Download citation
Download citation
link to html
Being a close analogue of amflutizole, methyl 4-amino-3-phenyl­iso­thia­zole-5-car­box­yl­ate (C11H10N2O2S) was assumed to be capable of forming poly­morphic structures. Noncentrosymmetric and centrosymmetric polymorphs have been obtained by crystallization from a series of more volatile solvents and from denser tetra­chloro­methane, respectively. Identical conformations of the mol­ecule are found in both structures. The two polymorphs differ mainly in the inter­molecular inter­actions formed by the amino group and in the type of stacking inter­actions between the π-systems. The most effective method for revealing packing motifs in structures with inter­molecular inter­actions of different types (hydrogen bonding, stacking, dispersion, etc.) is to study the pairwise inter­action energies using quantum chemical calculations. Mol­ecules form a column as the primary basic structural motif due to stacking inter­actions in both polymorphic structures under study. The character of a column (straight or zigzag) is determined by the orientations of the stacked mol­ecules (in a `head-to-head' or `head-to-tail' manner). Columns bound by inter­molecular N—H...O and N—H...N hydrogen bonds form a double column as the main structural motif in the noncentrosymmetric structure. Double columns in the noncentrosymmetric structure and columns in the centrosymmetric structure inter­act strongly within the ab crystallographic plane, forming a layer as a secondary basic structural motif. The noncentrosymmetric structure has a lower density and a lower (by 0.59 kJ mol−1) lattice energy, calculated using periodic calculations, com­pared to the centrosymmetric structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229620016356/vp3011sup1.cif
Contains datablocks 1a, 1b, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229620016356/vp30111asup2.hkl
Contains datablock 1a

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229620016356/vp30111bsup3.hkl
Contains datablock 1b

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229620016356/vp3011sup4.pdf
Supplementary material

CCDC references: 2039220; 2039221

Computing details top

For both structures, data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXL2016 (Sheldrick, 2015b).

Methyl 4-amino-3-phenylisothiazole-5-carboxylate (1a) top
Crystal data top
C11H10N2O2SDx = 1.459 Mg m3
Mr = 234.27Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 1316 reflections
a = 3.9876 (5) Åθ = 3.8–21.7°
b = 10.6511 (13) ŵ = 0.29 mm1
c = 25.107 (2) ÅT = 293 K
V = 1066.3 (2) Å3Plate, colorless
Z = 40.20 × 0.15 × 0.08 mm
F(000) = 488
Data collection top
Rigaku Xcalibur Sapphire3
diffractometer
1884 independent reflections
Radiation source: Enhance (Mo) X-ray Source1448 reflections with I > 2σ(I)
Detector resolution: 16.1827 pixels mm-1Rint = 0.069
ω scansθmax = 25.0°, θmin = 3.3°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2018)
h = 44
Tmin = 0.108, Tmax = 1.000k = 1210
7448 measured reflectionsl = 2529
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.055 w = 1/[σ2(Fo2) + (0.0835P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.161(Δ/σ)max = 0.001
S = 1.08Δρmax = 0.32 e Å3
1884 reflectionsΔρmin = 0.27 e Å3
154 parametersAbsolute structure: Flack x determined using 447 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.05 (12)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.2394 (4)0.35815 (11)0.54763 (5)0.0668 (5)
O10.5651 (12)0.5782 (4)0.43313 (14)0.0764 (12)
O20.2700 (12)0.3981 (3)0.43330 (12)0.0717 (10)
N10.3181 (13)0.4133 (4)0.60720 (15)0.0676 (12)
N20.6782 (13)0.6802 (4)0.5394 (2)0.0659 (12)
H2NA0.751 (17)0.690 (6)0.510 (2)0.09 (2)*
H2NB0.829 (16)0.719 (6)0.562 (2)0.080 (19)*
C10.4647 (13)0.5246 (5)0.60441 (19)0.0585 (12)
C20.5288 (12)0.5695 (5)0.55133 (19)0.0562 (11)
C30.4080 (13)0.4835 (5)0.51442 (18)0.0584 (13)
C40.4257 (13)0.4936 (5)0.4571 (2)0.0616 (12)
C50.277 (2)0.3949 (6)0.37640 (19)0.0851 (18)
H5A0.1828620.4711590.3625820.128*
H5B0.1482970.3245800.3639580.128*
H5C0.5046610.3867230.3644440.128*
C60.5616 (13)0.5909 (5)0.65374 (18)0.0599 (13)
C70.7137 (16)0.5273 (5)0.69520 (19)0.0707 (14)
H70.7605800.4421410.6917730.085*
C80.7962 (19)0.5891 (6)0.74152 (19)0.0802 (17)
H80.8959470.5446330.7691830.096*
C90.7354 (18)0.7131 (6)0.74764 (19)0.0799 (16)
H90.7941070.7538530.7790570.096*
C100.5842 (16)0.7788 (6)0.7064 (2)0.0811 (17)
H100.5404390.8640970.7104040.097*
C110.4979 (17)0.7193 (5)0.6596 (2)0.0706 (15)
H110.3978940.7642320.6321330.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0790 (9)0.0541 (8)0.0673 (8)0.0041 (8)0.0023 (8)0.0014 (5)
O10.101 (3)0.062 (2)0.066 (2)0.006 (2)0.013 (2)0.0047 (19)
O20.092 (3)0.064 (2)0.0594 (18)0.004 (2)0.0054 (19)0.0047 (16)
N10.086 (3)0.054 (3)0.063 (2)0.002 (2)0.007 (2)0.0063 (19)
N20.075 (3)0.054 (3)0.068 (3)0.010 (2)0.001 (2)0.003 (2)
C10.063 (3)0.051 (3)0.062 (3)0.008 (2)0.000 (2)0.004 (2)
C20.053 (3)0.051 (3)0.064 (3)0.003 (2)0.000 (2)0.005 (2)
C30.063 (3)0.055 (3)0.057 (3)0.004 (2)0.001 (2)0.000 (2)
C40.068 (3)0.057 (3)0.059 (3)0.007 (2)0.002 (2)0.001 (2)
C50.106 (5)0.090 (4)0.059 (3)0.004 (4)0.010 (3)0.006 (3)
C60.058 (3)0.061 (3)0.061 (3)0.003 (2)0.001 (2)0.002 (2)
C70.076 (4)0.072 (4)0.064 (3)0.000 (3)0.003 (3)0.009 (2)
C80.089 (4)0.092 (5)0.059 (3)0.006 (4)0.009 (3)0.000 (3)
C90.089 (4)0.092 (5)0.059 (3)0.018 (4)0.005 (3)0.008 (3)
C100.099 (4)0.065 (4)0.079 (3)0.011 (3)0.009 (3)0.009 (3)
C110.086 (4)0.060 (4)0.066 (3)0.009 (3)0.001 (3)0.001 (2)
Geometric parameters (Å, º) top
S1—N11.637 (4)C5—H5B0.9600
S1—C31.711 (5)C5—H5C0.9600
O1—C41.219 (6)C6—C71.382 (7)
O2—C41.334 (6)C6—C111.399 (7)
O2—C51.429 (6)C7—C81.376 (7)
N1—C11.323 (6)C7—H70.9300
N2—C21.354 (7)C8—C91.352 (9)
N2—H2NA0.80 (6)C8—H80.9300
N2—H2NB0.92 (7)C9—C101.387 (8)
C1—C21.439 (6)C9—H90.9300
C1—C61.477 (7)C10—C111.379 (7)
C2—C31.390 (7)C10—H100.9300
C3—C41.444 (7)C11—H110.9300
C5—H5A0.9600
N1—S1—C395.1 (2)O2—C5—H5C109.5
C4—O2—C5117.2 (4)H5A—C5—H5C109.5
C1—N1—S1111.0 (3)H5B—C5—H5C109.5
C2—N2—H2NA119 (5)C7—C6—C11118.6 (5)
C2—N2—H2NB123 (4)C7—C6—C1120.8 (5)
H2NA—N2—H2NB105 (6)C11—C6—C1120.6 (5)
N1—C1—C2115.2 (4)C8—C7—C6120.5 (6)
N1—C1—C6119.9 (4)C8—C7—H7119.8
C2—C1—C6124.8 (5)C6—C7—H7119.8
N2—C2—C3125.4 (5)C9—C8—C7121.4 (6)
N2—C2—C1124.9 (5)C9—C8—H8119.3
C3—C2—C1109.7 (5)C7—C8—H8119.3
C2—C3—C4126.7 (5)C8—C9—C10119.1 (5)
C2—C3—S1109.0 (4)C8—C9—H9120.5
C4—C3—S1124.2 (4)C10—C9—H9120.5
O1—C4—O2123.7 (5)C11—C10—C9120.8 (6)
O1—C4—C3124.8 (5)C11—C10—H10119.6
O2—C4—C3111.6 (5)C9—C10—H10119.6
O2—C5—H5A109.5C10—C11—C6119.7 (5)
O2—C5—H5B109.5C10—C11—H11120.2
H5A—C5—H5B109.5C6—C11—H11120.2
C3—S1—N1—C10.8 (4)S1—C3—C4—O1174.8 (4)
S1—N1—C1—C21.6 (6)C2—C3—C4—O2176.6 (5)
S1—N1—C1—C6179.3 (4)S1—C3—C4—O25.1 (7)
N1—C1—C2—N2179.5 (5)N1—C1—C6—C743.4 (8)
C6—C1—C2—N21.9 (8)C2—C1—C6—C7134.1 (6)
N1—C1—C2—C31.7 (7)N1—C1—C6—C11135.9 (6)
C6—C1—C2—C3179.3 (5)C2—C1—C6—C1146.6 (8)
N2—C2—C3—C41.7 (9)C11—C6—C7—C80.9 (9)
C1—C2—C3—C4179.5 (5)C1—C6—C7—C8178.5 (6)
N2—C2—C3—S1179.8 (5)C6—C7—C8—C90.8 (11)
C1—C2—C3—S11.1 (5)C7—C8—C9—C100.5 (11)
N1—S1—C3—C20.2 (4)C8—C9—C10—C110.3 (11)
N1—S1—C3—C4178.7 (5)C9—C10—C11—C60.4 (10)
C5—O2—C4—O11.6 (8)C7—C6—C11—C100.7 (9)
C5—O2—C4—C3178.3 (5)C1—C6—C11—C10178.7 (5)
C2—C3—C4—O13.4 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2NA···O10.80 (6)2.39 (6)2.917 (6)124 (6)
N2—H2NA···N2i0.80 (6)2.52 (6)3.179 (8)141 (6)
N2—H2NB···O1i0.92 (7)2.36 (7)3.078 (6)135 (5)
Symmetry code: (i) x+1/2, y+3/2, z+1.
Methyl 4-amino-3-phenylisothiazole-5-carboxylate (1b) top
Crystal data top
C11H10N2O2SDx = 1.466 Mg m3
Mr = 234.27Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 1207 reflections
a = 6.9210 (9) Åθ = 4.1–23.2°
b = 7.2371 (17) ŵ = 0.29 mm1
c = 42.396 (8) ÅT = 293 K
V = 2123.5 (7) Å3Stick, colourless
Z = 80.20 × 0.05 × 0.05 mm
F(000) = 976
Data collection top
Rigaku Xcalibur Sapphire3
diffractometer
1868 independent reflections
Radiation source: Enhance (Mo) X-ray Source1262 reflections with I > 2σ(I)
Detector resolution: 16.1827 pixels mm-1Rint = 0.105
ω scansθmax = 25.0°, θmin = 3.1°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2018)
h = 87
Tmin = 0.373, Tmax = 1.000k = 88
13405 measured reflectionsl = 5046
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.056H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.146 w = 1/[σ2(Fo2) + (0.063P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
1868 reflectionsΔρmax = 0.26 e Å3
154 parametersΔρmin = 0.32 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.42918 (11)0.59107 (14)0.57558 (2)0.0505 (3)
O10.9859 (3)0.6044 (3)0.55881 (6)0.0570 (7)
O20.7258 (3)0.6860 (4)0.53025 (5)0.0567 (7)
N10.3778 (4)0.5226 (4)0.61153 (6)0.0466 (7)
N20.8945 (4)0.4892 (5)0.62263 (8)0.0507 (8)
H2NA1.005 (6)0.504 (6)0.6095 (11)0.087 (14)*
H2NB0.906 (5)0.447 (4)0.6411 (9)0.050 (11)*
C10.5377 (4)0.4890 (4)0.62771 (8)0.0383 (8)
C20.7147 (4)0.5166 (4)0.61061 (7)0.0376 (8)
C30.6725 (4)0.5760 (4)0.58047 (7)0.0395 (8)
C40.8140 (5)0.6202 (5)0.55628 (8)0.0444 (8)
C50.8505 (6)0.7393 (5)0.50457 (9)0.0676 (12)
H5A0.9182080.6327110.4968800.101*
H5B0.9419710.8294170.5118720.101*
H5C0.7742960.7914440.4878710.101*
C60.5208 (4)0.4307 (4)0.66074 (8)0.0392 (8)
C70.3810 (5)0.3026 (4)0.66978 (9)0.0487 (9)
H70.2973280.2538130.6547770.058*
C80.3661 (6)0.2480 (5)0.70069 (9)0.0529 (9)
H80.2717090.1629040.7064520.063*
C90.4882 (6)0.3172 (5)0.72311 (9)0.0575 (10)
H90.4783980.2773820.7439110.069*
C100.6267 (5)0.4466 (5)0.71482 (9)0.0514 (9)
H100.7081800.4960640.7300910.062*
C110.6431 (5)0.5016 (4)0.68392 (8)0.0447 (8)
H110.7371220.5874050.6783730.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0392 (5)0.0746 (7)0.0378 (6)0.0036 (4)0.0012 (4)0.0091 (5)
O10.0384 (13)0.0772 (17)0.0553 (18)0.0025 (13)0.0042 (12)0.0094 (13)
O20.0476 (13)0.0870 (19)0.0354 (14)0.0057 (13)0.0112 (11)0.0155 (13)
N10.0425 (16)0.0628 (18)0.0344 (17)0.0012 (14)0.0019 (13)0.0047 (15)
N20.0399 (18)0.074 (2)0.038 (2)0.0018 (17)0.0002 (15)0.0025 (18)
C10.0399 (19)0.0397 (17)0.035 (2)0.0024 (15)0.0020 (14)0.0002 (16)
C20.0371 (17)0.0383 (17)0.0374 (19)0.0015 (15)0.0007 (15)0.0054 (15)
C30.0411 (18)0.0488 (19)0.0285 (18)0.0028 (16)0.0010 (14)0.0009 (15)
C40.043 (2)0.050 (2)0.040 (2)0.0011 (17)0.0048 (16)0.0000 (16)
C50.067 (2)0.092 (3)0.044 (2)0.003 (2)0.023 (2)0.023 (2)
C60.0440 (18)0.0403 (17)0.033 (2)0.0053 (16)0.0019 (15)0.0003 (15)
C70.0491 (19)0.052 (2)0.045 (2)0.0077 (18)0.0061 (16)0.0009 (17)
C80.061 (2)0.054 (2)0.044 (2)0.0070 (18)0.0157 (19)0.0036 (18)
C90.074 (3)0.060 (2)0.038 (3)0.013 (2)0.011 (2)0.006 (2)
C100.058 (2)0.056 (2)0.040 (2)0.0051 (19)0.0040 (17)0.0039 (18)
C110.0473 (19)0.0484 (19)0.038 (2)0.0044 (17)0.0044 (16)0.0001 (17)
Geometric parameters (Å, º) top
S1—N11.642 (3)C5—H5B0.9600
S1—C31.701 (3)C5—H5C0.9600
O1—C41.200 (4)C6—C71.394 (4)
O2—C41.348 (4)C6—C111.395 (5)
O2—C51.442 (4)C7—C81.373 (5)
N1—C11.324 (4)C7—H70.9300
N2—C21.360 (4)C8—C91.367 (5)
N2—H2NA0.95 (5)C8—H80.9300
N2—H2NB0.85 (4)C9—C101.386 (5)
C1—C21.438 (4)C9—H90.9300
C1—C61.467 (5)C10—C111.374 (4)
C2—C31.379 (4)C10—H100.9300
C3—C41.453 (4)C11—H110.9300
C5—H5A0.9600
N1—S1—C394.70 (14)O2—C5—H5C109.5
C4—O2—C5116.2 (3)H5A—C5—H5C109.5
C1—N1—S1110.8 (2)H5B—C5—H5C109.5
C2—N2—H2NA120 (3)C7—C6—C11118.2 (3)
C2—N2—H2NB119 (2)C7—C6—C1120.6 (3)
H2NA—N2—H2NB121 (4)C11—C6—C1121.2 (3)
N1—C1—C2115.2 (3)C8—C7—C6120.4 (3)
N1—C1—C6118.7 (3)C8—C7—H7119.8
C2—C1—C6126.1 (3)C6—C7—H7119.8
N2—C2—C3125.9 (3)C9—C8—C7120.8 (3)
N2—C2—C1124.8 (3)C9—C8—H8119.6
C3—C2—C1109.3 (3)C7—C8—H8119.6
C2—C3—C4125.4 (3)C8—C9—C10119.9 (4)
C2—C3—S1110.0 (2)C8—C9—H9120.0
C4—C3—S1124.6 (2)C10—C9—H9120.0
O1—C4—O2123.8 (3)C11—C10—C9119.6 (3)
O1—C4—C3125.7 (3)C11—C10—H10120.2
O2—C4—C3110.5 (3)C9—C10—H10120.2
O2—C5—H5A109.5C10—C11—C6121.0 (3)
O2—C5—H5B109.5C10—C11—H11119.5
H5A—C5—H5B109.5C6—C11—H11119.5
C3—S1—N1—C10.4 (3)S1—C3—C4—O1177.2 (3)
S1—N1—C1—C20.8 (4)C2—C3—C4—O2175.8 (3)
S1—N1—C1—C6178.5 (2)S1—C3—C4—O24.0 (4)
N1—C1—C2—N2179.6 (3)N1—C1—C6—C742.1 (4)
C6—C1—C2—N21.2 (5)C2—C1—C6—C7138.8 (3)
N1—C1—C2—C30.8 (4)N1—C1—C6—C11137.7 (3)
C6—C1—C2—C3178.4 (3)C2—C1—C6—C1141.4 (5)
N2—C2—C3—C40.2 (5)C11—C6—C7—C80.3 (5)
C1—C2—C3—C4179.4 (3)C1—C6—C7—C8179.8 (3)
N2—C2—C3—S1180.0 (3)C6—C7—C8—C90.3 (5)
C1—C2—C3—S10.4 (3)C7—C8—C9—C101.2 (6)
N1—S1—C3—C20.0 (2)C8—C9—C10—C111.4 (5)
N1—S1—C3—C4179.8 (3)C9—C10—C11—C60.8 (5)
C5—O2—C4—O10.2 (5)C7—C6—C11—C100.1 (5)
C5—O2—C4—C3178.6 (3)C1—C6—C11—C10180.0 (3)
C2—C3—C4—O13.0 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2NA···O10.95 (5)2.27 (5)2.901 (5)123 (3)
N2—H2NA···N1i0.95 (5)2.58 (4)3.386 (4)142 (4)
Symmetry code: (i) x+1, y, z.
Some characteristics of the solvents used for crystallization of compound 1 top
SolventBoiling point (°C)Density (Mg m-3)Dipole moment (D)
Isopropanol82.40.7851.66
Methanol64.70.7921.65
Ethylacetate77.10.9021.78
Tetrahydrofuran66.00.8881.63
Acetonitrile81.30.7863.92
Tetrachloromethane76.71.5870
Selected geometric parameters for molecule 1 in polymorphic crystals 1a and 1b top
ParameterPolymorph 1aPolymorph 1r
Bond length (Å)
N1—C11.324 (7)1.325 (4)
C2—C31.389 (7)1.379 (4)
C1—C21.439 (7)1.437 (4)
C3—C41.445 (7)1.454 (4)
C2—N21.355 (7)1.359 (4)
C4—O11.218 (7)1.200 (4)
C1—C61.477 (7)1.467 (5)
ΣN2 (deg)348359
Torsion angle (°)
C2—C3—C4—O13.4 (9)3.0 (5)
C2—C1—C6—C1146.6 (8)41.4 (5)
O1—C4—O2—C51.6 (8)-0.2 (5)
N2—H···O1 intramolecular hydrogen bond
H···O (Å)2.39 (6)2.27 (5)
N—H···O (°)125 (5)123 (3)
Short intramolecular contacts (Å)
C11···N23.130 (7)3.128 (5)
C11···H2Nb2.78 (5)2.60 (4)
H11···H2Nb2.21
Geometric characteristics (Å, °) of the intermolecular hydrogen bonds and stacking interactions in the different polymorphic crystals of compound 1 top
InteractionSymmetry operationGeometric characteristics
H···AD—H···A
Polymorph 1a
N2—H2NA···N2(lp)x+1/2, -y+3/2, -z+12.52 (6)140 (5)
N2—H2NB···O1x+1/2, -y+3/2, -z+12.36 (6)134 (5)
Stacking isothiazole–isothiazolex+1, y, zDistance between mean planes is 3.56 Å Plane-to-plane shift is 1.806 Å
Stacking phenyl–phenylx+1, y, zDistance between mean planes is 3.59 Å Plane-to-plane shift is 1.735 Å
Polymorph 1b
N2—H2NA···N1x+1, y, z2.59 (4)142 (3)
Stacking isothiazole–isothiazolex+1, y, zDistance between mean planes is 3.45 Å Plane-to-plane shift is 1.194 Å
Symmetry codes, interaction energies of the basic unit with neighbouring ones (Eint, kJ mol-1) with the highest values (more than 5% of the total interaction energy) and the contribution of this energy to the total interaction energy (%) in polymorphic crystals 1a (for the full list of dimers, see Tables S1 in the supporting information) top
DimerSymmetry operationEintContribution to the total interaction energyType of interaction
d1x-1, y, z-53.0920.0Stacking
d2x+1, y, z-53.0920.0Stacking
d3x+1/2, -y+3/2, -z+1-30.7311.6N—H···O/N—H···N
d4x-1/2, -y+3/2, -z+1-30.7311.6N—H···O/N—H···N
d5x+1/2, -y+1/2, -z+1-20.147.6Dispersion
d6x-1/2, -y+1/2, -z+1-20.147.6Dispersion
Symmetry codes, interaction energies of the basic molecule with neighbouring ones (Eint, kJ mol-1) with the highest values (more than 5% of the total interaction energy) and the contribution of this energy to the total interaction energy (%) in polymorphic crystals 1b (for the full list of dimers, see Tables S2 in the supporting information) top
DimerSymmetry operationEintContribution to the total interaction energyType of interaction
d1-x+3/2, y-1/2, z-53.9721.2Stacking
d2-x+3/2, y+1/2, z-53.9721.2Stacking
d3-x+1/2, y+1/2, z-22.698.9Dispersion
d4-x+1/2, y-1/2, z-22.698.9Dispersion
d5x+1, y, z-20.057.9N—H···N
d6x-1, y, z-20.057.9N—H···N
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds