research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of a new coordination polymer based on lanthanum and 1,4-phenyl­enedi­acetate ligands

CROSSMARK_Color_square_no_text.svg

aUniversité Assane Seck de Ziguinchor, LCPM-Groupe Matériaux Inorganiques Chimie Douce et Cristallographie, BP 523 Ziguinchor, Senegal, and bUniversité de Rennes, INSA Rennes, CNRS UMR 6226, Institut des Sciences Chimiques de Rennes, F-35708 Rennes, France
*Correspondence e-mail: magatte.camara@univ-zig.sn

Edited by A. Van der Lee, Université de Montpellier II, France (Received 6 February 2019; accepted 15 February 2019; online 22 February 2019)

Reaction in gel between the sodium salt of 1,4-phenyl­enedi­acetic acid (Na2C10O4H8–Na2p-pda) and lanthanum chloride yields single crystals of the three-dimensional coordination polymer poly[[tetra­aqua­tris­(μ-1,4-phenyl­enedi­acetato)­dilanthanum(III)] octa­hydrate], {[La2(C10H8O4)3(H2O)4]·8H2O}. The LaIII coordination polyhedron can be described as a slightly distorted monocapped square anti­prism. One of the two p-pda2− ligands is bound to four LaIII ions and the other to two LaIII ions. Each LaIII atom is coordinated by five ligands, thereby generating a metal–organic framework with potential porosity properties.

1. Chemical context

In recent years, one of the most important fields of research in coordination chemistry and crystal engineering has been the design of metal–organic frameworks (MOFs), because of their intriguing network topologies and possible applications in gas storage (Eddaoudi et al., 2002[Eddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J., O'Keeffe, M. & Yaghi, O. M. (2002). Science, 295, 469-472.]; Reneike et al., 1999[Reineke, T. M., Eddaoudi, M., O'Keeffe, M. & Yaghi, O. M. (1999). Angew. Chem. Int. Ed. 38, 2590-2594.]; Luo et al., 2011a[Luo, Y., Calvez, G., Freslon, S., Bernot, K., Daiguebonne, C. & Guillou, O. (2011a). Eur. J. Inorg. Chem. 3705-3716.],b[Luo, Y., Calvez, G., Freslon, S., Daiguebonne, C., Roisnel, T. & Guillou, O. (2011b). Inorg. Chim. Acta, 368, 170-178.]; Kustaryono et al., 2010[Kustaryono, D., Kerbellec, N., Calvez, G., Freslon, S., Daiguebonne, C. & Guillou, O. (2010). Cryst. Growth Des. 10, 775-781.]), catalysis (Lee et al., 2009[Lee, J., Farha, O. K., Roberts, J., Scheidt, K. A., Nguyen, S., inh, T. & Hupp, J. T. (2009). Chem. Soc. Rev. 38, 1450-1459.]), separation (Hamon et al., 2009[Hamon, L., Llewellyn, P. L., Devic, T., Ghoufi, A., Clet, G., Guillerm, V., Pirngruber, G. D., Maurin, G., Serre, C., Driver, G., van Beek, W., Jolimaître, E., Vimont, A., Daturi, M. & Férey, G. (2009). J. Am. Chem. Soc. 131, 17490-17499.]), luminescence (Cui et al., 2012[Cui, Y., Yue, Y., Qian, G. & Chen, B. (2012). Chem. Rev. 112, 1126-1162.]; Daiguebonne et al., 2008[Daiguebonne, C., Kerbellec, N., Guillou, O., Bünzli, J. C., Gumy, F., Catala, L., Mallah, T., Audebrand, N., Gérault, Y., Bernot, K. & Calvez, G. (2008). Inorg. Chem. 47, 3700-3708.]; Binnemans, 2009[Binnemans, K. (2009). Chem. Rev. 109, 4283-4374.];) and mol­ecular magnetism (Calvez et al., 2008[Calvez, G., Bernot, K., Guillou, O., Daiguebonne, C., Caneschi, A. & Mahé, N. (2008). Inorg. Chim. Acta, 361, 3997-4003.]; Sessoli et al., 2009[Sessoli, R. & Powell, A. K. (2009). Coord. Chem. Rev. 253, 2328-2341.]). Our group has been involved in this field for more than a decade (Freslon et al., 2014[Freslon, S., Luo, Y., Calvez, G., Daiguebonne, C., Guillou, O., Bernot, K., Michel, V. & Fan, X. (2014). Inorg. Chem. 53, 1217-1228.]; Fan et al., 2014[Fan, X., Freslon, S., Daiguebonne, C., Calvez, G., Le Pollès, L., Bernot, K. & Guillou, O. (2014). J. Mater. Chem. C. 2, 5510-5525.]; Luo et al., 2011a[Luo, Y., Calvez, G., Freslon, S., Bernot, K., Daiguebonne, C. & Guillou, O. (2011a). Eur. J. Inorg. Chem. 3705-3716.],b[Luo, Y., Calvez, G., Freslon, S., Daiguebonne, C., Roisnel, T. & Guillou, O. (2011b). Inorg. Chim. Acta, 368, 170-178.]; Badiane et al., 2017a[Badiane, I., Freslon, S., Suffren, Y., Daiguebonne, C., Calvez, G., Bernot, K., Camara, M. & Guillou, O. (2017a). Cryst. Growth Des. 17, 1224-1234.],b[Badiane, I., Freslon, S., Suffren, Y., Daiguebonne, C., Calvez, G., Bernot, K., Camara, M. & Guillou, O. (2017b). Inorg. Chim. Acta, 461, 136-144.]). The search for new ligands that can lead to new structural networks and/or new physical properties is a continuous concern (Qiu et al., 2007[Qiu, Y., Daiguebonne, C., Liu, J., Zeng, R., Kerbellec, N., Deng, H. & Guillou, O. (2007). Inorg. Chim. Acta, 360, 3265-3271.]; Fan et al., 2015[Fan, X., Freslon, S., Daiguebonne, C., Pollès, L. L., Calvez, G., Bernot, K., Yi, X., Huang, G. & Guillou, O. (2015). Inorg. Chem. 54, 5534-5546.]).

For the synthesis of MOFs, usually two complementary mol­ecular precursors, a cation with vacant coordination sites and a bridging anion, are used to form the coordination polymer. This procedure offers the prospect of rationally designing extended solids with inter­esting properties. Most of the organic ligands used in MOF chemistry are rigid aromatic carboxyl­ates (Luo et al., 2007[Luo, F., Batten, S. R., Che, Y. & Zheng, J. M. (2007). Chem. Eur. J. 13, 4948-4955.]; Huang et al., 2009[Huang, Y. G., Jiang, F. L., Yuan, D. Q., Wu, M. Y., Gao, Q., Wei, W. & Hong, M. C. (2009). J. Solid State Chem. 182, 215-222.]). Compared to the rigid ligands, using flexible ligands such as 1,2- (Xin et al., 2011[Xin, L. Y., Liu, G. Z. & Wang, L. Y. (2011). J. Solid State Chem. 184, 1387-1392.]), 1,3- (Wang et al., 2012[Wang, L., Song, T., Li, C., Xia, J., Wang, S., Wang, L. & Xu, J. (2012). J. Solid State Chem. 190, 208-215.]) or 1,4-phenyl­enedi­acetate (Fabelo et al., 2009a[Fabelo, O., Cañadillas-Delgado, L., Pasán, J., Delgado, F. S., Lloret, F., Cano, J., Julve, M. & Ruiz-Pérez, C. (2009a). Inorg. Chem. 48, 11342-11351.],b[Fabelo, O., Pasán, J., Cañadillas-Delgado, L., Delgado, F. S., Lloret, F., Julve, M. & Ruiz-Pérez, C. (2009b). Inorg. Chem. 48, 6086-6095.]) to construct coordination polymers seems to be more difficult, and developing synthetic methodologies is still a challenge. However, flexibility of the ligand can promote structural and functional diversity.

Numerous coordination polymers have been reported so far that involve d-block metal ions such as CuII (Singh & Barua, 2009[Singh, W. M. & Baruah, J. B. (2009). Inorg. Chim. Acta, 362, 4268-4271.]; Fabelo et al., 2009a[Fabelo, O., Cañadillas-Delgado, L., Pasán, J., Delgado, F. S., Lloret, F., Cano, J., Julve, M. & Ruiz-Pérez, C. (2009a). Inorg. Chem. 48, 11342-11351.],b[Fabelo, O., Pasán, J., Cañadillas-Delgado, L., Delgado, F. S., Lloret, F., Julve, M. & Ruiz-Pérez, C. (2009b). Inorg. Chem. 48, 6086-6095.]; Chen et al., 2010a[Chen, Z., Xiong, W., Zhang, Z. & Liang, F. (2010a). Z. Anorg. Allg. Chem. 636, 1392-1396.],b[Chen, Z., Xiong, W., Zhang, Z., Liang, F. P. & Luo, B. C. (2010b). Transition Met. Chem. 35, 991-997.],c[Chen, Z., Zhao, Q., Xiong, W., Zhang, Z. & Liang, F. (2010c). Z. Anorg. Allg. Chem. 636, 2691-2697.]), ZnII (Singh & Barua, 2009[Singh, W. M. & Baruah, J. B. (2009). Inorg. Chim. Acta, 362, 4268-4271.]), CdII (Chen et al., 2010a[Chen, Z., Xiong, W., Zhang, Z. & Liang, F. (2010a). Z. Anorg. Allg. Chem. 636, 1392-1396.],b[Chen, Z., Xiong, W., Zhang, Z., Liang, F. P. & Luo, B. C. (2010b). Transition Met. Chem. 35, 991-997.],c[Chen, Z., Zhao, Q., Xiong, W., Zhang, Z. & Liang, F. (2010c). Z. Anorg. Allg. Chem. 636, 2691-2697.]; Singh & Barua, 2009[Singh, W. M. & Baruah, J. B. (2009). Inorg. Chim. Acta, 362, 4268-4271.]; Li et al., 2009[Li, D. S., Zhang, M. L., Zhao, J., Wang, D. J., Zhang, P., Wang, N. & Wang, Y. Y. (2009). Inorg. Chem. Commun. 12, 1027-1030.]), MnII (Singh & Barua, 2009[Singh, W. M. & Baruah, J. B. (2009). Inorg. Chim. Acta, 362, 4268-4271.]; Chen et al., 2010a[Chen, Z., Xiong, W., Zhang, Z. & Liang, F. (2010a). Z. Anorg. Allg. Chem. 636, 1392-1396.],b[Chen, Z., Xiong, W., Zhang, Z., Liang, F. P. & Luo, B. C. (2010b). Transition Met. Chem. 35, 991-997.],c[Chen, Z., Zhao, Q., Xiong, W., Zhang, Z. & Liang, F. (2010c). Z. Anorg. Allg. Chem. 636, 2691-2697.], CoII (Fabelo et al., 2009a[Fabelo, O., Cañadillas-Delgado, L., Pasán, J., Delgado, F. S., Lloret, F., Cano, J., Julve, M. & Ruiz-Pérez, C. (2009a). Inorg. Chem. 48, 11342-11351.],b[Fabelo, O., Pasán, J., Cañadillas-Delgado, L., Delgado, F. S., Lloret, F., Julve, M. & Ruiz-Pérez, C. (2009b). Inorg. Chem. 48, 6086-6095.]; Chen et al., 2010a[Chen, Z., Xiong, W., Zhang, Z. & Liang, F. (2010a). Z. Anorg. Allg. Chem. 636, 1392-1396.],b[Chen, Z., Xiong, W., Zhang, Z., Liang, F. P. & Luo, B. C. (2010b). Transition Met. Chem. 35, 991-997.],c[Chen, Z., Zhao, Q., Xiong, W., Zhang, Z. & Liang, F. (2010c). Z. Anorg. Allg. Chem. 636, 2691-2697.]; Uebler & LaDuca, 2012[Uebler, J. W. & LaDuca, R. L. (2012). Inorg. Chem. Commun. 19, 31-35.]; Li et al., 2009[Li, D. S., Zhang, M. L., Zhao, J., Wang, D. J., Zhang, P., Wang, N. & Wang, Y. Y. (2009). Inorg. Chem. Commun. 12, 1027-1030.]) and NiII (Chen et al., 2010a[Chen, Z., Xiong, W., Zhang, Z. & Liang, F. (2010a). Z. Anorg. Allg. Chem. 636, 1392-1396.],b[Chen, Z., Xiong, W., Zhang, Z., Liang, F. P. & Luo, B. C. (2010b). Transition Met. Chem. 35, 991-997.],c[Chen, Z., Zhao, Q., Xiong, W., Zhang, Z. & Liang, F. (2010c). Z. Anorg. Allg. Chem. 636, 2691-2697.]; Uebler & LaDuca, 2012[Uebler, J. W. & LaDuca, R. L. (2012). Inorg. Chem. Commun. 19, 31-35.]; Li et al., 2009[Li, D. S., Zhang, M. L., Zhao, J., Wang, D. J., Zhang, P., Wang, N. & Wang, Y. Y. (2009). Inorg. Chem. Commun. 12, 1027-1030.]). Lanthan­ide(III) ions have higher and variable coordination numbers (generally between 7 and 12) and incorporate in addition, apart from the main ligands, ancillary ligands such as water mol­ecules into the lanthanide coordination sphere. A large number of studies have been reported on lanthanide coordination polymers based on 1,4-phenyl­enedi­acetic acid (Singh & Barua, 2009[Singh, W. M. & Baruah, J. B. (2009). Inorg. Chim. Acta, 362, 4268-4271.]; Fabelo et al., 2009a[Fabelo, O., Cañadillas-Delgado, L., Pasán, J., Delgado, F. S., Lloret, F., Cano, J., Julve, M. & Ruiz-Pérez, C. (2009a). Inorg. Chem. 48, 11342-11351.],b[Fabelo, O., Pasán, J., Cañadillas-Delgado, L., Delgado, F. S., Lloret, F., Julve, M. & Ruiz-Pérez, C. (2009b). Inorg. Chem. 48, 6086-6095.]; Chen et al., 2010a[Chen, Z., Xiong, W., Zhang, Z. & Liang, F. (2010a). Z. Anorg. Allg. Chem. 636, 1392-1396.],b[Chen, Z., Xiong, W., Zhang, Z., Liang, F. P. & Luo, B. C. (2010b). Transition Met. Chem. 35, 991-997.],c[Chen, Z., Zhao, Q., Xiong, W., Zhang, Z. & Liang, F. (2010c). Z. Anorg. Allg. Chem. 636, 2691-2697.]; Uebler & LaDuca, 2012[Uebler, J. W. & LaDuca, R. L. (2012). Inorg. Chem. Commun. 19, 31-35.]; Li et al., 2009[Li, D. S., Zhang, M. L., Zhao, J., Wang, D. J., Zhang, P., Wang, N. & Wang, Y. Y. (2009). Inorg. Chem. Commun. 12, 1027-1030.]; Rusinek et al., 2013[Rusinek, I., Sienkiewicz-Gromiuk, J., Mazur, L. & Rzączyńska, Z. (2013). J. Inorg. Organomet. Polym. 23, 1068-1077.]) as well as on other isomers of this acid such as 1,2- (Badiane et al., 2017a[Badiane, I., Freslon, S., Suffren, Y., Daiguebonne, C., Calvez, G., Bernot, K., Camara, M. & Guillou, O. (2017a). Cryst. Growth Des. 17, 1224-1234.],b[Badiane, I., Freslon, S., Suffren, Y., Daiguebonne, C., Calvez, G., Bernot, K., Camara, M. & Guillou, O. (2017b). Inorg. Chim. Acta, 461, 136-144.]; Xin et al., 2011[Xin, L. Y., Liu, G. Z. & Wang, L. Y. (2011). J. Solid State Chem. 184, 1387-1392.]) and 1,3-phenyl­enedi­acetic acid (Wang et al., 2012[Wang, L., Song, T., Li, C., Xia, J., Wang, S., Wang, L. & Xu, J. (2012). J. Solid State Chem. 190, 208-215.]), and most of them tend to make porous materials through solvothermal synthesis.

Isomers of phenyl­enedi­acetic acid are flexible ligands and can therefore adopt different conformations in the crystal structure. 1,4-Phenyl­endi­acetic acid is used as a readily available ligand that can coordinate two or more metal ions in bridging-mode, forming extended mol­ecular networks (Pan et al., 2003[Pan, L., Adams, K. M., Hernandez, H. E., Wang, X., Zheng, Ch., Hattori, Y. & Kaneko, K. (2003). J. Am. Chem. Soc. 125, 3062-3067.]; Chen et al., 2010a[Chen, Z., Xiong, W., Zhang, Z. & Liang, F. (2010a). Z. Anorg. Allg. Chem. 636, 1392-1396.],b[Chen, Z., Xiong, W., Zhang, Z., Liang, F. P. & Luo, B. C. (2010b). Transition Met. Chem. 35, 991-997.],c[Chen, Z., Zhao, Q., Xiong, W., Zhang, Z. & Liang, F. (2010c). Z. Anorg. Allg. Chem. 636, 2691-2697.]). The different coordination modes (Chen et al., 2010a[Chen, Z., Xiong, W., Zhang, Z. & Liang, F. (2010a). Z. Anorg. Allg. Chem. 636, 1392-1396.],b[Chen, Z., Xiong, W., Zhang, Z., Liang, F. P. & Luo, B. C. (2010b). Transition Met. Chem. 35, 991-997.],c[Chen, Z., Zhao, Q., Xiong, W., Zhang, Z. & Liang, F. (2010c). Z. Anorg. Allg. Chem. 636, 2691-2697.]; Rusinek et al., 2013[Rusinek, I., Sienkiewicz-Gromiuk, J., Mazur, L. & Rzączyńska, Z. (2013). J. Inorg. Organomet. Polym. 23, 1068-1077.]; Ren et al., 2011[Ren, Y.-W., Liang, J.-X., Lu, J.-X., Cai, B.-W., Shi, D.-B., Qi, C.-R., Jiang, H.-F., Chen, J. & Zheng, D. (2011). Eur. J. Inorg. Chem. pp. 4369-4376.]; Pan et al., 2003[Pan, L., Adams, K. M., Hernandez, H. E., Wang, X., Zheng, Ch., Hattori, Y. & Kaneko, K. (2003). J. Am. Chem. Soc. 125, 3062-3067.]; Singha et al., 2014[Singha, D.-K., Bhattacharya, S., Majee, P., Mondal, S.-K., Kumar, M. & Mahata, P. (2014). J. Mater. Chem. A, 2, 20908-20915.]; Singha et al., 2015[Singha, D.-K., Majee, P., Mondal, S. K. & Mahata, P. (2015). Eur. J. Inorg. Chem. pp. 1390-1397.]) of the ligand with lanthanide ions that have been reported to date are shown in Fig. 1[link].

[Figure 1]
Figure 1
Bonding modes in lanthanide-containing coordination polymers with 1,4-phenyl­enedi­acetate ligands (p-pda2−) reported in the literature to date.

In this paper we report the synthesis and the crystal structure of a new coordination polymer with chemical formula [La2(p-pda)3(H2O)4·8H2O].

[Scheme 1]

2. Structural commentary

The crystallographically independent La3+ ion is nona-coordinated by seven oxygen atoms (O1, O2, O3, O4, O5, O6, O3') from five p-pda2− ligands and two oxygen atoms (O8 and O7) from the coordinating water mol­ecules (Fig. 2[link]). The coordination polyhedron can be described as a monocapped distorted square anti­prism with atom O3′ capping the polyhedron [symmetry code: (′) 2 − x, 1 − y, 1 − z]. The two square sides of the anti­prism are formed by atoms O7, O6, O2, O5 and O8, O3, O1, O4, respectively. The dihedral angle between the two faces is 5.21 (9)°. There are three independent ligands: L1, L2 and L3 (Fig. 3[link]). The twisted ligand L3 exhibits a coordination mode that has never previously been observed in lanthanide-based coordination polymers involving the p-pda2− ligand.

[Figure 2]
Figure 2
Coordination environment of La3+ in [La2(p-pda)3(H2O)4·8H2O]. Symmetry code: (′) 2 − x, 1 − y, 1 − z. Hydrogen atoms of the water mol­ecules have been omitted for clarity.
[Figure 3]
Figure 3
Coordination modes of ligand L1 (μ-4 bis-bidentate mode: (η1-η1-μ2)-(η1-η1-μ2)-μ4), L2 (μ-4 bis-tridentate bridging and chelating mode: (η2-η1-μ2)-(η2-η1-μ2)-μ4) and L3 (μ-2 bis-bidentate-chelating mode: (η1-η1-μ1)-(η1-η1-μ1)-μ2)).

The monocapped square anti­prisms are connected to each other by alternating L1 bridging carboxyl­ate oxygen atoms (O5 and O6) and edge-sharing polyhedra through L2 oxygen atoms (O3), forming mol­ecular chains along the a-axis direction (Fig. 4[link]). These chains are connected to each other through ligands L1 and L2, which play the role of spacers, forming mol­ecular layers that extend parallel to the ab plane (Fig. 4[link]). These layers are further connected through the twisted ligand L3, leading to a three-dimensional mol­ecular framework (Fig. 5[link]). Ligand L3 acts as a spacer between the different polymeric layers because of its anti–anti conformation.

[Figure 4]
Figure 4
(Top) Projection view of a mol­ecular chain extending parallel to the a axis. (Bottom) Projection view along the c axis of the of the two-dimensional mol­ecular network of [La2(p-pda)3(H2O)4·8H2O]. Hydrogen atoms have been omitted for clarity.
[Figure 5]
Figure 5
Perspective view along the a axis of [La2(p-pda)3(H2O)4·8H2O]. Hydrogen atoms have been omitted for clarity.

The framework has channels along the a-axis direction in which the water mol­ecules of crystallization are located. They are bound to the mol­ecular skeleton via a hydrogen-bonded network (Table 1[link]). As can be seen from Fig. 6[link], the three-dimensional crystal structure could potentially present some porosity properties. Indeed, removal of the water mol­ecules of crystallization could create empty channels, as has been reported previously (Kustaryono et al., 2010[Kustaryono, D., Kerbellec, N., Calvez, G., Freslon, S., Daiguebonne, C. & Guillou, O. (2010). Cryst. Growth Des. 10, 775-781.]; Kerbellec et al., 2008[Kerbellec, N., Daiguebonne, C., Bernot, K., Guillou, O. & Le Guillou, X. (2008). J. Alloys Compd. 451, 377-383.]). For the coordination polymer in this study, the potential porosity is calculated to be 750 (20) m2 g−1 for N2 with a kinetic radius of 1.83 Å. The calculation was performed using a method described elsewhere (Kustaryono et al., 2010[Kustaryono, D., Kerbellec, N., Calvez, G., Freslon, S., Daiguebonne, C. & Guillou, O. (2010). Cryst. Growth Des. 10, 775-781.]; Kerbellec et al., 2008[Kerbellec, N., Daiguebonne, C., Bernot, K., Guillou, O. & Le Guillou, X. (2008). J. Alloys Compd. 451, 377-383.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
OW1—HW1A⋯OW1iii 0.87 (9) 2.40 (11) 3.067 (13) 133 (9)
OW1—HW1B⋯OW4iv 0.89 (9) 2.54 (10) 3.298 (11) 145 (7)
OW2—HW2A⋯O4i 0.82 (6) 2.10 (6) 2.895 (5) 164 (6)
OW2—HW2B⋯OW4v 0.82 (6) 2.20 (5) 2.855 (8) 137 (5)
OW3—HW3A⋯O6i 0.82 (8) 2.02 (8) 2.780 (8) 154 (7)
OW3—HW3B⋯OW1iii 0.81 (7) 2.40 (8) 3.162 (11) 156 (8)
OW4—HW4A⋯OW2vi 0.81 (10) 2.49 (9) 2.855 (8) 109 (9)
O7—H7A⋯O2i 0.82 (4) 1.95 (4) 2.741 (5) 161 (5)
O7—H7B⋯OW4 0.81 (5) 2.03 (5) 2.800 (9) 160 (5)
OW4—HW4B⋯OW3vii 0.84 (9) 2.11 (10) 2.824 (11) 143 (8)
O8—H8A⋯OW3i 0.82 (4) 2.38 (4) 3.175 (8) 165 (4)
O8—H8B⋯O1ii 0.83 (4) 1.92 (4) 2.725 (5) 163 (5)
C7—H7D⋯O4i 0.97 2.54 3.442 (6) 154
C12—H12B⋯O6ii 0.97 2.51 3.406 (6) 154
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y+1, -z+1; (iii) -x+1, -y, -z+1; (iv) x, y-1, z; (v) x, y, z+1; (vi) x, y, z-1; (vii) x+1, y+1, z.
[Figure 6]
Figure 6
Projection view along the a axis of the mol­ecular skeleton of [La2(p-pda)3(H2O)4·8H2O] in space-filling mode. Hydrogen atoms and crystallization water mol­ecules have been omitted.

Other crystal structures of lanthanide coordination polymers with the p-pda2− ligand have been reported previously. This series of compounds, first described by Pan et al. (2003[Pan, L., Adams, K. M., Hernandez, H. E., Wang, X., Zheng, Ch., Hattori, Y. & Kaneko, K. (2003). J. Am. Chem. Soc. 125, 3062-3067.]) has been widely studied because of potential applications in various fields such as explosives detection (Singha et al., 2014[Singha, D.-K., Bhattacharya, S., Majee, P., Mondal, S.-K., Kumar, M. & Mahata, P. (2014). J. Mater. Chem. A, 2, 20908-20915.], 2015[Singha, D.-K., Majee, P., Mondal, S. K. & Mahata, P. (2015). Eur. J. Inorg. Chem. pp. 1390-1397.]), gas sorption (Pan et al., 2003[Pan, L., Adams, K. M., Hernandez, H. E., Wang, X., Zheng, Ch., Hattori, Y. & Kaneko, K. (2003). J. Am. Chem. Soc. 125, 3062-3067.]) or catalysis (Ren et al., 2011[Ren, Y.-W., Liang, J.-X., Lu, J.-X., Cai, B.-W., Shi, D.-B., Qi, C.-R., Jiang, H.-F., Chen, J. & Zheng, D. (2011). Eur. J. Inorg. Chem. pp. 4369-4376.]). These compounds, with general chemical formula [Ln2(p-pda)3(H2O)·2H2O] with Ln = La–Ho have been obtained by hydro­thermal synthesis and therefore present a lower hydration rate and a higher density than [La2(p-pda)3(H2O)4·8H2O] {Dcalc = 1871 g cm−3 for [Ln2(p-pda)3(H2O)·2H2O]}. Their three-dimensional crystal structures can be described on the basis of helicoidal mol­ecular chains linked by p-pda2− ligands.

The luminescent and porosity properties of these compounds are inter­esting, which suggests that the physical properties of compounds isostructural to [La2(p-pda)3(H2O)4·8H2O] and involving other lanthanide ions (lanthanum is a diamagnetic non-luminescent ion) would be worth studying. Unfortunately, despite great synthetic efforts, no such compound has been obtained to date.

The compound reported here was obtained by crystallization in a gel (see next section; Luo et al., 2013[Luo, Y., Bernot, K., Calvez, G., Freslon, S., Daiguebonne, C., Guillou, O., Kerbellec, N. & Roisnel, T. (2013). CrystEngComm, 15, 1882-1896.]), and as such is the first result from our group related to lanthanide-based coordination polymers with 1,4-phenyl­enedi­acetate ligands.

3. Synthesis and crystallization

Lanthanum oxide (La2O3) was suspended in a small qu­antity of water. The suspension was then brought to about 323 K and concentrated hydro­chloric acid was added dropwise under magnetic stirring, until a clear solution was obtained. The solution was then evaporated to dryness and the resulting solid was dissolved in absolute ethanol for removal of the residual hydro­chloric acid. Crystallization of the salt was then obtained by adding diethyl ether (Et2O). The obtained microcrystalline solid was filtered and dried in the open air. The product LaCl3·7H2O was obtained in close to 100% yield.

1,4-Phenyl­enedi­acetic acid, H2(p-pda), was purchased from Sigma–Aldrich and used without further purification. Its disodium salt was prepared by addition of two equivalents of sodium hydroxide to a suspension of the acid in de-ionized water. The obtained clear solution was evaporated to dryness and then refluxed in ethanol for one h. Addition of diethyl ether provoked precipitation of Na2(p-pda) in 90% yield. UV–vis absorption spectrum of a 4.3 × 10 −4 mol L−1 aqueous solution of the disodium salt of H2(p-pda) was measured with a Perkin–Elmer Lambda 650 spectrometer equipped with a 60 mm integrating sphere. It showed a maximum absorption at 225 nm. This short absorption wavelength, compared to other ligands in the literature (Badiane et al., 2017a[Badiane, I., Freslon, S., Suffren, Y., Daiguebonne, C., Calvez, G., Bernot, K., Camara, M. & Guillou, O. (2017a). Cryst. Growth Des. 17, 1224-1234.],b[Badiane, I., Freslon, S., Suffren, Y., Daiguebonne, C., Calvez, G., Bernot, K., Camara, M. & Guillou, O. (2017b). Inorg. Chim. Acta, 461, 136-144.]; Freslon et al., 2016[Freslon, S., Luo, Y., Daiguebonne, C., Calvez, G., Bernot, K. & Guillou, O. (2016). Inorg. Chem. 55, 794-802.]; Fan et al., 2015[Fan, X., Freslon, S., Daiguebonne, C., Pollès, L. L., Calvez, G., Bernot, K., Yi, X., Huang, G. & Guillou, O. (2015). Inorg. Chem. 54, 5534-5546.]; Badiane et al., 2018[Badiane, A.-M., Freslon, S., Daiguebonne, C., Suffren, Y., Bernot, K., Calvez, G., Costuas, K., Camara, M. & Guillou, O. (2018). Inorg. Chem. 57, 3399-3410.]), can be related to the –CH2– groups that cut conjugation.

Single crystals of the coordination polymer were obtained by slow diffusion of dilute aqueous solutions of lanthanum chloride (0.25 mmol in 10 mL) and of the sodium salt of para-phenyl­enedi­acetate (0.25 mmol in 10 mL) through an agar-agar gel in a U-shaped tube. The gel was purchased from Acros Organics and jellified according to established procedures (Henisch, 1988[Henisch, H. K. (1988). Crystals in Gels and Liesegang Rings; Cambridge University Press: Cambridge.]; Daiguebonne et al., 2003[Daiguebonne, C., Deluzet, A., Camara, M., Boubekeur, K., Audebrand, N., Gérault, Y., Baux, C. & Guillou, O. (2003). Cryst. Growth Des. 3, 1015-1020.]). After several weeks, prismatic single crystals were obtained.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms bound to the organic ligands were placed at idealized positions (C—H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The water hydrogen atoms were localized and constrained. The thermal agitation of the two water mol­ecules of crystallization was constrained. In order to stabilize the refinement several restraints (DANG, DFIX) were used for the hydrogen atoms bound to water oxygens.

Table 2
Experimental details

Crystal data
Chemical formula [La2(C10H8O4)3(H2O)4]·8H2O
Mr 1070.05
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 9.1197 (2), 11.1231 (2), 11.9434 (2)
α, β, γ (°) 107.049 (1), 107.729 (1), 106.622 (1)
V3) 1005.21 (3)
Z 1
Radiation type Mo Kα
μ (mm−1) 2.18
Crystal size (mm) 0.08 × 0.06 × 0.05
 
Data collection
Diffractometer Nonius KappaCCD
No. of measured, independent and observed [I > 2σ(I)] reflections 4588, 4588, 3751
Rint 0.045
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.068, 1.03
No. of reflections 4588
No. of parameters 283
No. of restraints 18
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.76, −0.65
Computer programs: COLLECT (Bruker, 2004), DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2001[Brandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: COLLECT (Bruker, 2004); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012).

Poly[[tetraaquatris(µ-1,4-phenylenediacetato)dilanthanum(III)] octahydrate] top
Crystal data top
[La2(C10H8O4)3(H2O)4]·8H2OZ = 1
Mr = 1070.05F(000) = 534
Triclinic, P1Dx = 1.768 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.1197 (2) ÅCell parameters from 15558 reflections
b = 11.1231 (2) Åθ = 2.9–27.5°
c = 11.9434 (2) ŵ = 2.18 mm1
α = 107.049 (1)°T = 293 K
β = 107.729 (1)°Prism, colorless
γ = 106.622 (1)°0.08 × 0.06 × 0.05 mm
V = 1005.21 (3) Å3
Data collection top
Nonius KappaCCD
diffractometer
3751 reflections with I > 2σ(I)
Radiation source: Enraf Nonius FR590Rint = 0.045
Horizonally mounted graphite crystal monochromatorθmax = 27.5°, θmin = 3.6°
Detector resolution: 9 pixels mm-1h = 1011
CCD rotation images, thick slices scansk = 1414
4588 measured reflectionsl = 1515
4588 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: dual
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: mixed
wR(F2) = 0.068H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0308P)2]
where P = (Fo2 + 2Fc2)/3
4588 reflections(Δ/σ)max = 0.001
283 parametersΔρmax = 1.76 e Å3
18 restraintsΔρmin = 0.65 e Å3
0 constraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
La10.75090 (2)0.52031 (2)0.47969 (2)0.02048 (7)
O50.4472 (3)0.3677 (2)0.4069 (2)0.0332 (6)
O31.0575 (3)0.5881 (3)0.6253 (2)0.0323 (6)
O10.7627 (3)0.3041 (3)0.5311 (2)0.0336 (6)
O60.8146 (3)0.7579 (3)0.6435 (3)0.0362 (6)
O20.7422 (3)0.4674 (3)0.6736 (2)0.0351 (6)
O40.6840 (3)0.3616 (3)0.2490 (2)0.0415 (7)
O70.5690 (4)0.5882 (4)0.3233 (3)0.0486 (8)
H7A0.468 (3)0.558 (4)0.307 (5)0.058*
H7B0.591 (5)0.651 (4)0.302 (5)0.058*
O80.9316 (4)0.7051 (3)0.4326 (4)0.0503 (8)
H8A0.947 (6)0.785 (3)0.470 (4)0.060*
H8B1.026 (4)0.712 (4)0.435 (5)0.060*
C60.6834 (4)0.7426 (3)0.6621 (3)0.0260 (7)
C110.8165 (4)0.3436 (3)0.2659 (3)0.0261 (7)
C10.7640 (4)0.3589 (4)0.6405 (4)0.0315 (8)
C130.6579 (5)0.1147 (4)0.0739 (4)0.0340 (9)
C120.8247 (5)0.2382 (4)0.1565 (4)0.0390 (9)
H12A0.8573420.2812620.1028980.058*
H12B0.9105630.2079900.1922790.058*
C140.6017 (5)0.0190 (4)0.1196 (4)0.0427 (10)
H140.6695600.0301950.2011490.051*
C80.8472 (5)0.9325 (4)0.8881 (4)0.0340 (9)
C100.9564 (5)1.0646 (4)0.9217 (4)0.0433 (10)
H100.9284131.1099550.8697970.052*
C150.5547 (5)0.0946 (4)0.0469 (4)0.0412 (10)
H150.5890460.1571910.0807970.049*
C70.6832 (5)0.8578 (4)0.7675 (4)0.0445 (11)
H7C0.6607240.9237220.7344800.067*
H7D0.5921520.8197980.7899730.067*
C90.8927 (6)0.8687 (4)0.9685 (4)0.0461 (11)
H90.8204750.7795080.9481620.055*
C30.8997 (5)0.3972 (4)0.8732 (4)0.0392 (9)
C41.0738 (6)0.4427 (5)0.9267 (4)0.0514 (11)
H41.1254050.4053780.8782630.062*
C50.8281 (6)0.4561 (5)0.9477 (4)0.0501 (11)
H50.7114190.4274720.9131330.060*
C20.7931 (6)0.2928 (4)0.7347 (4)0.0460 (10)
H2A0.6847260.2358790.7272510.069*
H2B0.8483590.2330010.7115710.069*
OW10.6313 (10)0.0072 (5)0.4440 (6)0.1327 (17)
HW1A0.589 (11)0.025 (9)0.491 (8)0.159*
HW1B0.639 (13)0.072 (6)0.411 (8)0.159*
OW20.5351 (5)0.6185 (4)0.9718 (4)0.0741 (11)
HW2A0.476 (7)0.639 (6)0.920 (5)0.111*
HW2B0.622 (6)0.678 (5)1.033 (5)0.111*
OW30.0357 (9)0.0056 (6)0.3870 (6)0.1327 (17)
HW3A0.059 (10)0.059 (7)0.354 (7)0.159*
HW3B0.122 (7)0.023 (10)0.447 (6)0.159*
OW40.7105 (10)0.7873 (7)0.2433 (6)0.154 (3)
HW4A0.649 (10)0.805 (11)0.192 (8)0.185*
HW4B0.810 (5)0.831 (11)0.255 (10)0.185*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.01729 (10)0.02001 (10)0.01850 (10)0.00633 (7)0.00482 (7)0.00498 (7)
O50.0242 (13)0.0258 (13)0.0312 (13)0.0032 (10)0.0034 (11)0.0040 (11)
O30.0227 (13)0.0340 (14)0.0229 (12)0.0074 (11)0.0027 (10)0.0011 (11)
O10.0352 (14)0.0353 (14)0.0339 (14)0.0161 (12)0.0168 (12)0.0155 (12)
O60.0247 (13)0.0283 (13)0.0415 (15)0.0089 (10)0.0129 (12)0.0005 (11)
O20.0403 (15)0.0427 (15)0.0332 (14)0.0254 (13)0.0173 (12)0.0200 (12)
O40.0267 (14)0.0515 (17)0.0253 (13)0.0175 (12)0.0040 (11)0.0052 (12)
O70.0425 (17)0.075 (2)0.067 (2)0.0390 (17)0.0345 (17)0.0532 (18)
O80.0456 (18)0.0523 (18)0.088 (2)0.0315 (16)0.0434 (18)0.0469 (19)
C60.0228 (17)0.0219 (17)0.0260 (17)0.0100 (14)0.0051 (14)0.0052 (14)
C110.0187 (16)0.0250 (17)0.0236 (16)0.0060 (13)0.0062 (14)0.0018 (14)
C10.0184 (17)0.041 (2)0.0332 (19)0.0099 (15)0.0083 (15)0.0177 (17)
C130.0261 (19)0.030 (2)0.0297 (19)0.0117 (16)0.0070 (16)0.0041 (16)
C120.0233 (18)0.040 (2)0.0318 (19)0.0098 (16)0.0074 (16)0.0057 (17)
C140.039 (2)0.044 (2)0.028 (2)0.0198 (19)0.0002 (18)0.0047 (18)
C80.031 (2)0.0293 (19)0.0290 (19)0.0102 (16)0.0138 (16)0.0032 (16)
C100.042 (2)0.033 (2)0.037 (2)0.0058 (18)0.0114 (19)0.0059 (18)
C150.043 (2)0.037 (2)0.031 (2)0.0133 (19)0.0076 (18)0.0078 (17)
C70.026 (2)0.040 (2)0.043 (2)0.0127 (17)0.0102 (18)0.0078 (19)
C90.042 (2)0.0225 (19)0.048 (2)0.0033 (17)0.016 (2)0.0006 (18)
C30.043 (2)0.044 (2)0.035 (2)0.0206 (19)0.0123 (18)0.0260 (18)
C40.051 (3)0.073 (3)0.041 (2)0.037 (2)0.022 (2)0.023 (2)
C50.032 (2)0.077 (3)0.042 (2)0.024 (2)0.0112 (19)0.027 (2)
C20.055 (3)0.040 (2)0.039 (2)0.017 (2)0.012 (2)0.0233 (19)
OW10.192 (4)0.069 (2)0.109 (3)0.009 (3)0.079 (3)0.028 (2)
OW20.063 (3)0.086 (3)0.074 (3)0.032 (2)0.020 (2)0.043 (2)
OW30.192 (4)0.069 (2)0.109 (3)0.009 (3)0.079 (3)0.028 (2)
OW40.158 (6)0.115 (4)0.103 (4)0.017 (4)0.019 (4)0.084 (4)
Geometric parameters (Å, º) top
La1—O52.507 (2)C12—H12B0.9700
La1—O5i2.905 (3)C14—H140.9300
La1—O3ii2.781 (2)C14—C15iii1.399 (6)
La1—O32.545 (2)C8—C101.373 (6)
La1—O12.673 (2)C8—C71.509 (5)
La1—O62.559 (2)C8—C91.388 (6)
La1—O22.569 (2)C10—H100.9300
La1—O42.566 (2)C10—C9iv1.382 (6)
La1—O72.543 (3)C15—H150.9300
La1—O82.562 (3)C7—H7C0.9700
La1—C113.066 (3)C7—H7D0.9700
La1—C12.988 (4)C9—H90.9300
O5—C6i1.255 (4)C3—C41.385 (6)
O3—C11ii1.264 (4)C3—C51.381 (6)
O1—C11.264 (4)C3—C21.509 (6)
O6—C61.256 (4)C4—H40.9300
O2—C11.248 (4)C4—C5v1.391 (6)
O4—C111.246 (4)C5—H50.9300
O7—H7A0.824 (19)C2—H2A0.9700
O7—H7B0.806 (18)C2—H2B0.9700
O8—H8A0.815 (19)OW1—HW1A0.87 (2)
O8—H8B0.833 (19)OW1—HW1B0.88 (2)
C6—C71.512 (5)OW2—HW2A0.821 (19)
C11—C121.516 (5)OW2—HW2B0.81 (2)
C1—C21.514 (5)OW3—HW3A0.82 (2)
C13—C121.507 (5)OW3—HW3B0.81 (2)
C13—C141.376 (6)OW4—HW4A0.81 (2)
C13—C151.371 (5)OW4—HW4B0.84 (2)
C12—H12A0.9700
O5—La1—O5i61.48 (9)C11—O4—La1101.3 (2)
O5—La1—O3146.45 (9)La1—O7—H7A116 (3)
O5—La1—O3ii118.58 (7)La1—O7—H7B133 (3)
O5—La1—O175.87 (8)H7A—O7—H7B109 (3)
O5—La1—O6107.86 (8)La1—O8—H8A118 (3)
O5—La1—O275.29 (8)La1—O8—H8B122 (3)
O5—La1—O480.33 (8)H8A—O8—H8B104 (3)
O5—La1—O771.93 (9)O5i—C6—La168.28 (18)
O5—La1—O8140.13 (9)O5i—C6—O6120.2 (3)
O5i—La1—C11156.28 (8)O5i—C6—C7120.1 (3)
O5—La1—C1198.48 (8)O6—C6—La152.33 (16)
O5—La1—C175.84 (9)O6—C6—C7119.7 (3)
O5i—La1—C188.69 (9)C7—C6—La1169.6 (2)
O3—La1—O5i118.22 (7)O3ii—C11—La165.08 (17)
O3ii—La1—O5i179.00 (7)O3ii—C11—C12120.3 (3)
O3—La1—O3ii61.11 (8)O4—C11—La155.16 (17)
O3—La1—O173.20 (8)O4—C11—O3ii119.9 (3)
O3—La1—O680.93 (8)O4—C11—C12119.8 (3)
O3—La1—O274.87 (8)C12—C11—La1171.2 (2)
O3—La1—O4108.82 (8)O1—C1—La163.39 (19)
O3—La1—O873.39 (9)O1—C1—C2119.8 (3)
O3ii—La1—C1124.36 (8)O2—C1—La158.58 (18)
O3—La1—C1185.47 (8)O2—C1—O1121.5 (3)
O3—La1—C170.64 (9)O2—C1—C2118.7 (3)
O3ii—La1—C190.37 (9)C2—C1—La1172.4 (3)
O1—La1—O5i109.68 (7)C14—C13—C12120.5 (4)
O1—La1—O3ii69.49 (8)C15—C13—C12122.1 (4)
O1—La1—C1174.29 (9)C15—C13—C14117.4 (4)
O1—La1—C125.01 (9)C11—C12—H12A109.2
O6—La1—O5i46.41 (7)C11—C12—H12B109.2
O6—La1—O3ii133.56 (8)C13—C12—C11112.0 (3)
O6—La1—O1126.21 (9)C13—C12—H12A109.2
O6—La1—O278.86 (9)C13—C12—H12B109.2
O6—La1—O4149.49 (10)H12A—C12—H12B107.9
O6—La1—O871.55 (10)C13—C14—H14119.1
O6—La1—C11149.62 (9)C13—C14—C15iii121.8 (4)
O6—La1—C1101.90 (10)C15iii—C14—H14119.1
O2—La1—O5i66.57 (8)C10—C8—C7121.6 (4)
O2—La1—O3ii112.44 (8)C10—C8—C9117.8 (4)
O2—La1—O149.39 (8)C9—C8—C7120.6 (4)
O2—La1—C11123.42 (9)C8—C10—H10119.5
O2—La1—C124.50 (9)C8—C10—C9iv121.1 (4)
O4—La1—O5i132.95 (7)C9iv—C10—H10119.5
O4—La1—O3ii47.75 (7)C13—C15—C14iii120.7 (4)
O4—La1—O184.13 (9)C13—C15—H15119.6
O4—La1—O2131.27 (9)C14iii—C15—H15119.6
O4—La1—C1123.49 (8)C6—C7—H7C108.9
O4—La1—C1108.61 (10)C6—C7—H7D108.9
O7—La1—O5i70.81 (9)C8—C7—C6113.4 (3)
O7—La1—O3141.53 (10)C8—C7—H7C108.9
O7—La1—O3ii110.19 (9)C8—C7—H7D108.9
O7—La1—O1142.43 (10)H7C—C7—H7D107.7
O7—La1—O682.59 (10)C8—C9—H9119.4
O7—La1—O2134.87 (9)C10iv—C9—C8121.1 (4)
O7—La1—O471.95 (10)C10iv—C9—H9119.4
O7—La1—O868.46 (10)C4—C3—C2120.7 (4)
O7—La1—C1191.69 (10)C5—C3—C4118.0 (4)
O7—La1—C1147.21 (10)C5—C3—C2121.2 (4)
O8—La1—O5i108.04 (8)C3—C4—H4119.8
O8—La1—O3ii72.59 (9)C3—C4—C5v120.4 (4)
O8—La1—O1138.11 (8)C5v—C4—H4119.8
O8—La1—O2139.28 (10)C3—C5—C4v121.6 (4)
O8—La1—O483.41 (11)C3—C5—H5119.2
O8—La1—C1178.57 (10)C4v—C5—H5119.2
O8—La1—C1144.03 (10)C1—C2—H2A109.0
C1—La1—C1198.95 (10)C1—C2—H2B109.0
La1—O5—La1i118.52 (9)C3—C2—C1112.8 (3)
C6i—O5—La1i88.1 (2)C3—C2—H2A109.0
C6i—O5—La1153.4 (2)C3—C2—H2B109.0
La1—O3—La1ii118.89 (8)H2A—C2—H2B107.8
C11ii—O3—La1150.5 (2)HW1A—OW1—HW1B88 (7)
C11ii—O3—La1ii90.56 (19)HW2A—OW2—HW2B121 (5)
C1—O1—La191.6 (2)HW3A—OW3—HW3B108 (4)
C6—O6—La1104.8 (2)HW4A—OW4—HW4B107 (4)
C1—O2—La196.9 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1; (iii) x+1, y, z; (iv) x+2, y+2, z+2; (v) x+2, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW1—HW1A···OW1vi0.87 (9)2.40 (11)3.067 (13)133 (9)
OW1—HW1B···OW4vii0.89 (9)2.54 (10)3.298 (11)145 (7)
OW2—HW2A···O4i0.82 (6)2.10 (6)2.895 (5)164 (6)
OW2—HW2B···OW4viii0.82 (6)2.20 (5)2.855 (8)137 (5)
OW3—HW3A···O6i0.82 (8)2.02 (8)2.780 (8)154 (7)
OW3—HW3B···OW1vi0.81 (7)2.40 (8)3.162 (11)156 (8)
OW4—HW4A···OW2ix0.81 (10)2.49 (9)2.855 (8)109 (9)
O7—H7A···O2i0.82 (4)1.95 (4)2.741 (5)161 (5)
O7—H7B···OW40.81 (5)2.03 (5)2.800 (9)160 (5)
OW4—HW4B···OW3x0.84 (9)2.11 (10)2.824 (11)143 (8)
O8—H8A···OW3i0.82 (4)2.38 (4)3.175 (8)165 (4)
O8—H8B···O1ii0.83 (4)1.92 (4)2.725 (5)163 (5)
C7—H7D···O4i0.972.543.442 (6)154
C12—H12B···O6ii0.972.513.406 (6)154
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1; (vi) x+1, y, z+1; (vii) x, y1, z; (viii) x, y, z+1; (ix) x, y, z1; (x) x+1, y+1, z.
 

Acknowledgements

The French Cooperation Agency in Senegal is acknowledged for financial support.

References

First citationBadiane, A.-M., Freslon, S., Daiguebonne, C., Suffren, Y., Bernot, K., Calvez, G., Costuas, K., Camara, M. & Guillou, O. (2018). Inorg. Chem. 57, 3399–3410.  CrossRef CAS Google Scholar
First citationBadiane, I., Freslon, S., Suffren, Y., Daiguebonne, C., Calvez, G., Bernot, K., Camara, M. & Guillou, O. (2017a). Cryst. Growth Des. 17, 1224–1234.  CrossRef CAS Google Scholar
First citationBadiane, I., Freslon, S., Suffren, Y., Daiguebonne, C., Calvez, G., Bernot, K., Camara, M. & Guillou, O. (2017b). Inorg. Chim. Acta, 461, 136–144.  CrossRef CAS Google Scholar
First citationBinnemans, K. (2009). Chem. Rev. 109, 4283–4374.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCalvez, G., Bernot, K., Guillou, O., Daiguebonne, C., Caneschi, A. & Mahé, N. (2008). Inorg. Chim. Acta, 361, 3997–4003.  Web of Science CrossRef CAS Google Scholar
First citationChen, Z., Xiong, W., Zhang, Z. & Liang, F. (2010a). Z. Anorg. Allg. Chem. 636, 1392–1396.  CrossRef CAS Google Scholar
First citationChen, Z., Xiong, W., Zhang, Z., Liang, F. P. & Luo, B. C. (2010b). Transition Met. Chem. 35, 991–997.  CrossRef CAS Google Scholar
First citationChen, Z., Zhao, Q., Xiong, W., Zhang, Z. & Liang, F. (2010c). Z. Anorg. Allg. Chem. 636, 2691–2697.  CrossRef CAS Google Scholar
First citationCui, Y., Yue, Y., Qian, G. & Chen, B. (2012). Chem. Rev. 112, 1126–1162.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDaiguebonne, C., Deluzet, A., Camara, M., Boubekeur, K., Audebrand, N., Gérault, Y., Baux, C. & Guillou, O. (2003). Cryst. Growth Des. 3, 1015–1020.  Web of Science CrossRef CAS Google Scholar
First citationDaiguebonne, C., Kerbellec, N., Guillou, O., Bünzli, J. C., Gumy, F., Catala, L., Mallah, T., Audebrand, N., Gérault, Y., Bernot, K. & Calvez, G. (2008). Inorg. Chem. 47, 3700–3708.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J., O'Keeffe, M. & Yaghi, O. M. (2002). Science, 295, 469–472.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFabelo, O., Cañadillas-Delgado, L., Pasán, J., Delgado, F. S., Lloret, F., Cano, J., Julve, M. & Ruiz-Pérez, C. (2009a). Inorg. Chem. 48, 11342–11351.  CrossRef CAS Google Scholar
First citationFabelo, O., Pasán, J., Cañadillas-Delgado, L., Delgado, F. S., Lloret, F., Julve, M. & Ruiz-Pérez, C. (2009b). Inorg. Chem. 48, 6086–6095.  CrossRef CAS Google Scholar
First citationFan, X., Freslon, S., Daiguebonne, C., Calvez, G., Le Pollès, L., Bernot, K. & Guillou, O. (2014). J. Mater. Chem. C. 2, 5510–5525.  CrossRef CAS Google Scholar
First citationFan, X., Freslon, S., Daiguebonne, C., Pollès, L. L., Calvez, G., Bernot, K., Yi, X., Huang, G. & Guillou, O. (2015). Inorg. Chem. 54, 5534–5546.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFreslon, S., Luo, Y., Calvez, G., Daiguebonne, C., Guillou, O., Bernot, K., Michel, V. & Fan, X. (2014). Inorg. Chem. 53, 1217–1228.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFreslon, S., Luo, Y., Daiguebonne, C., Calvez, G., Bernot, K. & Guillou, O. (2016). Inorg. Chem. 55, 794–802.  CrossRef CAS Google Scholar
First citationHamon, L., Llewellyn, P. L., Devic, T., Ghoufi, A., Clet, G., Guillerm, V., Pirngruber, G. D., Maurin, G., Serre, C., Driver, G., van Beek, W., Jolimaître, E., Vimont, A., Daturi, M. & Férey, G. (2009). J. Am. Chem. Soc. 131, 17490–17499.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHenisch, H. K. (1988). Crystals in Gels and Liesegang Rings; Cambridge University Press: Cambridge.  Google Scholar
First citationHuang, Y. G., Jiang, F. L., Yuan, D. Q., Wu, M. Y., Gao, Q., Wei, W. & Hong, M. C. (2009). J. Solid State Chem. 182, 215–222.  CrossRef CAS Google Scholar
First citationKerbellec, N., Daiguebonne, C., Bernot, K., Guillou, O. & Le Guillou, X. (2008). J. Alloys Compd. 451, 377–383.  CrossRef CAS Google Scholar
First citationKustaryono, D., Kerbellec, N., Calvez, G., Freslon, S., Daiguebonne, C. & Guillou, O. (2010). Cryst. Growth Des. 10, 775–781.  Web of Science CrossRef CAS Google Scholar
First citationLee, J., Farha, O. K., Roberts, J., Scheidt, K. A., Nguyen, S., inh, T. & Hupp, J. T. (2009). Chem. Soc. Rev. 38, 1450–1459.  CrossRef CAS Google Scholar
First citationLi, D. S., Zhang, M. L., Zhao, J., Wang, D. J., Zhang, P., Wang, N. & Wang, Y. Y. (2009). Inorg. Chem. Commun. 12, 1027–1030.  CrossRef CAS Google Scholar
First citationLuo, F., Batten, S. R., Che, Y. & Zheng, J. M. (2007). Chem. Eur. J. 13, 4948–4955.  CrossRef CAS Google Scholar
First citationLuo, Y., Bernot, K., Calvez, G., Freslon, S., Daiguebonne, C., Guillou, O., Kerbellec, N. & Roisnel, T. (2013). CrystEngComm, 15, 1882–1896.  Web of Science CrossRef CAS Google Scholar
First citationLuo, Y., Calvez, G., Freslon, S., Bernot, K., Daiguebonne, C. & Guillou, O. (2011a). Eur. J. Inorg. Chem. 3705–3716.  Google Scholar
First citationLuo, Y., Calvez, G., Freslon, S., Daiguebonne, C., Roisnel, T. & Guillou, O. (2011b). Inorg. Chim. Acta, 368, 170–178.  CrossRef CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.  Google Scholar
First citationPan, L., Adams, K. M., Hernandez, H. E., Wang, X., Zheng, Ch., Hattori, Y. & Kaneko, K. (2003). J. Am. Chem. Soc. 125, 3062–3067.  CrossRef CAS Google Scholar
First citationQiu, Y., Daiguebonne, C., Liu, J., Zeng, R., Kerbellec, N., Deng, H. & Guillou, O. (2007). Inorg. Chim. Acta, 360, 3265–3271.  Web of Science CrossRef CAS Google Scholar
First citationReineke, T. M., Eddaoudi, M., O'Keeffe, M. & Yaghi, O. M. (1999). Angew. Chem. Int. Ed. 38, 2590–2594.  CrossRef CAS Google Scholar
First citationRen, Y.-W., Liang, J.-X., Lu, J.-X., Cai, B.-W., Shi, D.-B., Qi, C.-R., Jiang, H.-F., Chen, J. & Zheng, D. (2011). Eur. J. Inorg. Chem. pp. 4369–4376.  CrossRef Google Scholar
First citationRusinek, I., Sienkiewicz-Gromiuk, J., Mazur, L. & Rzączyńska, Z. (2013). J. Inorg. Organomet. Polym. 23, 1068–1077.  CrossRef CAS Google Scholar
First citationSessoli, R. & Powell, A. K. (2009). Coord. Chem. Rev. 253, 2328–2341.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingha, D.-K., Bhattacharya, S., Majee, P., Mondal, S.-K., Kumar, M. & Mahata, P. (2014). J. Mater. Chem. A, 2, 20908–20915.  CrossRef CAS Google Scholar
First citationSingha, D.-K., Majee, P., Mondal, S. K. & Mahata, P. (2015). Eur. J. Inorg. Chem. pp. 1390–1397.  CrossRef Google Scholar
First citationSingh, W. M. & Baruah, J. B. (2009). Inorg. Chim. Acta, 362, 4268–4271.  CrossRef CAS Google Scholar
First citationUebler, J. W. & LaDuca, R. L. (2012). Inorg. Chem. Commun. 19, 31–35.  CrossRef CAS Google Scholar
First citationWang, L., Song, T., Li, C., Xia, J., Wang, S., Wang, L. & Xu, J. (2012). J. Solid State Chem. 190, 208–215.  CrossRef CAS Google Scholar
First citationXin, L. Y., Liu, G. Z. & Wang, L. Y. (2011). J. Solid State Chem. 184, 1387–1392.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds