research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 2-(2-oxo-3-phenyl-1,2,3,8a-tetra­hydro­quinoxalin-1-yl)ethyl acetate

crossmark logo

aLaboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco, bDepartment of Biochemistry, Faculty of Education & Science, Al-Baydha University, Yemen, cLaboratoire de Chimie Organique Heterocyclique, Faculté des Sciences, Université Mohammed V in Rabat, Morocco, dLaboratoire de Chimie et Biochimie de l'Institut Superieur des Techniques Medicales de Kinshasa, Republique Democratique du , Congo, eSivas Cumhuriyet University, Health Services Vocational School, Department of Pharmacy, 58140, Sivas, Turkey, and fDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: camillekalonji1@gmail.com, y.ramli@um5s.net.ma

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 6 May 2021; accepted 17 May 2021; online 21 May 2021)

In the title mol­ecule, C18H16N2O3, the di­hydro­quinoxaline moiety, with the exception of the N atom is essentially planar with the inner part of the methyl­propano­ate group (CH2—CH2—O) nearly perpendicular to it. In the crystal, inversion dimers formed by C—H⋯O hydrogen bonds are connected into oblique stacks by π-stacking and C—H⋯π(ring) inter­actions.

1. Chemical context

Quinoxaline are a class of nitro­gen containing heterocyclic compounds, found in many biologically active drugs (Ramli & Essassi, 2015[Ramli, Y. & Essassi, E. M. (2015). Adv. Chem. Res. 27, 109-160.]; Ramli et al., 2014[Ramli, Y., Moussaif, A., Karrouchi, K. & Essassi, E. M. (2014). J. Chem. Article ID 563406, 1-21.]). In addition, this heterocyclic scaffold possess anti­corrosion characteristics (El Ouali et al., 2010[El Ouali, I., Hammouti, B., Aouniti, A., Ramli, Y., Azougagh, M., Essassi, E. M. & Bouachrine, M. (2010). J. Mater. Envir. Sci. 1, 1-8.]; Zarrok et al., 2012[Zarrok, H., Zarrouk, A., Salghi, R., Oudda, H., Hammouti, B., Ebn Touhami, M., Bouachrine, M. & Pucci, O. H. (2012). Electrochim. Acta, 30, 405-417.]; Tazouti et al., 2016[Tazouti, A., Galai, M., Touir, R., Touhami, M. E., Zarrouk, A., Ramli, Y., Saraçoğlu, M., Kaya, S., Kandemirli, F. & Kaya, C. (2016). J. Mol. Liq. 221, 815-832.]; El Aoufir et al., 2016[El Aoufir, Y., Lgaz, H., Bourazmi, H., Kerroum, Y., Ramli, Y., Guenbour, A., Salghi, R., El-Hajjaji, F., Hammouti, B. & Oudda, H. (2016). J. Mater. Environ. Sci. 7, 4330-4347.]; Laabaissi et al., 2019[Laabaissi, T., Benhiba, F., Rouifi, Z., Allali, M., Missioui, M., Ourrak, K., Oudda, H., Ramli, Y., Warad, I. & Zarrouk, A. (2019). Int. J. Corros. Scale Inhib. 8, 241-256.]). In a continuation of our recent work focused on the synthesis and biological evaluation of novel heterocyclic compounds (Guerrab et al. 2019[Guerrab, W., Chung, I.-M., Kansiz, S., Mague, J. T., Dege, N., Taoufik, J., Salghi, R., Ali, I. H., Chung, I. M., Lgaz, H. & Ramli, Y. (2019). J. Mol. Struct. 1197, 127630.], 2020[Guerrab, W., Lgaz, H., Kansiz, S., Mague, J. T., Dege, N., Ansar, M., Marzouki, R., Taoufik, J., Ali, I. H., Chung, I. M. & Ramli, Y. (2020). J. Mol. Struct. 1205, 127630.], 2021[Guerrab, W., Missioui, M., Zaoui, Y., Mague, J. T. & Ramli, Y. (2021). Z. Kristallogr. New Cryst. Struct. 236, 133-134.]; Abad et al., 2021a[Abad, N., Sallam, H. H., Al-Ostoot, F. H., Khamees, H. A., Al-horaibi, S. A., Khanum, S. A., Madegowda, M., Hafi, M. E., Mague, J. T., Essassi, E. M. & Ramli, Y. (2021a). J. Mol. Struct. 1232, 130004.],b[Abad, N., Ferfra, S., Essassi, E. M., Mague, J. T. & Ramli, Y. (2021b). Z. Kristallogr. New Cryst. Struct. 236, 173-175.]; Missioui et al. 2021[Missioui, M., Mortada, S., Guerrab, W., Serdaroğlu, G., Kaya, S., Mague, J. T., Essassi, E. M., Faouzi, M. E. A. & Ramli, Y. (2021). J. Mol. Struct. In the press.]) we report here the crystal structure of the title compound (Fig. 1[link]). As with many biologically active mol­ecules, the mol­ecular conformation adopted may have a significant effect on its activity.

[Scheme 1]
[Figure 1]
Figure 1
The title mol­ecule with labelling scheme and 50% probability ellipsoids. The intra­molecular C—H⋯O hydrogen bonds are shown by dashed lines.

2. Structural commentary

The di­hydro­quinoxaline moiety, with the exception of N1, is planar to within 0.0186 (9) Å (r.m.s. deviation of the nine fitted atoms = 0.0116 Å). N1 lies 0.0526 (12) Å below the mean plane. The C9–C14 phenyl ring is inclined to the above plane by 11.64 (6)° while the inner part (CH2—CH2—O) of the methyl propano­ate substituent is nearly perpendicular to the di­hydro­quinoxaline unit, as indicated by the angle of 87.34 (6)° between the N1/C15/C16/O2 and N2/C1–C8 planes. The overall conformation is determined in part by the intra­molecular C5—H5⋯O3 and C14—H14⋯O1 hydrogen bonds (Table 1[link] and Fig. 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C1–C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O3i 0.974 (16) 2.526 (16) 3.4713 (17) 163.6 (11)
C5—H5⋯O3 0.992 (15) 2.592 (16) 3.5435 (15) 160.7 (12)
C14—H14⋯O1 0.963 (15) 2.232 (16) 2.8387 (16) 120.0 (12)
C16—H16B⋯O3ii 0.993 (14) 2.553 (14) 3.3632 (16) 138.7 (10)
C18—H18ACg2iii 0.97 (2) 2.93 (2) 3.7585 (17) 144.2 (17)
Symmetry codes: (i) [-x+2, -y+1, -z+1]; (ii) [x-1, y, z]; (iii) [-x+1, -y+1, -z+1].

3. Supra­molecular features

In the crystal, inversion dimers are formed by C4—H4⋯O3i hydrogen bonds [Table 1[link]; symmetry code: (i) −x + 2, −y + 1, −z + 1] and are connected into oblique stacks by a combination of π-stacking inter­actions between the C1/C6/N1/C7/C8/N2 and C9–C14 rings [centroid–centroid distance = 3.7786 (9) Å, dihedral angle = 12.20 (6)°] and in addition C16—H16B⋯O3ii and C18—H18ACg2iii inter­actions [Table 1[link] and Fig. 2[link]; Cg2 is the centroid of the C1–C6 ring; symmetry codes: (ii) x − 1, y, z, (iii) −x + 1, −y + 1, −z + 1]. The crystal packing also shows a C17=O3⋯Cg2 inter­action [O3⋯Cg2 = 3.9578 (12) Å, C17⋯Cg2 = 3.7440 (16) Å, C17=O3⋯Cg2 = 71.04 (8)°].

[Figure 2]
Figure 2
Perspective view of the packing. Inter­molecular C—H⋯O hydrogen bonds are shown by black dashed lines while π-stacking and C—H⋯π(ring) inter­actions are shown, respectively, by orange and green dashed lines.

4. Database survey

A survey of the Cambridge Structural Database (Version 5.42, last update February 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using the search fragment II yielded 30 hits of which those most similar to the title mol­ecule have the formula III with R = Me and R′ = CH2CO2H (DEZJAW; Missioui et al., 2018[Missioui, M., El Fal, M., Taoufik, J., Essassi, E. M., Mague, J. T. & Ramli, Y. (2018). IUCRData 3, x180882.]), CH2C≡CH (DUCYUW; Benzeid et al., 2009a[Benzeid, H., Ramli, Y., Vendier, L., Essassi, E. M. & Ng, S. W. (2009a). Acta Cryst. E65, o2196.]), benzyl [DUSHUV (Ramli et al., 2010b[Ramli, Y., Moussaif, A., Zouihri, H., Lazar, S. & Essassi, E. M. (2010b). Acta Cryst. E66, o1922.]) and DUSHUV01 (Ramli et al., 2018[Ramli, Y., El Bakri, Y., El Ghayati, L., Essassi, E. M. & Mague, J. T. (2018). IUCrData 3, x180390.])], Et (IGANOU; Benzeid et al., 2008[Benzeid, H., Vendier, L., Ramli, Y., Garrigues, B. & Essassi, E. M. (2008). Acta Cryst. E64, o2234.]), CH2CH=CH2 (YUPXAJ; Ramli et al., 2010a[Ramli, Y., Slimani, R., Zouihri, H., Lazar, S. & Essassi, E. M. (2010a). Acta Cryst. E66, o1767.]), with R = CF3 and R′ = i-Bu (DUBPUO; Wei et al., 2019[Wei, Z., Qi, S., Xu, Y., Liu, H., Wu, J., Li, H., Xia, C. & Duan, G. (2019). Adv. Synth. Catal. 361, 5490-5498.]), with R = Ph and R′ = CH2(cyclo-CHCH2O) (NIBXEE; Abad et al., 2018a[Abad, N., El Bakri, Y., Sebhaoui, J., Ramli, Y., Essassi, E. M. & Mague, J. T. (2018a). IUCrData, 3, x180610.]), benzyl (PUGGII; Benzeid et al., 2009b[Benzeid, H., Saffon, N., Garrigues, B., Essassi, E. M. & Ng, S. W. (2009b). Acta Cryst. E65, o2685.]), CH2CH2CH2OH (RIRBOM; Abad et al., 2018b[Abad, N., Ramli, Y., Lahmidi, S., El Hafi, Y., Essassi, E. M. & Mague, J. T. (2018b). IUCrData, 3, x181633.]), CH2CO2Et (XEXWIJ; Abad et al., 2018c[Abad, N., El Bakri, Y., Sebhaoui, J., Ramli, Y., Essassi, E. M. & Mague, J. T. (2018c). IUCrData, 3, x180519.]), CH2CH=CH2 (YAJGEX; Benzeid et al., 2011[Benzeid, H., Bouhfid, R., Massip, S., Leger, J. M. & Essassi, E. M. (2011). Acta Cryst. E67, o2990.]) and with R = 3-NO2-C6H4 and R′ = benzyl (XIKHAD; Das et al., 2018[Das, D. K., Pampana, V. K. K. & Hwang, K. C. (2018). Chem. Sci. 9, 7318-7326.]).

[Scheme 2]

In the majority of the hits, the di­hydro­quinoxaline ring is essentially planar with the dihedral angle between the constituent rings being less than 1° or having the nitro­gen bearing the exocyclic substituent less than 0.03 Å from the mean plane of the remaining nine atoms. Two notable exceptions are DEZJAW, where the dihedral angle between the two rings is 3.32°, and RIRBOM, where the nitro­gen bearing the exocyclic substituent deviates by 0.062 Å from the plane defined by the other nine atoms.

5. Hirshfeld surface analysis

An effective means of probing inter­molecular inter­actions is Hirshfeld surface analysis (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]), which can be conveniently carried out with Crystal Explorer 17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.]). A detailed description of the use of Crystal Explorer 17 and the plots obtained has been published (Tan et al., 2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]) and will not be given here. Fig. 3[link]a presents front (top) and side (bottom) views of the Hirshfeld surface plotted over dnorm in the range −0.1367 to 1.2965 a.u. One of the intra­molecular C—H⋯O hydrogen bonds is indicated by the arrow at the left in the front view while those leading to the formation of the inversion dimers are shown by the arrows on the right of the front view. The C—H⋯π(ring) inter­action and the π-stacking inter­actions are represented by the red spots designated by arrows in the side view. Fig. 3[link]b presents the same two views of the surface plotted over the shape-index. In the front view, the π-stacking inter­action is evident at the center as an orange triangle surrounded by blue triangles. Fig. 3[link]c has the same two views of the surface plotted over the curvature index, with the flat area in the center indicating the locus of the π-stacking inter­action. Fig. 4[link] presents fingerprint plots for all inter­molecular inter­actions (a) and those delineated into H⋯H contacts (b, 49.4%), H⋯O/O⋯H contacts (c, 18.2%), H⋯C/C⋯H contacts (d, 17.8%) and C⋯C contacts (e, 7.2%).

[Figure 3]
Figure 3
Front (top) and side (bottom) views of the Hirshfeld surface plotted over (a) dnorm, (b) shape-index and (c) curvature.
[Figure 4]
Figure 4
Two dimensional fingerprint plots showing (a) all inter­molecular inter­actions and those delineated into (b) H⋯H, (c) H⋯O/O⋯H, (d) H⋯C/C⋯H and (e) C⋯C inter­actions.

6. Synthesis and crystallization

To a solution of 2-oxo-3-phenyl-1,2-di­hydro­quinoxaline (0.5 g, 2.25 mmol) in N,N-di­methyl­formamide (15 ml) were added 2-bromo­ethyl acetate (0.4 ml, 2.25 mmol), potassium carbonate (0.31 g, 2.25 mmol) and a catalytic qu­antity of tetra-n-butyl­ammonium bromide. The reaction mixture was stirred at room temperature for 24 h. The solution was filtered and the solvent removed under reduced pressure. The residue thus obtained was chromatographed on a silica gel column using a hexa­ne/ethyl acetate 9.5: 0.5 mixture as eluent. The solid obtained was recrystallized from ethanol solution to afford colorless column-like specimen of the title compound. Yield: 0.50 g, 67%; m.p. 471–473 K.

1H NMR (Bruker Avance 300 MHz, CDCl3) δ (ppm): 8.24 (d, 2H, Ar—H); 7.91 (d, 1H, Ar—H); 7.82 (m, 3H, Ar—H); 7.53 (m, 1H, Ar—H); 7.25 (m, 2H, Ar—H); 4.73 (t, 2H, O—CH2); 3.92 (t, 2H, N—CH2); 2.23 (s, 3H, OCOCH3).

13C NMR (Bruker Avance 75 MHz, CDCl3) δ (ppm):46.15 (N—CH2); 61.15 (O—CH2); 114.38, 123.82, 127.01, 127.72, 128.13, 128.96, 129.68, 130.33, 130.45,130.62 (CH—Ar); 132.78, 133.36, 135.40, 136.05, 154.24(Cq); 156.92 (C=O); 177.82 (O—C=O).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All hydrogen atoms were located from a difference electron-density map and freely refined.

Table 2
Experimental details

Crystal data
Chemical formula C18H16N2O3
Mr 308.33
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 120
a, b, c (Å) 5.3518 (6), 11.6989 (14), 13.3527 (16)
α, β, γ (°) 64.019 (2), 80.323 (2), 76.952 (2)
V3) 729.83 (15)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.42 × 0.18 × 0.12
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.87, 0.99
No. of measured, independent and observed [I > 2σ(I)] reflections 14193, 3909, 2929
Rint 0.028
(sin θ/λ)max−1) 0.688
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.142, 1.00
No. of reflections 3909
No. of parameters 272
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.47, −0.23
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

2-(2-Oxo-3-phenyl-1,2,3,8a-tetrahydroquinoxalin-1-yl)ethyl acetate top
Crystal data top
C18H16N2O3Z = 2
Mr = 308.33F(000) = 324
Triclinic, P1Dx = 1.403 Mg m3
a = 5.3518 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.6989 (14) ÅCell parameters from 5207 reflections
c = 13.3527 (16) Åθ = 3.1–29.3°
α = 64.019 (2)°µ = 0.10 mm1
β = 80.323 (2)°T = 120 K
γ = 76.952 (2)°Column, colourless
V = 729.83 (15) Å30.42 × 0.18 × 0.12 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
3909 independent reflections
Radiation source: fine-focus sealed tube2929 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 8.3333 pixels mm-1θmax = 29.3°, θmin = 1.7°
φ and ω scansh = 77
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1616
Tmin = 0.87, Tmax = 0.99l = 1818
14193 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: difference Fourier map
wR(F2) = 0.142All H-atom parameters refined
S = 1.00 w = 1/[σ2(Fo2) + (0.0999P)2]
where P = (Fo2 + 2Fc2)/3
3909 reflections(Δ/σ)max < 0.001
272 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.23 e Å3
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, colllected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 30 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.24048 (17)0.11347 (8)0.45539 (7)0.0287 (2)
O20.42582 (17)0.24290 (8)0.68691 (6)0.0264 (2)
O30.74296 (17)0.36037 (9)0.62940 (7)0.0308 (2)
N10.52749 (18)0.24890 (9)0.40271 (7)0.0209 (2)
N20.46952 (18)0.31557 (9)0.18053 (7)0.0205 (2)
C10.6193 (2)0.37704 (11)0.20843 (9)0.0198 (2)
C20.7488 (2)0.47088 (11)0.12307 (9)0.0229 (3)
H20.731 (3)0.4919 (13)0.0454 (12)0.033 (4)*
C30.9057 (2)0.53135 (11)0.14791 (10)0.0253 (3)
H30.999 (3)0.5940 (13)0.0898 (11)0.025 (3)*
C40.9332 (2)0.50106 (12)0.25984 (10)0.0240 (3)
H41.043 (3)0.5462 (13)0.2757 (11)0.023 (3)*
C50.8070 (2)0.40967 (11)0.34551 (10)0.0229 (3)
H50.835 (3)0.3898 (15)0.4234 (13)0.035 (4)*
C60.6527 (2)0.34508 (11)0.32082 (9)0.0197 (2)
C70.3624 (2)0.19025 (11)0.37929 (9)0.0209 (2)
C80.3496 (2)0.22703 (11)0.25807 (9)0.0193 (2)
C90.2018 (2)0.16113 (11)0.22093 (9)0.0210 (2)
C100.2376 (3)0.18294 (12)0.10782 (10)0.0268 (3)
H100.365 (3)0.2385 (15)0.0602 (13)0.040 (4)*
C110.1007 (3)0.12852 (13)0.06609 (10)0.0307 (3)
H110.131 (3)0.1475 (15)0.0164 (14)0.045 (4)*
C120.0746 (3)0.05042 (12)0.13563 (11)0.0299 (3)
H120.174 (3)0.0113 (13)0.1067 (11)0.026 (3)*
C130.1069 (2)0.02574 (12)0.24773 (11)0.0282 (3)
H130.229 (3)0.0255 (14)0.2925 (12)0.030 (4)*
C140.0284 (2)0.08023 (11)0.29077 (10)0.0239 (3)
H140.004 (3)0.0579 (14)0.3697 (12)0.030 (4)*
C150.5682 (2)0.20405 (12)0.52109 (9)0.0224 (3)
H15A0.751 (3)0.2084 (12)0.5233 (10)0.019 (3)*
H15B0.546 (2)0.1157 (14)0.5606 (11)0.023 (3)*
C160.3790 (2)0.28659 (12)0.57099 (9)0.0246 (3)
H16A0.388 (3)0.3773 (14)0.5287 (11)0.027 (3)*
H16B0.200 (3)0.2750 (12)0.5718 (10)0.024 (3)*
C170.6177 (2)0.28800 (12)0.70394 (10)0.0246 (3)
C180.6508 (3)0.23944 (15)0.82550 (11)0.0319 (3)
H18A0.545 (4)0.305 (2)0.8477 (19)0.085 (7)*
H18B0.600 (4)0.1579 (19)0.8692 (16)0.063 (5)*
H18C0.829 (4)0.2289 (18)0.8386 (15)0.060 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0367 (5)0.0329 (5)0.0186 (4)0.0178 (4)0.0010 (3)0.0080 (4)
O20.0315 (5)0.0335 (5)0.0192 (4)0.0123 (4)0.0016 (3)0.0136 (4)
O30.0309 (5)0.0397 (5)0.0282 (4)0.0145 (4)0.0022 (4)0.0175 (4)
N10.0248 (5)0.0241 (5)0.0160 (4)0.0082 (4)0.0008 (4)0.0094 (4)
N20.0230 (5)0.0203 (5)0.0195 (4)0.0044 (4)0.0001 (4)0.0097 (4)
C10.0212 (5)0.0209 (5)0.0188 (5)0.0040 (4)0.0007 (4)0.0102 (4)
C20.0267 (6)0.0224 (6)0.0191 (5)0.0050 (5)0.0012 (4)0.0089 (4)
C30.0282 (6)0.0221 (6)0.0236 (6)0.0081 (5)0.0039 (5)0.0080 (5)
C40.0239 (6)0.0247 (6)0.0280 (6)0.0063 (5)0.0005 (4)0.0147 (5)
C50.0241 (6)0.0256 (6)0.0220 (5)0.0051 (4)0.0004 (4)0.0127 (5)
C60.0203 (5)0.0205 (5)0.0185 (5)0.0043 (4)0.0017 (4)0.0091 (4)
C70.0237 (6)0.0216 (5)0.0191 (5)0.0063 (4)0.0002 (4)0.0097 (4)
C80.0209 (5)0.0201 (5)0.0178 (5)0.0029 (4)0.0013 (4)0.0092 (4)
C90.0225 (6)0.0200 (5)0.0217 (5)0.0020 (4)0.0038 (4)0.0097 (4)
C100.0338 (7)0.0276 (6)0.0223 (5)0.0105 (5)0.0018 (5)0.0110 (5)
C110.0415 (7)0.0316 (7)0.0246 (6)0.0096 (5)0.0061 (5)0.0141 (5)
C120.0322 (7)0.0285 (6)0.0373 (7)0.0059 (5)0.0088 (5)0.0188 (6)
C130.0266 (6)0.0269 (6)0.0337 (6)0.0085 (5)0.0009 (5)0.0137 (5)
C140.0235 (6)0.0243 (6)0.0246 (6)0.0049 (4)0.0009 (4)0.0109 (5)
C150.0265 (6)0.0247 (6)0.0170 (5)0.0068 (5)0.0007 (4)0.0089 (4)
C160.0254 (6)0.0309 (6)0.0202 (5)0.0069 (5)0.0011 (4)0.0122 (5)
C170.0245 (6)0.0294 (6)0.0241 (5)0.0037 (5)0.0003 (4)0.0161 (5)
C180.0388 (8)0.0373 (8)0.0229 (6)0.0034 (6)0.0053 (5)0.0159 (6)
Geometric parameters (Å, º) top
O1—C71.2275 (13)C9—C141.3995 (16)
O2—C171.3467 (14)C9—C101.4036 (15)
O2—C161.4489 (13)C10—C111.3828 (17)
O3—C171.2043 (14)C10—H100.990 (16)
N1—C71.3800 (14)C11—C121.3884 (19)
N1—C61.3882 (14)C11—H111.016 (16)
N1—C151.4692 (13)C12—C131.3822 (18)
N2—C81.3016 (14)C12—H120.988 (14)
N2—C11.3763 (14)C13—C141.3894 (17)
C1—C21.4022 (15)C13—H130.934 (15)
C1—C61.4114 (14)C14—H140.962 (14)
C2—C31.3721 (17)C15—C161.5155 (17)
C2—H20.972 (15)C15—H15A0.996 (13)
C3—C41.4027 (16)C15—H15B0.958 (14)
C3—H30.962 (13)C16—H16A0.967 (14)
C4—C51.3795 (16)C16—H16B0.993 (14)
C4—H40.973 (14)C17—C181.4940 (16)
C5—C61.3975 (16)C18—H18A0.97 (2)
C5—H50.992 (15)C18—H18B0.95 (2)
C7—C81.4911 (14)C18—H18C0.97 (2)
C8—C91.4861 (15)
C17—O2—C16115.33 (9)C9—C10—H10117.0 (9)
C7—N1—C6123.19 (9)C10—C11—C12120.53 (12)
C7—N1—C15116.52 (9)C10—C11—H11118.3 (9)
C6—N1—C15120.28 (9)C12—C11—H11121.2 (9)
C8—N2—C1120.49 (9)C13—C12—C11119.10 (11)
N2—C1—C2119.20 (9)C13—C12—H12119.6 (8)
N2—C1—C6121.67 (10)C11—C12—H12121.3 (8)
C2—C1—C6119.10 (10)C12—C13—C14121.02 (12)
C3—C2—C1120.73 (10)C12—C13—H13117.5 (9)
C3—C2—H2119.6 (8)C14—C13—H13121.4 (9)
C1—C2—H2119.7 (8)C13—C14—C9120.32 (11)
C2—C3—C4119.78 (11)C13—C14—H14116.0 (9)
C2—C3—H3121.2 (8)C9—C14—H14123.7 (9)
C4—C3—H3119.0 (8)N1—C15—C16110.08 (9)
C5—C4—C3120.72 (11)N1—C15—H15A106.2 (7)
C5—C4—H4120.7 (8)C16—C15—H15A112.9 (7)
C3—C4—H4118.5 (8)N1—C15—H15B109.3 (8)
C4—C5—C6119.78 (10)C16—C15—H15B110.1 (8)
C4—C5—H5118.0 (9)H15A—C15—H15B108.2 (11)
C6—C5—H5122.2 (9)O2—C16—C15109.30 (10)
N1—C6—C5122.87 (9)O2—C16—H16A111.5 (8)
N1—C6—C1117.29 (10)C15—C16—H16A111.6 (8)
C5—C6—C1119.84 (10)O2—C16—H16B105.9 (7)
O1—C7—N1120.36 (10)C15—C16—H16B110.3 (7)
O1—C7—C8124.70 (10)H16A—C16—H16B108.0 (11)
N1—C7—C8114.94 (9)O3—C17—O2123.41 (10)
N2—C8—C9117.09 (9)O3—C17—C18124.81 (11)
N2—C8—C7122.12 (10)O2—C17—C18111.77 (10)
C9—C8—C7120.78 (9)C17—C18—H18A104.9 (13)
C14—C9—C10118.14 (10)C17—C18—H18B113.1 (11)
C14—C9—C8124.43 (10)H18A—C18—H18B110.9 (18)
C10—C9—C8117.43 (10)C17—C18—H18C111.5 (11)
C11—C10—C9120.87 (11)H18A—C18—H18C110.2 (17)
C11—C10—H10122.2 (9)H18B—C18—H18C106.3 (16)
C8—N2—C1—C2179.20 (10)O1—C7—C8—N2175.20 (11)
C8—N2—C1—C61.29 (17)N1—C7—C8—N25.32 (16)
N2—C1—C2—C3178.09 (10)O1—C7—C8—C96.07 (18)
C6—C1—C2—C30.13 (17)N1—C7—C8—C9173.42 (9)
C1—C2—C3—C41.29 (18)N2—C8—C9—C14168.77 (10)
C2—C3—C4—C50.91 (18)C7—C8—C9—C1412.44 (17)
C3—C4—C5—C60.92 (18)N2—C8—C9—C1010.61 (16)
C7—N1—C6—C5175.87 (10)C7—C8—C9—C10168.19 (10)
C15—N1—C6—C54.42 (16)C14—C9—C10—C111.58 (18)
C7—N1—C6—C14.13 (16)C8—C9—C10—C11177.84 (11)
C15—N1—C6—C1175.58 (10)C9—C10—C11—C120.4 (2)
C4—C5—C6—N1177.66 (10)C10—C11—C12—C131.2 (2)
C4—C5—C6—C12.34 (17)C11—C12—C13—C141.52 (19)
N2—C1—C6—N10.14 (16)C12—C13—C14—C90.28 (19)
C2—C1—C6—N1178.05 (10)C10—C9—C14—C131.26 (17)
N2—C1—C6—C5179.86 (10)C8—C9—C14—C13178.11 (10)
C2—C1—C6—C51.95 (16)C7—N1—C15—C1692.28 (12)
C6—N1—C7—O1173.92 (10)C6—N1—C15—C1688.00 (12)
C15—N1—C7—O16.36 (16)C17—O2—C16—C1582.16 (12)
C6—N1—C7—C86.57 (15)N1—C15—C16—O2178.70 (9)
C15—N1—C7—C8173.15 (9)C16—O2—C17—O30.52 (16)
C1—N2—C8—C9177.24 (9)C16—O2—C17—C18179.37 (10)
C1—N2—C8—C71.54 (17)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
C4—H4···O3i0.974 (16)2.526 (16)3.4713 (17)163.6 (11)
C5—H5···O30.992 (15)2.592 (16)3.5435 (15)160.7 (12)
C14—H14···O10.963 (15)2.232 (16)2.8387 (16)120.0 (12)
C16—H16B···O3ii0.993 (14)2.553 (14)3.3632 (16)138.7 (10)
C18—H18A···Cg2iii0.97 (2)2.93 (2)3.7585 (17)144.2 (17)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x1, y, z; (iii) x+1, y+1, z+1.
 

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory. Author contributions are as follows. Conceptualization, YR and EME; synthesis, NA and LEG; writing (review and editing of the manuscript) CKM, JTM and YR; formal analysis, SK and JTM; crystal-structure determination, JTM; validation, JTM and YR, project administration, YR

References

First citationAbad, N., Ferfra, S., Essassi, E. M., Mague, J. T. & Ramli, Y. (2021b). Z. Kristallogr. New Cryst. Struct. 236, 173–175.  CSD CrossRef CAS Google Scholar
First citationAbad, N., El Bakri, Y., Sebhaoui, J., Ramli, Y., Essassi, E. M. & Mague, J. T. (2018a). IUCrData, 3, x180610.  Google Scholar
First citationAbad, N., El Bakri, Y., Sebhaoui, J., Ramli, Y., Essassi, E. M. & Mague, J. T. (2018c). IUCrData, 3, x180519.  Google Scholar
First citationAbad, N., Ramli, Y., Lahmidi, S., El Hafi, Y., Essassi, E. M. & Mague, J. T. (2018b). IUCrData, 3, x181633.  Google Scholar
First citationAbad, N., Sallam, H. H., Al-Ostoot, F. H., Khamees, H. A., Al-horaibi, S. A., Khanum, S. A., Madegowda, M., Hafi, M. E., Mague, J. T., Essassi, E. M. & Ramli, Y. (2021a). J. Mol. Struct. 1232, 130004.  CSD CrossRef Google Scholar
First citationBenzeid, H., Bouhfid, R., Massip, S., Leger, J. M. & Essassi, E. M. (2011). Acta Cryst. E67, o2990.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBenzeid, H., Ramli, Y., Vendier, L., Essassi, E. M. & Ng, S. W. (2009a). Acta Cryst. E65, o2196.  CSD CrossRef IUCr Journals Google Scholar
First citationBenzeid, H., Saffon, N., Garrigues, B., Essassi, E. M. & Ng, S. W. (2009b). Acta Cryst. E65, o2685.  CSD CrossRef IUCr Journals Google Scholar
First citationBenzeid, H., Vendier, L., Ramli, Y., Garrigues, B. & Essassi, E. M. (2008). Acta Cryst. E64, o2234.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDas, D. K., Pampana, V. K. K. & Hwang, K. C. (2018). Chem. Sci. 9, 7318–7326.  CSD CrossRef CAS PubMed Google Scholar
First citationEl Aoufir, Y., Lgaz, H., Bourazmi, H., Kerroum, Y., Ramli, Y., Guenbour, A., Salghi, R., El-Hajjaji, F., Hammouti, B. & Oudda, H. (2016). J. Mater. Environ. Sci. 7, 4330–4347.  CAS Google Scholar
First citationEl Ouali, I., Hammouti, B., Aouniti, A., Ramli, Y., Azougagh, M., Essassi, E. M. & Bouachrine, M. (2010). J. Mater. Envir. Sci. 1, 1–8.  CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGuerrab, W., Chung, I.-M., Kansiz, S., Mague, J. T., Dege, N., Taoufik, J., Salghi, R., Ali, I. H., Chung, I. M., Lgaz, H. & Ramli, Y. (2019). J. Mol. Struct. 1197, 127630.  CSD CrossRef Google Scholar
First citationGuerrab, W., Lgaz, H., Kansiz, S., Mague, J. T., Dege, N., Ansar, M., Marzouki, R., Taoufik, J., Ali, I. H., Chung, I. M. & Ramli, Y. (2020). J. Mol. Struct. 1205, 127630.  CSD CrossRef Google Scholar
First citationGuerrab, W., Missioui, M., Zaoui, Y., Mague, J. T. & Ramli, Y. (2021). Z. Kristallogr. New Cryst. Struct. 236, 133–134.  CSD CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLaabaissi, T., Benhiba, F., Rouifi, Z., Allali, M., Missioui, M., Ourrak, K., Oudda, H., Ramli, Y., Warad, I. & Zarrouk, A. (2019). Int. J. Corros. Scale Inhib. 8, 241–256.  CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMissioui, M., El Fal, M., Taoufik, J., Essassi, E. M., Mague, J. T. & Ramli, Y. (2018). IUCRData 3, x180882.  Google Scholar
First citationMissioui, M., Mortada, S., Guerrab, W., Serdaroğlu, G., Kaya, S., Mague, J. T., Essassi, E. M., Faouzi, M. E. A. & Ramli, Y. (2021). J. Mol. Struct. In the press.  Google Scholar
First citationRamli, Y., El Bakri, Y., El Ghayati, L., Essassi, E. M. & Mague, J. T. (2018). IUCrData 3, x180390.  Google Scholar
First citationRamli, Y. & Essassi, E. M. (2015). Adv. Chem. Res. 27, 109–160.  Google Scholar
First citationRamli, Y., Moussaif, A., Karrouchi, K. & Essassi, E. M. (2014). J. Chem. Article ID 563406, 1–21.  Google Scholar
First citationRamli, Y., Moussaif, A., Zouihri, H., Lazar, S. & Essassi, E. M. (2010b). Acta Cryst. E66, o1922.  CSD CrossRef IUCr Journals Google Scholar
First citationRamli, Y., Slimani, R., Zouihri, H., Lazar, S. & Essassi, E. M. (2010a). Acta Cryst. E66, o1767.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationTan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTazouti, A., Galai, M., Touir, R., Touhami, M. E., Zarrouk, A., Ramli, Y., Saraçoğlu, M., Kaya, S., Kandemirli, F. & Kaya, C. (2016). J. Mol. Liq. 221, 815–832.  CrossRef CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.  Google Scholar
First citationWei, Z., Qi, S., Xu, Y., Liu, H., Wu, J., Li, H., Xia, C. & Duan, G. (2019). Adv. Synth. Catal. 361, 5490–5498.  CSD CrossRef CAS Google Scholar
First citationZarrok, H., Zarrouk, A., Salghi, R., Oudda, H., Hammouti, B., Ebn Touhami, M., Bouachrine, M. & Pucci, O. H. (2012). Electrochim. Acta, 30, 405–417.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds