metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Dianilinium bis­­(pyridine-2,6-di­carboxyl­ato-κ3O2,N,O6)cuprate(II) hexa­hydrate

aDepartment of Chemistry, Ferdowsi University of Mashhad, Mashhad 91779, Iran, and bDipartimento di Chimica Inorganica, Chimica Analitica e Chimica Fisica, Università di Messina, Salita Sperone, 31 Contrada Papardo, 98166 Messina, Italy
*Correspondence e-mail: amir.saljooghi@yahoo.com

(Received 19 April 2012; accepted 23 June 2012; online 4 July 2012)

The asymmetric unit of the title complex, (C6H8N)2[Cu(C7H3NO4)2]·6H2O, contains half a copper(II)–dipicolinate complex located on a twofold rotation axis, one protonated aniline mol­ecule and three solvent water mol­ecules. The CuII atom is coordinated by four O atoms and two N atoms from two dipicolinate ligands in a distorted octa­hedral environment. In the crystal, the components are linked into a three-dimensional framework by inter­molecular O—H⋯O and N—H⋯O inter­actions.

Related literature

For metal complexes formed by pyridine­dicarb­oxy­lic acids, see: Crans (2000[Crans, D. C. (2000). J. Inorg. Biochem. 80, 123-131.]); Wang et al. (2004[Wang, Y., Odoko, M. & Okabe, N. (2004). Acta Cryst. E60, m1178-m1180.]); Park et al. (2007[Park, H., Lough, A. J., Kim, J. C., Jeong, M. H. & Kang, Y. S. (2007). Inorg. Chim. Acta, 360, 2819-2823.]); Aghabozorg et al. (2008[Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184-227.], 2011[Aghabozorg, H., Kazemi, S., Agah, A. A., Mirzaei, M. & Notash, B. (2011). Acta Cryst. E67, m360-m361.]); Tabatabaee (2010[Tabatabaee, M. (2010). Acta Cryst. E66, m647-m648.]).

[Scheme 1]

Experimental

Crystal data
  • (C6H8N)2[Cu(C7H3NO4)2]·6H2O

  • Mr = 690.11

  • Monoclinic, C 2/c

  • a = 20.9117 (6) Å

  • b = 7.9115 (2) Å

  • c = 19.8842 (5) Å

  • β = 117.706 (2)°

  • V = 2912.52 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.83 mm−1

  • T = 293 K

  • 0.44 × 0.36 × 0.35 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.652, Tmax = 0.746

  • 48649 measured reflections

  • 5321 independent reflections

  • 4990 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.073

  • S = 1.06

  • 5321 reflections

  • 213 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—N1 1.9232 (7)
Cu1—O1 2.2577 (7)
Cu1—O2 2.1701 (7)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O4i 0.83 1.91 2.7267 (11) 171
N2—H2B⋯O7ii 0.89 1.93 2.8071 (12) 168
N2—H2C⋯O3iii 0.88 2.14 2.9842 (12) 162
O5—H5A⋯O2iv 0.85 1.88 2.732 176
O5—H5B⋯O6ii 0.85 1.97 2.8026 (12) 166
O6—H6A⋯O3v 0.85 1.97 2.8066 (11) 167
O6—H6B⋯O5vi 0.85 1.93 2.7760 (13) 177
O7—H7A⋯O1vii 0.85 1.92 2.750 164
O7—H7B⋯O6viii 0.85 2.17 3.0083 (12) 170
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x+1, -y+1, -z+1; (iii) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, -z+1]; (iv) x, y-1, z; (v) [x, -y+1, z+{\script{1\over 2}}]; (vi) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (vii) [-x+1, y, -z+{\script{1\over 2}}]; (viii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin,USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin,USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XPW (Siemens, 1996[Siemens (1996). XPW. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Pyridine-2,6-dicarboxylic acid (dipicolinic acid) is a versatile N—O donor capable of forming stable chelates (Park et al., 2007), with various metal ions and it can exhibit diverse coordination modes such as monodentate (Park et al., 2007), bidentate (Wang et al., 2004), tridentate (Park et al., 2007), meridian (Park et al., 2007), or bridging (Aghabozorg et al., 2008, 2011). Dipicolinic acid (H2dipic) and its anions (Hdipic-, dipic2-), have been extensively used in the design of coordination compounds, due to the variety of their bonding ability and the relatively strong hydrogen bonds they form. Dipicolinic acid is a beneficial compound for the human organism and it is involved in several essential biochemical processes. It shows various biological functions and is a suitable ligand for modeling potential pharmacological compounds because of its low toxicity and amphiphilic nature (Crans, 2000). In recent years, syntheses and crystal structures of a large number of complexes with dipicolinic acid and some amino compounds have been reported (Aghabozorg et al., 2008; Tabatabaee, 2010). Here, we present the preparation and the crystal structure of the title compund, (C6H8N)2 [Cu(C7H3NO4)2].6H2O. The molecular structure of the title compound is shown in Fig. 1. The cationic portion of the asymmetric unit consists of one protonated aniline molecule (anilinium cation) and the anionic portion is the [Cu(pydc)2]2- complex.In the anion, the angles O1—Cu1—O1 [103.65 (5)°], O2—Cu1—O2 [102.71 (5)°] and N1—Cu1—N1 [179.46 (5)°] indicate that the coordination environment around Cu(II) ion is a distorted octahedron. There are extensive intermolecular O—H···O, N—H···O and weak C—H···O hydrogen bonds, which increases the stability of the crystal structure (Fig. 2).

Related literature top

For metal complexes formed by pyridinedicarboxylic acids, see: Crans (2000); Wang et al. (2004); Park et al. (2007); Aghabozorg et al. (2008, 2011); Tabatabaee (2010).

Experimental top

The title compound was synthesized by the reaction of copper(II) acetate, pyridine-2,6-dicarboxylic acid (pydcH2) and aniline in aqueous solution in a 1:1:1 molar ratio. Green crystals of the title compound were obtained by slow evaporation of the solvent at room temperature.

Refinement top

The H atoms of the water molecules were found in difference Fourier maps and the O–H bond lengths were constrained to 0.85 Å. The positions of the water molecules were optimized using rigid-body constraints (SHELXL AFIX 6). The H atoms from C–H groups were placed in calculated positions. The carbon H atoms were refined in riding model approximation with Uiso(H) = 1.2Ueq(C) whereas the water hydrogens were treated with 1.5Ueq(O).

Structure description top

Pyridine-2,6-dicarboxylic acid (dipicolinic acid) is a versatile N—O donor capable of forming stable chelates (Park et al., 2007), with various metal ions and it can exhibit diverse coordination modes such as monodentate (Park et al., 2007), bidentate (Wang et al., 2004), tridentate (Park et al., 2007), meridian (Park et al., 2007), or bridging (Aghabozorg et al., 2008, 2011). Dipicolinic acid (H2dipic) and its anions (Hdipic-, dipic2-), have been extensively used in the design of coordination compounds, due to the variety of their bonding ability and the relatively strong hydrogen bonds they form. Dipicolinic acid is a beneficial compound for the human organism and it is involved in several essential biochemical processes. It shows various biological functions and is a suitable ligand for modeling potential pharmacological compounds because of its low toxicity and amphiphilic nature (Crans, 2000). In recent years, syntheses and crystal structures of a large number of complexes with dipicolinic acid and some amino compounds have been reported (Aghabozorg et al., 2008; Tabatabaee, 2010). Here, we present the preparation and the crystal structure of the title compund, (C6H8N)2 [Cu(C7H3NO4)2].6H2O. The molecular structure of the title compound is shown in Fig. 1. The cationic portion of the asymmetric unit consists of one protonated aniline molecule (anilinium cation) and the anionic portion is the [Cu(pydc)2]2- complex.In the anion, the angles O1—Cu1—O1 [103.65 (5)°], O2—Cu1—O2 [102.71 (5)°] and N1—Cu1—N1 [179.46 (5)°] indicate that the coordination environment around Cu(II) ion is a distorted octahedron. There are extensive intermolecular O—H···O, N—H···O and weak C—H···O hydrogen bonds, which increases the stability of the crystal structure (Fig. 2).

For metal complexes formed by pyridinedicarboxylic acids, see: Crans (2000); Wang et al. (2004); Park et al. (2007); Aghabozorg et al. (2008, 2011); Tabatabaee (2010).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XPW (Siemens, 1996); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure and atom labeling scheme for title compound with displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of H-bonded chain in crystal network of title compound, hydrogen bonds are shown as dashed lines.
Dianilinium bis(pyridine-2,6-dicarboxylato- κ3O2,N,O6)cuprate(II) hexahydrate top
Crystal data top
(C6H8N)2[Cu(C7H3NO4)2]·6H2OF(000) = 1436
Mr = 690.11Dx = 1.574 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9787 reflections
a = 20.9117 (6) Åθ = 2.3–32.7°
b = 7.9115 (2) ŵ = 0.83 mm1
c = 19.8842 (5) ÅT = 293 K
β = 117.706 (2)°Irregular, green
V = 2912.52 (13) Å30.44 × 0.36 × 0.35 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
5321 independent reflections
Radiation source: fine-focus sealed tube4990 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
φ and ω scansθmax = 32.7°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 3131
Tmin = 0.652, Tmax = 0.746k = 1212
48649 measured reflectionsl = 3030
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0415P)2 + 1.1609P]
where P = (Fo2 + 2Fc2)/3
5321 reflections(Δ/σ)max = 0.001
213 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.55 e Å3
Crystal data top
(C6H8N)2[Cu(C7H3NO4)2]·6H2OV = 2912.52 (13) Å3
Mr = 690.11Z = 4
Monoclinic, C2/cMo Kα radiation
a = 20.9117 (6) ŵ = 0.83 mm1
b = 7.9115 (2) ÅT = 293 K
c = 19.8842 (5) Å0.44 × 0.36 × 0.35 mm
β = 117.706 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
5321 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
4990 reflections with I > 2σ(I)
Tmin = 0.652, Tmax = 0.746Rint = 0.017
48649 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.073H-atom parameters constrained
S = 1.06Δρmax = 0.39 e Å3
5321 reflectionsΔρmin = 0.55 e Å3
213 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50000.979382 (19)0.25000.02257 (5)
O10.59158 (4)0.80292 (10)0.26847 (4)0.03298 (14)
O20.43941 (4)1.15066 (10)0.28429 (4)0.03275 (14)
O30.70644 (4)0.77108 (10)0.35839 (4)0.03315 (14)
O40.43162 (4)1.20999 (11)0.39036 (4)0.03787 (16)
N10.55834 (4)0.98045 (9)0.35855 (4)0.02101 (12)
C10.64268 (4)0.81793 (11)0.33490 (5)0.02413 (14)
C20.62266 (4)0.90375 (10)0.39060 (4)0.02198 (13)
C30.66492 (5)0.90453 (12)0.46879 (5)0.02786 (15)
H30.71020.85350.49110.033*
C40.63852 (5)0.98284 (13)0.51321 (5)0.03126 (18)
H40.66560.98220.56580.038*
C50.57176 (5)1.06210 (12)0.47912 (5)0.02811 (16)
H50.55341.11500.50820.034*
C60.53317 (4)1.06049 (11)0.40074 (4)0.02196 (13)
C70.46167 (4)1.14859 (11)0.35519 (5)0.02438 (14)
N20.65628 (5)0.54403 (11)0.60233 (5)0.03183 (16)
H2A0.63280.61900.60980.038*
H2B0.65260.44900.62380.038*
H2C0.70120.57800.62010.038*
C80.63075 (5)0.51163 (11)0.52136 (6)0.02671 (15)
C90.67563 (6)0.42455 (14)0.50001 (6)0.03540 (19)
H90.72070.38710.53640.042*
C100.65261 (7)0.39375 (16)0.42367 (7)0.0440 (2)
H100.68260.33590.40870.053*
C110.58577 (8)0.44806 (16)0.36981 (7)0.0442 (3)
H110.57060.42660.31860.053*
C120.54110 (7)0.53474 (16)0.39200 (7)0.0418 (2)
H120.49590.57110.35560.050*
C130.56340 (5)0.56767 (14)0.46834 (6)0.03397 (18)
H130.53370.62620.48340.041*
O50.29295 (4)0.17557 (11)0.19901 (5)0.03988 (17)
H5A0.33870.17220.22470.060*
H5B0.28520.27550.20920.060*
O60.74953 (5)0.49186 (10)0.79362 (5)0.04002 (17)
H6A0.72960.41690.80820.060*
H6B0.76350.43720.76600.060*
O70.37393 (5)0.76400 (11)0.34828 (4)0.03909 (16)
H7A0.38290.75620.31080.059*
H7B0.34140.83800.33870.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01931 (7)0.02986 (8)0.01981 (7)0.0000.01017 (5)0.000
O10.0284 (3)0.0478 (4)0.0232 (3)0.0025 (3)0.0124 (2)0.0029 (3)
O20.0236 (3)0.0484 (4)0.0236 (3)0.0075 (3)0.0088 (2)0.0010 (3)
O30.0245 (3)0.0373 (4)0.0392 (3)0.0072 (3)0.0161 (3)0.0025 (3)
O40.0355 (3)0.0459 (4)0.0394 (4)0.0126 (3)0.0236 (3)0.0026 (3)
N10.0190 (3)0.0251 (3)0.0198 (3)0.0023 (2)0.0097 (2)0.0004 (2)
C10.0232 (3)0.0254 (3)0.0259 (3)0.0028 (3)0.0133 (3)0.0011 (3)
C20.0193 (3)0.0245 (3)0.0222 (3)0.0025 (2)0.0097 (2)0.0014 (2)
C30.0229 (3)0.0320 (4)0.0237 (3)0.0049 (3)0.0068 (3)0.0031 (3)
C40.0306 (4)0.0393 (5)0.0188 (3)0.0029 (3)0.0071 (3)0.0008 (3)
C50.0293 (4)0.0348 (4)0.0213 (3)0.0014 (3)0.0127 (3)0.0027 (3)
C60.0204 (3)0.0261 (3)0.0209 (3)0.0009 (3)0.0109 (3)0.0012 (3)
C70.0212 (3)0.0271 (4)0.0262 (3)0.0017 (3)0.0122 (3)0.0021 (3)
N20.0293 (4)0.0354 (4)0.0315 (4)0.0046 (3)0.0147 (3)0.0007 (3)
C80.0267 (4)0.0248 (3)0.0313 (4)0.0010 (3)0.0157 (3)0.0005 (3)
C90.0346 (5)0.0356 (5)0.0415 (5)0.0057 (4)0.0223 (4)0.0012 (4)
C100.0554 (7)0.0432 (6)0.0474 (6)0.0012 (5)0.0357 (5)0.0046 (5)
C110.0581 (7)0.0425 (6)0.0352 (5)0.0113 (5)0.0244 (5)0.0043 (4)
C120.0367 (5)0.0438 (6)0.0364 (5)0.0043 (4)0.0098 (4)0.0018 (4)
C130.0272 (4)0.0349 (4)0.0386 (5)0.0013 (3)0.0144 (4)0.0004 (4)
O50.0276 (3)0.0430 (4)0.0443 (4)0.0022 (3)0.0128 (3)0.0012 (3)
O60.0493 (5)0.0317 (4)0.0429 (4)0.0055 (3)0.0246 (4)0.0021 (3)
O70.0470 (4)0.0429 (4)0.0332 (3)0.0045 (3)0.0235 (3)0.0054 (3)
Geometric parameters (Å, º) top
Cu1—N11.9232 (7)N2—C81.4641 (13)
Cu1—N1i1.9232 (7)N2—H2A0.8262
Cu1—O2i2.1701 (7)N2—H2B0.8855
Cu1—O12.2577 (7)N2—H2C0.8779
Cu1—O22.1701 (7)C8—C91.3807 (13)
Cu1—O1i2.2577 (7)C8—C131.3823 (14)
O1—C11.2603 (10)C9—C101.3841 (16)
O2—C71.2628 (10)C9—H90.9300
O3—C11.2467 (10)C10—C111.376 (2)
O4—C71.2364 (10)C10—H100.9300
N1—C21.3365 (10)C11—C121.3859 (19)
N1—C61.3389 (10)C11—H110.9300
C1—C21.5146 (11)C12—C131.3897 (16)
C2—C31.3858 (11)C12—H120.9300
C3—C41.3865 (13)C13—H130.9300
C3—H30.9300O5—H5A0.8500
C4—C51.3863 (13)O5—H5B0.8500
C4—H40.9300O6—H6A0.8502
C5—C61.3823 (11)O6—H6B0.8500
C5—H50.9300O7—H7A0.8499
C6—C71.5109 (11)O7—H7B0.8500
N1—Cu1—N1i179.49 (4)C4—C5—H5120.8
N1—Cu1—O2i101.04 (3)N1—C6—C5121.15 (8)
N1i—Cu1—O2i78.64 (3)N1—C6—C7114.23 (7)
N1—Cu1—O278.64 (3)C5—C6—C7124.61 (7)
N1i—Cu1—O2101.04 (3)O4—C7—O2127.31 (8)
O2i—Cu1—O2102.72 (4)O4—C7—C6117.63 (8)
N1—Cu1—O1i103.46 (3)O2—C7—C6115.06 (7)
N1i—Cu1—O1i76.86 (3)C8—N2—H2A112.3
O2i—Cu1—O1i155.50 (2)C8—N2—H2B108.2
O2—Cu1—O1i82.08 (3)H2A—N2—H2B109.3
N1—Cu1—O176.86 (3)C8—N2—H2C105.7
N1i—Cu1—O1103.46 (3)H2A—N2—H2C108.8
O2i—Cu1—O182.08 (3)H2B—N2—H2C112.5
O2—Cu1—O1155.50 (2)C9—C8—C13121.51 (10)
O1i—Cu1—O1103.61 (4)C9—C8—N2118.23 (9)
C1—O1—Cu1110.73 (6)C13—C8—N2120.26 (8)
C7—O2—Cu1112.14 (5)C8—C9—C10119.05 (10)
C2—N1—C6121.17 (7)C8—C9—H9120.5
C2—N1—Cu1120.39 (5)C10—C9—H9120.5
C6—N1—Cu1118.44 (5)C11—C10—C9120.53 (11)
O3—C1—O1127.06 (8)C11—C10—H10119.7
O3—C1—C2118.06 (7)C9—C10—H10119.7
O1—C1—C2114.87 (7)C10—C11—C12119.86 (11)
N1—C2—C3120.56 (7)C10—C11—H11120.1
N1—C2—C1114.45 (7)C12—C11—H11120.1
C3—C2—C1124.99 (7)C11—C12—C13120.45 (11)
C2—C3—C4118.79 (8)C11—C12—H12119.8
C2—C3—H3120.6C13—C12—H12119.8
C4—C3—H3120.6C8—C13—C12118.59 (10)
C5—C4—C3119.95 (8)C8—C13—H13120.7
C5—C4—H4120.0C12—C13—H13120.7
C3—C4—H4120.0H5A—O5—H5B99.9
C6—C5—C4118.33 (8)H6A—O6—H6B103.6
C6—C5—H5120.8H7A—O7—H7B109.5
N1—Cu1—O1—C114.29 (6)O3—C1—C2—C313.90 (13)
N1i—Cu1—O1—C1165.31 (6)O1—C1—C2—C3166.50 (9)
O2i—Cu1—O1—C189.06 (6)N1—C2—C3—C41.50 (13)
O2—Cu1—O1—C114.29 (11)C1—C2—C3—C4177.53 (9)
O1i—Cu1—O1—C1115.21 (7)C2—C3—C4—C51.60 (15)
N1—Cu1—O2—C711.16 (6)C3—C4—C5—C60.05 (15)
N1i—Cu1—O2—C7169.24 (6)C2—N1—C6—C52.07 (13)
O2i—Cu1—O2—C7110.06 (7)Cu1—N1—C6—C5178.37 (7)
O1i—Cu1—O2—C794.37 (6)C2—N1—C6—C7176.68 (7)
O1—Cu1—O2—C711.16 (11)Cu1—N1—C6—C72.87 (9)
O2i—Cu1—N1—C271.51 (7)C4—C5—C6—N11.91 (14)
O2—Cu1—N1—C2172.44 (7)C4—C5—C6—C7176.72 (9)
O1i—Cu1—N1—C2108.66 (6)Cu1—O2—C7—O4167.46 (8)
O1—Cu1—N1—C27.56 (6)Cu1—O2—C7—C612.58 (9)
O2i—Cu1—N1—C6108.06 (6)N1—C6—C7—O4172.64 (8)
O2—Cu1—N1—C67.12 (6)C5—C6—C7—O48.65 (13)
O1i—Cu1—N1—C671.77 (7)N1—C6—C7—O27.39 (11)
O1—Cu1—N1—C6172.88 (7)C5—C6—C7—O2171.32 (9)
Cu1—O1—C1—O3162.04 (8)C13—C8—C9—C100.37 (16)
Cu1—O1—C1—C217.52 (9)N2—C8—C9—C10179.56 (10)
C6—N1—C2—C30.33 (12)C8—C9—C10—C110.45 (18)
Cu1—N1—C2—C3179.88 (6)C9—C10—C11—C120.19 (19)
C6—N1—C2—C1179.46 (7)C10—C11—C12—C130.16 (18)
Cu1—N1—C2—C10.99 (10)C9—C8—C13—C120.03 (15)
O3—C1—C2—N1167.02 (8)N2—C8—C13—C12179.90 (9)
O1—C1—C2—N112.58 (11)C11—C12—C13—C80.24 (17)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O4ii0.831.912.7267 (11)171
N2—H2B···O7iii0.891.932.8071 (12)168
N2—H2C···O3iv0.882.142.9842 (12)162
O5—H5A···O2v0.851.882.732176
O5—H5B···O6iii0.851.972.8026 (12)166
O6—H6A···O3vi0.851.972.8066 (11)167
O6—H6B···O5vii0.851.932.7760 (13)177
O7—H7A···O1i0.851.922.750164
O7—H7B···O6viii0.852.173.0083 (12)170
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1, y+2, z+1; (iii) x+1, y+1, z+1; (iv) x+3/2, y+3/2, z+1; (v) x, y1, z; (vi) x, y+1, z+1/2; (vii) x+1/2, y+1/2, z+1/2; (viii) x1/2, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula(C6H8N)2[Cu(C7H3NO4)2]·6H2O
Mr690.11
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)20.9117 (6), 7.9115 (2), 19.8842 (5)
β (°) 117.706 (2)
V3)2912.52 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.83
Crystal size (mm)0.44 × 0.36 × 0.35
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.652, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
48649, 5321, 4990
Rint0.017
(sin θ/λ)max1)0.760
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.073, 1.06
No. of reflections5321
No. of parameters213
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.55

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XPW (Siemens, 1996), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—N11.9232 (7)Cu1—O22.1701 (7)
Cu1—O12.2577 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O4i0.831.912.7267 (11)170.6
N2—H2B···O7ii0.891.932.8071 (12)168.2
N2—H2C···O3iii0.882.142.9842 (12)161.7
O5—H5A···O2iv0.851.882.732176.2
O5—H5B···O6ii0.851.972.8026 (12)166.1
O6—H6A···O3v0.851.972.8066 (11)166.7
O6—H6B···O5vi0.851.932.7760 (13)176.5
O7—H7A···O1vii0.851.922.750164.4
O7—H7B···O6viii0.852.173.0083 (12)169.5
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+1, z+1; (iii) x+3/2, y+3/2, z+1; (iv) x, y1, z; (v) x, y+1, z+1/2; (vi) x+1/2, y+1/2, z+1/2; (vii) x+1, y, z+1/2; (viii) x1/2, y+3/2, z1/2.
 

Acknowledgements

Support for this study by Ferdowsi University of Mashhad is gratefully acknowledged.

References

First citationAghabozorg, H., Kazemi, S., Agah, A. A., Mirzaei, M. & Notash, B. (2011). Acta Cryst. E67, m360–m361.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184–227.  CrossRef CAS Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin,USA.  Google Scholar
First citationCrans, D. C. (2000). J. Inorg. Biochem. 80, 123–131.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPark, H., Lough, A. J., Kim, J. C., Jeong, M. H. & Kang, Y. S. (2007). Inorg. Chim. Acta, 360, 2819–2823.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). XPW. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationTabatabaee, M. (2010). Acta Cryst. E66, m647–m648.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, Y., Odoko, M. & Okabe, N. (2004). Acta Cryst. E60, m1178–m1180.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds