Download citation
Download citation
link to html
Copper(I) π-coordination com­pounds with allyl derivatives of azoles are an inter­esting subject of current research, but CuI π-com­plexes with other tran­sition-metal ions incorporated in the structure have been virtually unin­vestigated. The present work is directed toward the synthesis and structural characterization of the novel heterometallic CuI/FeII π-com­plex di-μ2-chlorido-1:2κ2Cl;2:3κ2Cl-tetra­kis­[μ2-5-(prop-2-en-1-ylsulfan­yl)-1,3,4-thia­diazol-2-amine]-1:2κ2N4:N3;1(η2),κN4:2κN3;2:3κ2N3:N4;2κN3:3(η2),κN4-dicopper(I)iron(II) tetra­chlorido­ferrate(II), [Cu2FeCl2(C5H7N3S2)4][FeCl4] (1). The structure of the 5-[(prop-2-en-1-yl)sul­fan­yl]-1,3,4-thia­diazol-2-amine (Pesta, C5H7N3S2) ligand is also presented. The cationic substructure in 1 consists of one FeII and two CuI ions bridged by two chloride ions along with two σ,σ- and two π,σ-coordinated ligands, whereas the anionic part is built of isolated tetra­hedral [FeCl4]2− ions. π-Co­or­dination of the Pesta allyl group to the CuI ions prevents agglomeration of the inorganic Cu–Cl–Fe–Cl–Cu part into infinate chains. An energy frame­work computational analysis was performed for Pesta.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229621004198/vp3015sup1.cif
Contains datablocks Pesta, Cu2FePesta4Cl2FeCl4, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229621004198/vp3015Pestasup2.hkl
Contains datablock Pesta

mol

MDL mol file https://doi.org/10.1107/S2053229621004198/vp3015Pestasup4.mol
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229621004198/vp3015Cu2FePesta4Cl2FeCl4sup3.hkl
Contains datablock Cu2FePesta4Cl2FeCl4

mol

MDL mol file https://doi.org/10.1107/S2053229621004198/vp3015Cu2FePesta4Cl2FeCl4sup5.mol
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229621004198/vp3015Pestasup6.cml
Supplementary material

CCDC references: 2060540; 2060539

Computing details top

For both structures, data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

5-[(Prop-2-en-1-yl)sulfanyl]-1,3,4-thiadiazol-2-amine (Pesta) top
Crystal data top
C5H7N3S2Z = 2
Mr = 173.26F(000) = 180
Triclinic, P1Dx = 1.499 Mg m3
a = 6.088 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.826 (3) ÅCell parameters from 2650 reflections
c = 8.623 (3) Åθ = 3.4–29.7°
α = 79.80 (3)°µ = 0.62 mm1
β = 72.96 (3)°T = 160 K
γ = 80.62 (3)°Block, clear colourless
V = 383.9 (3) Å30.9 × 0.48 × 0.26 mm
Data collection top
Kuma KM-4-CCD
diffractometer
1648 reflections with I > 2σ(I)
ω scansRint = 0.037
Absorption correction: analytical
[CrysAlis PRO (Rigaku OD, 2015), based on expressions derived by Clark & Reid (1995)]
θmax = 29.6°, θmin = 3.4°
Tmin = 0.218, Tmax = 0.582h = 68
5125 measured reflectionsk = 910
1923 independent reflectionsl = 1111
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0684P)2 + 0.0481P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
1923 reflectionsΔρmax = 0.40 e Å3
127 parametersΔρmin = 0.30 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.60004 (7)0.20729 (6)0.55188 (5)0.04715 (18)
S21.10748 (7)0.28004 (7)0.40186 (5)0.05078 (18)
N40.7092 (2)0.10329 (19)0.82074 (17)0.0432 (3)
N30.9071 (2)0.1553 (2)0.70667 (18)0.0446 (3)
C20.8779 (3)0.2125 (2)0.56378 (19)0.0383 (3)
N20.3220 (3)0.0866 (3)0.8432 (2)0.0588 (5)
C50.5339 (3)0.1237 (2)0.75821 (19)0.0397 (3)
C9A0.6565 (18)0.3818 (9)0.1493 (11)0.0637 (16)0.715 (6)
H9AA0.5559510.4747660.1994550.076*0.715 (6)
H9AB0.6059560.3179940.0847680.076*0.715 (6)
C8A0.8624 (6)0.3420 (5)0.1689 (3)0.0565 (9)0.715 (6)
H8A0.9562700.2480150.1162800.068*0.715 (6)
C7A0.9664 (5)0.4285 (4)0.2654 (3)0.0522 (8)0.715 (6)
H7AA0.8432210.5068790.3306910.063*0.715 (6)
H7AB1.0807320.5021350.1886830.063*0.715 (6)
C7B1.0096 (11)0.3004 (8)0.2193 (7)0.0433 (18)0.285 (6)
H7BA1.1442850.3144570.1222150.052*0.285 (6)
H7BB0.9495350.1904370.2187710.052*0.285 (6)
C8B0.8275 (13)0.4484 (10)0.2036 (8)0.0477 (19)0.285 (6)
H8B0.8516360.5601410.2196690.057*0.285 (6)
C9B0.639 (4)0.436 (2)0.169 (2)0.050 (3)0.285 (6)
H9BA0.6088430.3259000.1526240.060*0.285 (6)
H9BB0.5293450.5360540.1612580.060*0.285 (6)
H2A0.299 (4)0.032 (3)0.936 (3)0.062 (7)*
H2B0.212 (4)0.101 (3)0.798 (3)0.063 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0318 (2)0.0753 (3)0.0335 (2)0.0134 (2)0.01391 (18)0.00996 (19)
S20.0317 (3)0.0748 (3)0.0421 (3)0.0137 (2)0.00866 (19)0.0063 (2)
N40.0345 (7)0.0626 (8)0.0330 (7)0.0125 (6)0.0133 (5)0.0052 (6)
N30.0352 (7)0.0624 (8)0.0374 (7)0.0133 (6)0.0147 (6)0.0047 (6)
C20.0301 (7)0.0483 (8)0.0369 (8)0.0079 (6)0.0120 (6)0.0011 (6)
N20.0350 (8)0.0980 (13)0.0391 (8)0.0195 (8)0.0139 (7)0.0191 (8)
C50.0341 (8)0.0515 (8)0.0320 (7)0.0075 (6)0.0109 (6)0.0037 (6)
C9A0.068 (4)0.076 (4)0.052 (3)0.018 (3)0.023 (3)0.002 (3)
C8A0.0602 (19)0.070 (2)0.0375 (13)0.0107 (15)0.0111 (12)0.0037 (12)
C7A0.0516 (15)0.0591 (17)0.0454 (14)0.0186 (12)0.0154 (12)0.0091 (11)
C7B0.039 (3)0.057 (4)0.030 (3)0.007 (3)0.008 (2)0.001 (2)
C8B0.057 (4)0.041 (4)0.040 (3)0.007 (3)0.010 (3)0.005 (2)
C9B0.049 (5)0.060 (7)0.040 (5)0.001 (6)0.017 (4)0.003 (5)
Geometric parameters (Å, º) top
S1—C21.7320 (18)C9A—C8A1.294 (10)
S1—C51.7347 (17)C8A—H8A0.9500
S2—C21.7373 (18)C8A—C7A1.483 (5)
S2—C7A1.804 (3)C7A—H7AA0.9900
S2—C7B1.813 (6)C7A—H7AB0.9900
N4—N31.382 (2)C7B—H7BA0.9900
N4—C51.306 (2)C7B—H7BB0.9900
N3—C21.287 (2)C7B—C8B1.484 (10)
N2—C51.333 (2)C8B—H8B0.9500
N2—H2A0.82 (2)C8B—C9B1.29 (2)
N2—H2B0.85 (3)C9B—H9BA0.9500
C9A—H9AA0.9500C9B—H9BB0.9500
C9A—H9AB0.9500
C2—S1—C586.90 (8)C7A—C8A—H8A116.8
C2—S2—C7A103.27 (11)S2—C7A—H7AA108.6
C2—S2—C7B105.6 (2)S2—C7A—H7AB108.6
C5—N4—N3112.12 (13)C8A—C7A—S2114.5 (2)
C2—N3—N4113.35 (14)C8A—C7A—H7AA108.6
S1—C2—S2125.49 (10)C8A—C7A—H7AB108.6
N3—C2—S1113.92 (13)H7AA—C7A—H7AB107.6
N3—C2—S2120.56 (13)S2—C7B—H7BA108.6
C5—N2—H2A120.6 (17)S2—C7B—H7BB108.6
C5—N2—H2B121.6 (16)H7BA—C7B—H7BB107.6
H2A—N2—H2B117 (2)C8B—C7B—S2114.8 (5)
N4—C5—S1113.70 (13)C8B—C7B—H7BA108.6
N4—C5—N2124.04 (16)C8B—C7B—H7BB108.6
N2—C5—S1122.26 (13)C7B—C8B—H8B117.8
H9AA—C9A—H9AB120.0C9B—C8B—C7B124.5 (9)
C8A—C9A—H9AA120.0C9B—C8B—H8B117.8
C8A—C9A—H9AB120.0C8B—C9B—H9BA120.0
C9A—C8A—H8A116.8C8B—C9B—H9BB120.0
C9A—C8A—C7A126.5 (4)H9BA—C9B—H9BB120.0
S2—C7B—C8B—C9B131.4 (12)C5—S1—C2—S2178.70 (12)
N4—N3—C2—S10.56 (19)C5—S1—C2—N30.73 (14)
N4—N3—C2—S2178.65 (11)C5—N4—N3—C20.0 (2)
N3—N4—C5—S10.58 (18)C9A—C8A—C7A—S2132.6 (6)
N3—N4—C5—N2178.68 (18)C7A—S2—C2—S126.03 (15)
C2—S1—C5—N40.73 (13)C7A—S2—C2—N3156.12 (17)
C2—S1—C5—N2178.54 (17)C7B—S2—C2—S110.7 (2)
C2—S2—C7A—C8A76.7 (2)C7B—S2—C2—N3167.1 (2)
C2—S2—C7B—C8B70.0 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N4i0.82 (2)2.16 (2)2.981 (3)171 (2)
N2—H2B···N3ii0.85 (3)2.17 (3)3.021 (3)173 (2)
Symmetry codes: (i) x+1, y, z+2; (ii) x1, y, z.
Di-µ2-chlorido-1:2κ2Cl;2:3κ2Cl-tetrakis[µ2-5-(prop-2-en-1-ylsulfanyl)-1,3,4-thiadiazol-2-amine]-1:2κ2N4:N3;1(η2),κN4:2κN3;2:3κ2N3:N4;2κN3:3(η2),κN4-dicopper(I)iron(II) tetrachloridoferrate(II) (Cu2FePesta4Cl2FeCl4) top
Crystal data top
[Cu2FeCl2(C5H7N3S2)4][FeCl4]F(000) = 2288
Mr = 1144.50Dx = 1.910 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 17.650 (5) ÅCell parameters from 10912 reflections
b = 10.686 (4) Åθ = 3.6–29.5°
c = 21.107 (6) ŵ = 2.63 mm1
β = 90.15 (3)°T = 100 K
V = 3981 (2) Å3Block, clear colourless
Z = 40.77 × 0.54 × 0.38 mm
Data collection top
Xcalibur, Atlas
diffractometer
4464 reflections with I > 2σ(I)
Detector resolution: 10.6249 pixels mm-1Rint = 0.028
ω scansθmax = 29.6°, θmin = 3.0°
Absorption correction: analytical
[CrysAlis PRO (Rigaku OD, 2015), based on expressions derived by Clark & Reid (1995)]
h = 2224
Tmin = 0.278, Tmax = 0.517k = 1411
24848 measured reflectionsl = 2725
5036 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.025H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.059 w = 1/[σ2(Fo2) + (0.024P)2 + 6.463P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
5036 reflectionsΔρmax = 0.48 e Å3
253 parametersΔρmin = 0.46 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.28612 (2)0.46858 (2)0.43309 (2)0.01228 (6)
Fe10.2500000.7500000.5000000.01189 (8)
Cl10.16834 (2)0.56946 (4)0.47478 (2)0.01415 (9)
Cl30.5000000.32746 (6)0.2500000.01849 (13)
S120.32338 (3)0.49050 (4)0.26438 (2)0.01882 (10)
Cl40.38520 (3)0.04634 (4)0.23786 (2)0.02448 (11)
S110.32564 (3)0.76568 (4)0.28434 (2)0.01878 (10)
S210.43384 (3)0.50338 (5)0.60757 (2)0.01901 (10)
Fe20.48975 (3)0.12003 (5)0.28183 (2)0.01396 (11)0.5
S220.43555 (3)0.31110 (5)0.49761 (2)0.02523 (12)
Cl20.46697 (5)0.11849 (9)0.38822 (4)0.01803 (18)0.5
N130.30632 (8)0.61523 (13)0.37695 (7)0.0127 (3)
N230.34880 (8)0.51057 (14)0.50948 (7)0.0138 (3)
N240.33239 (9)0.62041 (14)0.54255 (7)0.0163 (3)
N140.30300 (9)0.73474 (14)0.40397 (7)0.0147 (3)
N120.31204 (12)0.94572 (16)0.37281 (9)0.0256 (4)
N220.36669 (12)0.72123 (18)0.63756 (10)0.0308 (5)
C180.25837 (10)0.34788 (17)0.36174 (8)0.0141 (3)
H180.2128450.3907480.3513680.017*
C190.26196 (11)0.28109 (17)0.41668 (9)0.0169 (4)
H19A0.3071210.2377550.4276680.020*
H19B0.2193070.2778680.4439910.020*
C120.31671 (10)0.61652 (17)0.31601 (8)0.0135 (3)
C150.31321 (11)0.82314 (17)0.36113 (9)0.0170 (4)
C220.40161 (10)0.44307 (17)0.53617 (8)0.0143 (3)
C170.32468 (11)0.35566 (17)0.31692 (9)0.0171 (4)
H17A0.3257400.2787160.2908170.021*
H17B0.3720250.3578270.3421590.021*
C250.37268 (11)0.62909 (18)0.59501 (9)0.0183 (4)
C270.50743 (11)0.2519 (2)0.55214 (11)0.0280 (5)
H27A0.5407710.1927010.5293270.034*
H27B0.5390760.3225280.5671090.034*
C280.47371 (13)0.1876 (2)0.60770 (13)0.0352 (6)
H280.4441100.1146820.6004150.042*
C290.48266 (15)0.2262 (3)0.66664 (14)0.0433 (7)
H29A0.5119770.2987600.6752780.052*
H29B0.4597750.1813450.7004260.052*
H12A0.3173 (15)0.966 (2)0.4105 (13)0.033 (7)*
H22A0.3519 (14)0.788 (2)0.6241 (12)0.026 (7)*
H12B0.3271 (15)0.992 (3)0.3451 (13)0.031 (7)*
H22B0.3972 (14)0.724 (2)0.6670 (12)0.023 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01723 (11)0.01004 (11)0.00954 (11)0.00106 (8)0.00250 (8)0.00095 (8)
Fe10.01503 (17)0.00983 (17)0.01077 (18)0.00222 (13)0.00428 (13)0.00220 (13)
Cl10.01491 (19)0.0124 (2)0.0152 (2)0.00204 (15)0.00125 (15)0.00157 (16)
Cl30.0115 (3)0.0137 (3)0.0303 (4)0.0000.0021 (2)0.000
S120.0271 (2)0.0161 (2)0.0133 (2)0.00689 (18)0.00721 (18)0.00102 (17)
Cl40.0309 (3)0.0170 (2)0.0255 (3)0.00892 (18)0.0072 (2)0.00316 (19)
S110.0293 (2)0.0147 (2)0.0124 (2)0.00004 (18)0.00230 (18)0.00461 (17)
S210.0227 (2)0.0193 (2)0.0150 (2)0.00498 (18)0.00919 (18)0.00082 (18)
Fe20.0142 (2)0.0125 (2)0.0151 (3)0.00041 (18)0.00025 (19)0.0021 (2)
S220.0218 (2)0.0346 (3)0.0193 (3)0.0079 (2)0.00085 (19)0.0112 (2)
Cl20.0211 (4)0.0198 (4)0.0133 (4)0.0024 (3)0.0005 (3)0.0044 (3)
N130.0135 (7)0.0107 (7)0.0139 (7)0.0009 (5)0.0016 (6)0.0014 (6)
N230.0165 (7)0.0131 (7)0.0117 (7)0.0023 (6)0.0022 (6)0.0023 (6)
N240.0214 (8)0.0116 (7)0.0158 (8)0.0013 (6)0.0081 (6)0.0001 (6)
N140.0207 (8)0.0109 (7)0.0126 (7)0.0031 (6)0.0021 (6)0.0010 (6)
N120.0488 (12)0.0137 (8)0.0142 (9)0.0069 (8)0.0035 (8)0.0031 (7)
N220.0445 (12)0.0172 (9)0.0307 (11)0.0091 (8)0.0281 (9)0.0066 (8)
C180.0148 (8)0.0129 (8)0.0147 (9)0.0003 (6)0.0009 (7)0.0043 (7)
C190.0217 (9)0.0119 (8)0.0172 (9)0.0022 (7)0.0003 (7)0.0021 (7)
C120.0130 (8)0.0134 (8)0.0140 (9)0.0012 (6)0.0002 (6)0.0029 (7)
C150.0234 (9)0.0143 (9)0.0133 (9)0.0019 (7)0.0013 (7)0.0020 (7)
C220.0157 (8)0.0178 (9)0.0095 (8)0.0019 (7)0.0011 (6)0.0027 (7)
C170.0206 (9)0.0137 (9)0.0172 (9)0.0033 (7)0.0039 (7)0.0013 (7)
C250.0224 (9)0.0142 (9)0.0182 (9)0.0004 (7)0.0091 (7)0.0014 (7)
C270.0167 (9)0.0303 (12)0.0370 (13)0.0093 (8)0.0026 (8)0.0083 (10)
C280.0258 (11)0.0183 (11)0.0615 (18)0.0040 (8)0.0062 (11)0.0146 (11)
C290.0383 (14)0.0429 (15)0.0488 (17)0.0138 (11)0.0043 (12)0.0293 (13)
Geometric parameters (Å, º) top
Cu1—Cl12.5034 (8)N13—C121.300 (2)
Cu1—N131.9974 (15)N23—N241.396 (2)
Cu1—N232.0037 (17)N23—C221.305 (2)
Cu1—C182.0415 (18)N24—C251.318 (2)
Cu1—C192.0773 (19)N14—C151.320 (2)
Fe1—Cl12.4655 (8)N12—C151.333 (3)
Fe1—Cl1i2.4655 (8)N12—H12A0.83 (3)
Fe1—N24i2.1982 (16)N12—H12B0.81 (3)
Fe1—N242.1982 (16)N22—C251.337 (3)
Fe1—N14i2.2406 (16)N22—H22A0.81 (3)
Fe1—N142.2406 (16)N22—H22B0.82 (3)
Cl3—Fe2ii2.3233 (11)C18—H180.9500
Cl3—Fe22.3233 (11)C18—C191.363 (3)
S12—C121.7364 (19)C18—C171.509 (2)
S12—C171.8183 (19)C19—H19A0.9500
Cl4—Fe2ii2.3811 (9)C19—H19B0.9500
Cl4—Fe22.2086 (10)C17—H17A0.9900
S11—C121.7357 (19)C17—H17B0.9900
S11—C151.748 (2)C27—H27A0.9900
S21—C221.7335 (19)C27—H27B0.9900
S21—C251.743 (2)C27—C281.485 (3)
Fe2—Fe2ii1.3925 (11)C28—H280.9500
Fe2—Cl22.2823 (12)C28—C291.320 (4)
S22—C221.7357 (19)C29—H29A0.9500
S22—C271.824 (2)C29—H29B0.9500
N13—N141.400 (2)
N13—Cu1—Cl191.16 (5)N13—N14—Fe1116.93 (10)
N13—Cu1—N23101.69 (6)C15—N14—Fe1128.72 (13)
N13—Cu1—C1895.79 (7)C15—N14—N13111.58 (15)
N13—Cu1—C19134.00 (7)C15—N12—H12A115.6 (18)
N23—Cu1—Cl194.48 (5)C15—N12—H12B117.4 (18)
N23—Cu1—C18149.99 (7)H12A—N12—H12B120 (3)
N23—Cu1—C19117.57 (7)C25—N22—H22A116.0 (17)
C18—Cu1—Cl1109.48 (5)C25—N22—H22B118.8 (17)
C18—Cu1—C1938.64 (7)H22A—N22—H22B116 (2)
C19—Cu1—Cl1107.68 (6)Cu1—C18—H1893.8
Cl1i—Fe1—Cl1180.0C19—C18—Cu172.10 (11)
N24i—Fe1—Cl191.09 (5)C19—C18—H18119.1
N24—Fe1—Cl1i91.09 (5)C19—C18—C17121.85 (17)
N24i—Fe1—Cl1i88.91 (5)C17—C18—Cu1104.04 (12)
N24—Fe1—Cl188.91 (5)C17—C18—H18119.1
N24—Fe1—N24i180.0Cu1—C19—H19A104.9
N24i—Fe1—N1487.34 (6)Cu1—C19—H19B95.5
N24—Fe1—N14i87.34 (6)C18—C19—Cu169.26 (11)
N24i—Fe1—N14i92.66 (6)C18—C19—H19A120.0
N24—Fe1—N1492.66 (6)C18—C19—H19B120.0
N14i—Fe1—Cl1i89.59 (4)H19A—C19—H19B120.0
N14—Fe1—Cl1i90.41 (4)S11—C12—S12117.66 (10)
N14—Fe1—Cl189.59 (4)N13—C12—S12128.52 (14)
N14i—Fe1—Cl190.41 (4)N13—C12—S11113.82 (13)
N14—Fe1—N14i180.00 (10)N14—C15—S11113.67 (14)
Fe1—Cl1—Cu185.83 (3)N14—C15—N12125.04 (18)
Fe2ii—Cl3—Fe234.88 (3)N12—C15—S11121.25 (15)
C12—S12—C17103.45 (9)S21—C22—S22126.65 (11)
Fe2—Cl4—Fe2ii35.07 (3)N23—C22—S21113.71 (14)
C12—S11—C1587.35 (9)N23—C22—S22119.56 (14)
C22—S21—C2587.29 (9)S12—C17—H17A108.6
Cl3—Fe2—Cl4ii101.08 (3)S12—C17—H17B108.6
Cl4—Fe2—Cl3106.51 (3)C18—C17—S12114.67 (13)
Cl4—Fe2—Cl4ii125.63 (4)C18—C17—H17A108.6
Cl4—Fe2—Cl2105.17 (4)C18—C17—H17B108.6
Fe2ii—Fe2—Cl372.560 (16)H17A—C17—H17B107.6
Fe2ii—Fe2—Cl4ii65.68 (5)N24—C25—S21113.96 (14)
Fe2ii—Fe2—Cl479.25 (5)N24—C25—N22124.95 (18)
Fe2ii—Fe2—Cl2175.07 (6)N22—C25—S21121.03 (15)
Cl2—Fe2—Cl3107.79 (3)S22—C27—H27A109.1
Cl2—Fe2—Cl4ii109.58 (4)S22—C27—H27B109.1
C22—S22—C27103.07 (10)H27A—C27—H27B107.9
N14—N13—Cu1117.80 (11)C28—C27—S22112.29 (15)
C12—N13—Cu1128.41 (12)C28—C27—H27A109.1
C12—N13—N14113.56 (14)C28—C27—H27B109.1
N24—N23—Cu1118.40 (11)C27—C28—H28118.2
C22—N23—Cu1128.01 (13)C29—C28—C27123.5 (2)
C22—N23—N24113.42 (15)C29—C28—H28118.2
N23—N24—Fe1117.59 (11)C28—C29—H29A120.0
C25—N24—Fe1130.84 (13)C28—C29—H29B120.0
C25—N24—N23111.53 (15)H29A—C29—H29B120.0
Cu1—N13—N14—Fe113.63 (16)N14—N13—C12—S111.23 (19)
Cu1—N13—N14—C15176.46 (12)C19—C18—C17—S12157.68 (15)
Cu1—N13—C12—S125.3 (3)C12—S12—C17—C1855.41 (16)
Cu1—N13—C12—S11175.42 (9)C12—S11—C15—N140.52 (15)
Cu1—N23—N24—Fe18.43 (16)C12—S11—C15—N12178.44 (18)
Cu1—N23—N24—C25173.45 (13)C12—N13—N14—Fe1161.22 (12)
Cu1—N23—C22—S21171.90 (9)C12—N13—N14—C151.6 (2)
Cu1—N23—C22—S2211.1 (2)C15—S11—C12—S12179.84 (12)
Cu1—C18—C17—S1280.25 (14)C15—S11—C12—N130.43 (15)
Fe1—N24—C25—S21177.65 (9)C22—S21—C25—N241.29 (15)
Fe1—N24—C25—N225.3 (3)C22—S21—C25—N22178.51 (19)
Fe1—N14—C15—S11159.02 (9)C22—S22—C27—C2875.92 (18)
Fe1—N14—C15—N1218.8 (3)C22—N23—N24—Fe1175.99 (12)
S22—C27—C28—C29117.7 (2)C22—N23—N24—C252.1 (2)
N13—N14—C15—S111.3 (2)C17—S12—C12—S11172.23 (10)
N13—N14—C15—N12179.10 (19)C17—S12—C12—N137.08 (19)
N23—N24—C25—S210.1 (2)C17—C18—C19—Cu195.71 (16)
N23—N24—C25—N22176.95 (19)C25—S21—C22—S22174.24 (13)
N24—N23—C22—S213.17 (19)C25—S21—C22—N232.53 (14)
N24—N23—C22—S22173.86 (12)C27—S22—C22—S212.68 (15)
N14—N13—C12—S12179.44 (13)C27—S22—C22—N23179.28 (15)
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N12—H12A···Cl1i0.83 (3)2.46 (3)3.239 (2)156 (2)
N22—H22A···Cl1i0.81 (3)2.61 (3)3.317 (2)147 (2)
N12—H12B···Cl4iii0.81 (3)2.55 (3)3.310 (2)156 (2)
N22—H22B···Cl3iv0.82 (3)2.58 (3)3.378 (2)165 (2)
N22—H22B···Cl4v0.82 (3)2.88 (2)3.279 (2)111.9 (19)
Symmetry codes: (i) x+1/2, y+3/2, z+1; (iii) x, y+1, z; (iv) x+1, y+1, z+1; (v) x, y+1, z+1/2.
Selected geometric parameters (Å, °) of Pesta and 1 top
m is the mid-point of the CC bond.
Pesta
N3—C21.287 (2)S2—C7A—C8A114.5 (2)
N2—C51.333 (2)S1—C2—S2125.49 (10)
N4—N31.382 (2)S1—C2—N3113.92 (13)
Complex 1
Cu1—Cl12.5034 (8)N13—Cu1—m115.11 (7)
Fe1—Cl12.4655 (8)N23—Cu1—m134.60 (7)
Cu1—N131.9974 (15)Cl1—Cu1—m109.72 (6)
Cu1—N232.0037 (17)N13—Cu1—Cl191.16 (5)
Fe1—N142.2406 (16)N23—Cu1—Cl194.48 (5)
Fe1—N242.1982 (16)N14—Fe1—Cl190.41 (4)
Cu1—C182.0415 (18)N24—Fe1—Cl1i91.09 (5)
Cu1—ma1.943 (2)C18—Cu1—C1938.64 (7)
C18—C191.363 (3)C17—C18—C19121.85 (17)
Fe2—Cl22.2823 (12)Cl2—Fe2—Cl3107.79 (3)
Fe2—Cl32.3233 (11)Cl2—Fe2—Cl4109.58 (4)
Symmetry code: (i) -x+1/2, -y+3/2, -z+1.
The most prominent molecular interaction energies (kJ mol-1) for the cluster of molecules for Pesta (models A and B) top
No.NaSymmetry codeRbEelecEpolcEdiscErepcEtotc,d
ABABABABAB
LI2x+1, y, z; x-1, y, z6.09-42.3-42.1-9.5-9.5-18.0-17.950.650.4-36.1-35.9
LII1-x+1, -y, -z+28.42-88.9-88.8-19.9-20.0-13.8-13.878.378.2-72.4-72.4
LIII1-x+1, -y+1, -z+14.88-2.9-9.6-1.7-2.4-23.8-34.113.630.6-16.7-22.7
LIV1-x+2, -y+1, -z+15.32-19.2-9.7-4.3-3.1-22.0-15.217.09.9-32.1-19.6
LV1-x+1, -y, -z+15.39-3.31.2-2.4-2.3-20.1-18.411.311.0-15.7-9.8
LVI1-x+2, -y, -z+14.23-10.8-24.0-4.4-6.9-27.5-35.123.532.4-24.1-41.1
LVII1-x+2, -y+1, -z8.97-4.3-3.5-0.6-0.6-13.3-13.711.310.5-9.6-9.6
LVIII2x, y, z+1 x, y, z-18.62-3.4-2.9-1.8-1.1-5.3-3.32.70.4-7.8-6.5
Notes: (a) N is the number of molecules involved in interactions with the selected molecule; (b) R is the distance between molecular centroids (mean atomic position) in Å; (c) Eele, Epol, Edis, Erep and Etot are the electrostatic, polarization, dispersion, repulsion and total energies of the interactions; (d) each energy should be multiplied by the respective conversion factor, i.e. kele = 1.057, kpol = 0.740, kdis = 0.871 and krep = 0.618, to obtain the total energy (Etot).
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds