
O···O32.929.717.921.1
N···N2.73.13.60.5
H···H0.00.83.23.4
For the 2D plots for the principal contact, see Fig. 9.
Calculated interaction energies (kJ mol-1). top
PathTypeaR (Å)EeleEpolEdisErepEtot
(1)
Org···OrgixA6.19-16.8-3.2-29.218.9-33.9
Org···OrgiB6.29-16.8-3.1-27.016.8-33.3
Org···OrgviiiC8.30-2.9-1.2-14.18.6-10.9
Org···OrgxD6.861.3-4.1-28.119.2-14.3
Org···OrgxiE8.71-7.4-1.6-8.84.2-14.1
Org···(O1w)NH···OH25.54-82.2-20.1-7.985.0-56.1
Org···(O4w)iNH···OH25.59-62.8-16.1-6.956.8-49.3
Org···(O2w)viOH···N5.90-28.2-4.7-5.933.4-17.8
Org···(O4w)xiiOH···O5.69-12.0-1.6-5.911.1-12.1
Org···(O3w)xiiOH···O5.090.4-0.8-4.13.0-1.8
Org···(O1w)xH2O···NO24.50-19.1-4.1-10.310.7-25.5
(2)
Org···OrgivA6.66-17.1-2.7-23.214.3-31.5
Org···OrgxB6.10-18.8-3.4-25.612.5-37.0
Org···OrgviiiC6.33-14.7-2.9-29.622.3-29.8
Org···OrgxiD8.35-2.8-1.3-12.05.1-11.2
Org···(O1w)NH···OH25.56-83.7-20.6-6.787.3-55.7
Org···(O4w)iNH···OH25.61-68.5-17.5-8.164.1-52.9
Org···(O3w)OH···N5.72-22.3-5.0-7.241.8-7.8
Org···(O2w)xiiOH···N5.88-11.9-4.3-6.524.1-6.6
Org···(O4w)xiiiOH···O7.101.1-0.4-2.31.6-0.1
Org···(O5w)OH···O6.77-14.9-2.1-3.516.7-10.0
Org···(O2w)vOH···O6.21-4.6-0.8-3.63.7-6.3
Org···(O1w)viH2O···NO24.43-19.2-3.6-11.710.8-26.4
Org···(O5w)viiH2O···π4.29-4.2-1.3-7.23.2-9.6
Interaction energies were calculated employing the CE-B3LYP/6-31G(d,p) functional/basis set combination. The scale factors used to determine Etot: kele = 1.057, kpol = 0.740, kdis = 0.871, and krep = 0.618 (Mackenzie et al., 2017). (a) For details of the interaction modes in (1), see Fig. 10 and for details of the interaction modes in (2), see Fig. 11; R is a distance between centroids of the interacting molecules. Symmetry codes for (1): (i) -x, -y+1, -z+1; (vi) x-1/2, -y+1/2, -z+1; (viii) -x, -y, -z+1; (ix) x, y-1, z; (x) -x+1/2, y-1/2, z; (xi) -x, y-1/2, -z+1/2; (xii) x, -y+3/2, z-1/2; Symmetry codes for (2): (i) x-1, -y+1/2, z+1/2; (iv) x, -y+1/2, z-1/2; (v) -x+1, -y, -z; (vi) -x+1, -y, -z+1; (vii) x, -y+1/2, z+1/2; (viii) x, y, z-1; (x) -x, -y, -z+1; (xi) -x, -y, -z+2; (xii) x-1, y, z+1; (xiii) x-1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds