metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[(1,10-phenanthroline)cobalt(II)]-di-μ-azido]

aSchool of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
*Correspondence e-mail: fuchenliutj@yahoo.com

(Received 12 January 2012; accepted 13 February 2012; online 24 February 2012)

In the crystal structure of the binuclear title complex, [Co(N3)2(C12H8N2)]n, each CoII cation is coordinated by two N atoms from one chelating 1,10-phenanthroline ligand and four azide ligands in a slightly distorted octa­hedral coordination. The two CoII cations of the binuclear complex are related by an inversion centre and are bridged by two symmetry-related azide ligands in both μ1,1 and μ1,3 modes. The μ1,3 bridging mode gives rise to an infinite one-dimensional chain along the a axis, whereas the μ1,1 bridging mode is responsible for the formation of the binuclear CoII complex.

Related literature

For general background to metal–azide complexes, see: Zhao et al. (2009[Zhao, J.-P., Hu, B.-W., Sanudo, E. C., Yang, Q., Zeng, Y.-F. & Bu, X.-H. (2009). Inorg. Chem. 48 2482-2489.]). For a closely related Ni–azide structure, see: Li et al. (2000[Li, L.-C., Liao, D.-Z., Jiang, Z.-H. & Yan, S.-P. (2000). Polyhedron, 19 1575-1578.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(N3)2(C12H8N2)]

  • Mr = 323.19

  • Triclinic, [P \overline 1]

  • a = 7.0018 (14) Å

  • b = 10.049 (2) Å

  • c = 10.491 (2) Å

  • α = 109.83 (3)°

  • β = 103.63 (3)°

  • γ = 105.78 (3)°

  • V = 622.8 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.38 mm−1

  • T = 293 K

  • 0.2 × 0.18 × 0.18 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.720, Tmax = 1

  • 6534 measured reflections

  • 2822 independent reflections

  • 2087 reflections with I > 2σ(I)

  • Rint = 0.053

  • Standard reflections: 0

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.101

  • S = 1.07

  • 2822 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Selected bond lengths (Å)

Co1—N1i 2.113 (3)
Co1—N1 2.175 (3)
Co1—N4 2.202 (3)
Co1—N6ii 2.144 (3)
Co1—N7 2.141 (3)
Co1—N8 2.141 (3)
Symmetry codes: (i) -x+2, -y+2, -z+1; (ii) -x+3, -y+2, -z+1.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Americas Corporation, The Woodlands, Texas, USA.]); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Some metal-azido complexes with unique structural features have been reported in the past (Zhao et al., 2009). Co-ligands are often encountered in metal azido complex, e.g. the 1,10-phenanthroline ligand which are used frequently in assembling metal azido complexes. One 1D nickel-azido complex with 1,10-phenanthroline as co-ligand was reported in 2000 (Li et al., 2000). However, its isomorphic CoII compound was not reported until this work. That may be due to the fact that CoII cations are easy oxidated to CoIII with 1,10-phenanthroline as co-ligand. In the title complex the CoII ion is coordinated by one chelating 1,10-phenanthroline and four azido anions forming a distorted CoN6 octahedral environment (Fig. 1). The azido anions take two different coordinated types, in which one bridges two CoII ions in µ1,1 mode while the other one bridges two CoII ions in µ1,3 mode. The two µ1,1 azido anions link two CoII ions forming a binuclear dimer whereas the dimers linked by the two µ1,3 azido anions yield a 1D chain of bunuclear CoII complexes (Fig. 2). ππ stacking of the phenanthroline aromatic rings between adjacent chains assists in the forming of a 3D supermolecular structure (Fig. 3). The smallest centroid to centroid distances between the aromatic rings of phenanthroline aromatic rings between adjacent chains are 3.589 (2) Å and 3.605 (2) Å, respectively. A weak CH···N interaction is present between the aromatic H5 proton and the terminal N3 azide nitrogen (2.54 Å), reinforcing slightly the packing of adjacent chains.

Related literature top

For general background to metal–azide complexes, see: Zhao et al. (2009). For a closely related Ni–azide structure, see: Li et al. (2000).

Experimental top

The complex was hydrothermally synthesized under auto-generated pressure. A mixture of cobalt formate (1 mmol), NaN3 (1 mmol) and 1,10-phenanthroline (1 mmol) in methanol was sealed in a Teflon-lined stainless-steel Parr bomb that was heated at 413 K for 48 h. Red crystals of the title complex were collected after the bomb was allowed to cool to room temperature. Yield 20% based on metal salt.

Refinement top

H atoms were included in calculated positions and treated as riding on their parent C atoms with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The coordinated mode and linkage of the complex. Atomic displacement ellipsoids are drawn at the 30% probability level. Symmetry codes: (i) 2 - x, 2 - y, 1 - z; (ii) 3 - x, 2 - y, 1 - z.
[Figure 2] Fig. 2. The 1D chain of the complex along the a-axis.
[Figure 3] Fig. 3. Packing plot of the title compound. The dotted lines indicate the weak hydrogen bonds between the azide anions and ring H atoms of adjacent chains
catena-Poly[[(1,10-phenanthroline)cobalt(II)]-di-µ-azido] top
Crystal data top
[Co(N3)2(C12H8N2)]Z = 2
Mr = 323.19F(000) = 326
Triclinic, P1Dx = 1.723 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.0018 (14) ÅCell parameters from 5775 reflections
b = 10.049 (2) Åθ = 3.2–27.5°
c = 10.491 (2) ŵ = 1.38 mm1
α = 109.83 (3)°T = 293 K
β = 103.63 (3)°Block, red
γ = 105.78 (3)°0.2 × 0.18 × 0.18 mm
V = 622.8 (2) Å3
Data collection top
Rigaku SCXmini
diffractometer
2822 independent reflections
Radiation source: fine-focus sealed tube2087 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 99
Tmin = 0.720, Tmax = 1k = 1313
6534 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0411P)2 + 0.0273P]
where P = (Fo2 + 2Fc2)/3
2822 reflections(Δ/σ)max = 0.001
190 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
[Co(N3)2(C12H8N2)]γ = 105.78 (3)°
Mr = 323.19V = 622.8 (2) Å3
Triclinic, P1Z = 2
a = 7.0018 (14) ÅMo Kα radiation
b = 10.049 (2) ŵ = 1.38 mm1
c = 10.491 (2) ÅT = 293 K
α = 109.83 (3)°0.2 × 0.18 × 0.18 mm
β = 103.63 (3)°
Data collection top
Rigaku SCXmini
diffractometer
2822 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2087 reflections with I > 2σ(I)
Tmin = 0.720, Tmax = 1Rint = 0.053
6534 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.07Δρmax = 0.36 e Å3
2822 reflectionsΔρmin = 0.42 e Å3
190 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co11.08955 (7)0.88775 (5)0.39668 (4)0.02424 (16)
N10.8499 (4)0.9870 (3)0.3808 (3)0.0290 (6)
N20.7988 (4)1.0243 (3)0.2840 (3)0.0321 (7)
N30.7510 (6)1.0590 (4)0.1905 (4)0.0599 (11)
N41.3416 (5)0.7993 (3)0.4387 (3)0.0357 (7)
N51.5146 (5)0.8649 (3)0.5268 (3)0.0264 (6)
N61.6882 (5)0.9262 (3)0.6149 (3)0.0362 (7)
N70.9662 (4)0.7562 (3)0.1657 (3)0.0249 (6)
N80.8808 (4)0.6720 (3)0.3697 (3)0.0249 (6)
C11.0005 (6)0.8017 (4)0.0652 (4)0.0338 (8)
H1A1.08590.90350.09450.041*
C20.9122 (6)0.7015 (5)0.0844 (4)0.0410 (9)
H2A0.93730.73760.15210.049*
C30.7906 (6)0.5522 (4)0.1286 (4)0.0395 (9)
H3A0.73430.48500.22690.047*
C40.6230 (5)0.3430 (4)0.0625 (4)0.0375 (9)
H4A0.56300.27130.15930.045*
C50.5901 (5)0.2991 (4)0.0411 (4)0.0374 (9)
H5A0.51150.19680.01500.045*
C60.6387 (5)0.3701 (4)0.3039 (4)0.0363 (9)
H6A0.56050.26950.28340.044*
C70.7191 (6)0.4816 (4)0.4423 (4)0.0371 (9)
H7A0.69370.45800.51670.045*
C80.8392 (5)0.6306 (4)0.4720 (4)0.0324 (8)
H8A0.89330.70530.56730.039*
C90.7490 (5)0.4984 (4)0.0256 (3)0.0289 (8)
C100.6746 (5)0.4079 (4)0.1915 (4)0.0285 (7)
C110.8398 (5)0.6068 (3)0.1210 (3)0.0235 (7)
C120.7988 (5)0.5611 (3)0.2306 (3)0.0230 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0244 (3)0.0210 (2)0.0226 (3)0.00471 (18)0.00743 (18)0.00793 (19)
N10.0317 (16)0.0289 (15)0.0245 (15)0.0127 (13)0.0077 (13)0.0103 (13)
N20.0352 (18)0.0192 (14)0.0265 (16)0.0055 (13)0.0027 (14)0.0020 (13)
N30.089 (3)0.039 (2)0.038 (2)0.021 (2)0.0026 (19)0.0190 (17)
N40.0317 (18)0.0273 (16)0.0434 (18)0.0082 (14)0.0105 (15)0.0146 (14)
N50.0326 (18)0.0191 (14)0.0332 (17)0.0100 (13)0.0167 (15)0.0145 (13)
N60.0289 (17)0.0355 (17)0.0396 (18)0.0050 (14)0.0083 (15)0.0195 (15)
N70.0248 (15)0.0268 (15)0.0252 (14)0.0098 (12)0.0112 (12)0.0124 (12)
N80.0276 (15)0.0216 (14)0.0210 (14)0.0072 (12)0.0060 (12)0.0081 (12)
C10.035 (2)0.042 (2)0.033 (2)0.0161 (17)0.0165 (17)0.0215 (18)
C20.044 (2)0.063 (3)0.033 (2)0.029 (2)0.0211 (18)0.027 (2)
C30.038 (2)0.049 (2)0.0268 (19)0.0207 (19)0.0093 (17)0.0091 (18)
C40.033 (2)0.033 (2)0.030 (2)0.0162 (17)0.0035 (17)0.0019 (17)
C50.032 (2)0.0247 (18)0.042 (2)0.0091 (16)0.0064 (17)0.0047 (17)
C60.032 (2)0.0249 (18)0.049 (2)0.0061 (16)0.0136 (18)0.0165 (18)
C70.044 (2)0.035 (2)0.040 (2)0.0110 (17)0.0211 (18)0.0239 (18)
C80.035 (2)0.0322 (19)0.0281 (18)0.0114 (16)0.0095 (16)0.0130 (16)
C90.0287 (19)0.0333 (19)0.0232 (17)0.0181 (16)0.0068 (15)0.0075 (15)
C100.0244 (18)0.0258 (17)0.0332 (19)0.0127 (14)0.0080 (15)0.0096 (15)
C110.0223 (17)0.0235 (17)0.0224 (17)0.0092 (14)0.0071 (14)0.0078 (14)
C120.0179 (16)0.0211 (16)0.0265 (17)0.0074 (13)0.0059 (14)0.0080 (14)
Geometric parameters (Å, º) top
Co1—N1i2.113 (3)C2—C31.356 (5)
Co1—N12.175 (3)C2—H2A0.9300
Co1—N42.202 (3)C3—C91.416 (5)
Co1—N6ii2.144 (3)C3—H3A0.9300
Co1—N72.141 (3)C4—C51.347 (5)
Co1—N82.141 (3)C4—C91.431 (5)
N1—N21.209 (4)C4—H4A0.9300
N1—Co1i2.113 (3)C5—C101.440 (5)
N2—N31.155 (4)C5—H5A0.9300
N4—N51.175 (4)C6—C71.359 (5)
N5—N61.178 (4)C6—C101.411 (5)
N6—Co1ii2.144 (3)C6—H6A0.9300
N7—C11.329 (4)C7—C81.386 (5)
N7—C111.364 (4)C7—H7A0.9300
N8—C81.339 (4)C8—H8A0.9300
N8—C121.362 (4)C9—C111.408 (4)
C1—C21.411 (5)C10—C121.403 (4)
C1—H1A0.9300C11—C121.434 (4)
N1i—Co1—N897.49 (11)C3—C2—H2A120.3
N1i—Co1—N6ii93.69 (12)C1—C2—H2A120.3
N8—Co1—N6ii167.62 (10)C2—C3—C9120.1 (3)
N1i—Co1—N7168.99 (10)C2—C3—H3A119.9
N8—Co1—N777.67 (10)C9—C3—H3A119.9
N6ii—Co1—N792.20 (11)C5—C4—C9120.9 (3)
N1i—Co1—N179.52 (11)C5—C4—H4A119.5
N8—Co1—N195.55 (10)C9—C4—H4A119.5
N6ii—Co1—N191.67 (11)C4—C5—C10121.1 (3)
N7—Co1—N191.02 (10)C4—C5—H5A119.5
N1i—Co1—N494.21 (11)C10—C5—H5A119.5
N8—Co1—N484.91 (10)C7—C6—C10119.7 (3)
N6ii—Co1—N489.00 (11)C7—C6—H6A120.2
N7—Co1—N495.19 (11)C10—C6—H6A120.2
N1—Co1—N4173.73 (10)C6—C7—C8119.7 (3)
N2—N1—Co1i127.0 (2)C6—C7—H7A120.2
N2—N1—Co1121.2 (2)C8—C7—H7A120.2
Co1i—N1—Co1100.48 (11)N8—C8—C7123.0 (3)
N3—N2—N1179.2 (4)N8—C8—H8A118.5
N5—N4—Co1128.3 (2)C7—C8—H8A118.5
N4—N5—N6177.8 (3)C11—C9—C3116.7 (3)
N5—N6—Co1ii118.0 (2)C11—C9—C4119.5 (3)
C1—N7—C11118.1 (3)C3—C9—C4123.9 (3)
C1—N7—Co1128.3 (2)C12—C10—C6117.2 (3)
C11—N7—Co1113.60 (19)C12—C10—C5119.1 (3)
C8—N8—C12117.6 (3)C6—C10—C5123.7 (3)
C8—N8—Co1128.5 (2)N7—C11—C9123.1 (3)
C12—N8—Co1113.6 (2)N7—C11—C12117.3 (3)
N7—C1—C2122.5 (3)C9—C11—C12119.6 (3)
N7—C1—H1A118.8N8—C12—C10122.9 (3)
C2—C1—H1A118.8N8—C12—C11117.3 (3)
C3—C2—C1119.4 (3)C10—C12—C11119.8 (3)
N1i—Co1—N1—N2145.8 (3)C1—C2—C3—C91.4 (5)
N8—Co1—N1—N2117.6 (2)C9—C4—C5—C102.1 (5)
N6ii—Co1—N1—N252.4 (3)C10—C6—C7—C81.3 (5)
N7—Co1—N1—N239.9 (3)C12—N8—C8—C70.4 (5)
N1i—Co1—N1—Co1i0.0Co1—N8—C8—C7172.4 (2)
N8—Co1—N1—Co1i96.62 (12)C6—C7—C8—N80.2 (5)
N6ii—Co1—N1—Co1i93.45 (12)C2—C3—C9—C110.1 (5)
N7—Co1—N1—Co1i174.32 (11)C2—C3—C9—C4179.9 (3)
N1i—Co1—N4—N541.8 (3)C5—C4—C9—C110.0 (5)
N8—Co1—N4—N5139.0 (3)C5—C4—C9—C3179.8 (3)
N6ii—Co1—N4—N551.8 (3)C7—C6—C10—C121.7 (5)
N7—Co1—N4—N5143.9 (3)C7—C6—C10—C5177.8 (3)
N1i—Co1—N7—C1111.0 (5)C4—C5—C10—C122.1 (5)
N8—Co1—N7—C1175.8 (3)C4—C5—C10—C6177.5 (3)
N6ii—Co1—N7—C111.4 (3)C1—N7—C11—C91.7 (5)
N1—Co1—N7—C180.4 (3)Co1—N7—C11—C9177.4 (2)
N4—Co1—N7—C1100.5 (3)C1—N7—C11—C12177.9 (3)
N1i—Co1—N7—C1170.1 (6)Co1—N7—C11—C123.0 (3)
N8—Co1—N7—C115.2 (2)C3—C9—C11—N71.5 (5)
N6ii—Co1—N7—C11167.6 (2)C4—C9—C11—N7178.3 (3)
N1—Co1—N7—C11100.7 (2)C3—C9—C11—C12178.1 (3)
N4—Co1—N7—C1178.4 (2)C4—C9—C11—C122.1 (5)
N1i—Co1—N8—C810.2 (3)C8—N8—C12—C100.0 (4)
N6ii—Co1—N8—C8144.2 (5)Co1—N8—C12—C10173.9 (2)
N7—Co1—N8—C8179.9 (3)C8—N8—C12—C11178.6 (3)
N1—Co1—N8—C890.3 (3)Co1—N8—C12—C117.6 (3)
N4—Co1—N8—C883.4 (3)C6—C10—C12—N81.1 (5)
N1i—Co1—N8—C12176.8 (2)C5—C10—C12—N8178.5 (3)
N6ii—Co1—N8—C1228.8 (6)C6—C10—C12—C11179.6 (3)
N7—Co1—N8—C126.8 (2)C5—C10—C12—C110.0 (5)
N1—Co1—N8—C1296.6 (2)N7—C11—C12—N83.1 (4)
N4—Co1—N8—C1289.6 (2)C9—C11—C12—N8176.5 (3)
C11—N7—C1—C20.3 (5)N7—C11—C12—C10178.3 (3)
Co1—N7—C1—C2178.6 (2)C9—C11—C12—C102.1 (5)
N7—C1—C2—C31.2 (5)
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+3, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Co(N3)2(C12H8N2)]
Mr323.19
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.0018 (14), 10.049 (2), 10.491 (2)
α, β, γ (°)109.83 (3), 103.63 (3), 105.78 (3)
V3)622.8 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.38
Crystal size (mm)0.2 × 0.18 × 0.18
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.720, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
6534, 2822, 2087
Rint0.053
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.101, 1.07
No. of reflections2822
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.42

Computer programs: PROCESS-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Co1—N1i2.113 (3)Co1—N6ii2.144 (3)
Co1—N12.175 (3)Co1—N72.141 (3)
Co1—N42.202 (3)Co1—N82.141 (3)
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+3, y+2, z+1.
 

Acknowledgements

The authors acknowledge financial support from Tianjin Municipal Education Commission (grant No. 20100502).

References

First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLi, L.-C., Liao, D.-Z., Jiang, Z.-H. & Yan, S.-P. (2000). Polyhedron, 19 1575–1578.  CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Americas Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, J.-P., Hu, B.-W., Sanudo, E. C., Yang, Q., Zeng, Y.-F. & Bu, X.-H. (2009). Inorg. Chem. 48 2482–2489.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds