research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 2-{[7-acetyl-8-(4-chloro­phen­yl)-4-cyano-6-hy­dr­oxy-1,6-di­methyl-5,6,7,8-tetra­hydro­isoquinolin-3-yl]sulfan­yl}-N-(4-chloro­phen­yl)acetamide

crossmark logo

aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, bChemistry Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt, cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, dChemistry and Environmental Division, Manchester Metropolitan University, Manchester, M1 5GD, England, eChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, and fDepartment of Chemistry, Faculty of Science, Taiz University, Taiz, Yemen
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 30 March 2021; accepted 6 April 2021; online 13 April 2021)

In the title mol­ecule, C28H25Cl2N3O3S, the heterocyclic portion of the tetra­hydro­iso­quinoline unit is planar while the cyclo­hexene ring adopts a twist-boat conformation. The two 4-chloro­phenyl groups extend away from one side of this unit while the hydroxyl and acetyl groups extend away from the opposite side and form an intra­molecular O—H⋯O hydrogen bond. The crystal packing consists of layers parallel to the bc plane. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions to the crystal packing are from H⋯H (37.3%), Cl⋯H/H⋯Cl (17.6%), O⋯H/H⋯O (11.1%), C⋯H/H⋯C (10.9%) and N⋯H/H⋯N (9.7%) inter­actions.

1. Chemical context

The tetra­hydro­iso­quinoline motif is present in a variety of natural products, including cactus alkaloids (peyoruvic acid; Chrzanowska et al., 1987[Chrzanowska, M., Schönenberger, B., Brossi, A. & Flippen-Anderson, J. L. (1987). Helv. Chim. Acta, 70, 1721-1731.]) and mammalian alkaloids (salsoline carb­oxy­lic acid; Czarnocki et al., 1992[Czarnocki, Z., Suh, D., MacLean, D. B., Hultin, P. G. & Szarek, W. A. (1992). Can. J. Chem. 70, 1555-1561.]). Biological tests indicate that tetra­hydro­iso­quinolines can act as bronchodilators (Houston & Rodger, 1974[Houston, J. & Rodger, I. (1974). Clin. Exp. Pharmacol. Physiol. 1, 401-413.]) and anti­convulsants (Ohkubo et al., 1996[Ohkubo, M., Kuno, A., Katsuta, K., Ueda, Y., Shirakawa, K., Nakanishi, H., Nakanishi, I., Kinoshita, T. & Takasugi, H. (1996). Chem. Pharm. Bull. 44, 95-102.]; Thompson et al., 1990[Thompson, W. J., Anderson, P. S., Britcher, S. F., Lyle, T. A., Thies, J. E., Magill, C. A., Varga, S. L., Schwering, J. E., Lyle, P. A., Christy, M. E., et al. (1990). J. Med. Chem. 33, 789-808.]) and they have also shown anti-hypoxic activity (Gill et al., 1991[Gill, R., Brazell, C., Woodruff, G. N. & Kemp, J. A. (1991). Br. J. Pharmacol. 103, 2030-2036.]). Based on these findings and following our inter­est in this area, we herein report the synthesis and crystal structure of the title compound.

[Scheme 1]

2. Structural commentary

The overall conformation of the title mol­ecule, Fig. 1[link], resembles that of a chair with the tetra­hydro­iso­quinoline core forming the seat, the hydroxyl and acetyl oxygen atoms forming stubby legs and the 4-chloro­phenyl group and the amide group forming the back. The N1/C5–C9 ring is essentially planar (r.m.s. deviation = 0.041 Å) with the largest deviation of 0.059 (1) Å being for atom C9. A puckering analysis (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) of the C1–C5/C9 ring yielded the following parameters: QT = 0.5230 (13) Å, θ = 54.39 (14)° and φ = 96.94 (17)°. The conformation of this ring approximates a twist-boat conformation. The best planes through the C10–C15 and C23–C28 rings are inclined to the N1/C5–C9 plane by 76.05 (6) and 74.04 (6)°, respectively. The acetyl group on C2 is in an equatorial position while the hydroxyl group on C3 is axial and these are syn to one another. The C10–C15 ring attached to C1 is close to equatorial and anti with respect to both other substituents (Table 1[link], Fig. 1[link]). The O2—H2A hydroxyl group is favorably oriented for forming an intra­molecular hydrogen bond with O1 (Fig. 1[link]). This was not seen for some related mol­ecules where a stronger intermolecular interaction is favored for these O atoms (Al-Taifi et al., 2021[Al-Taifi, E. A., Maraei, I. S., Bakhite, E. A., Demirtas, G., Mague, J. T., Mohamed, S. K. & Ramli, Y. (2021). Acta Cryst. E77, 121-125.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O1 0.87 2.14 2.8746 (14) 142
N3—H3⋯O3i 0.91 2.17 2.9362 (13) 141
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
The title mol­ecule with the labeling scheme and 50% probability ellipsoids. The intra­molecular O—H⋯O hydrogen bond is depicted by a dashed line.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, helical chains extending along the c-axis direction are formed by N3—H3⋯O3 hydrogen bonds (Table 1[link] and Fig. 2[link]). Inversion-related chains pack together to form thick layers, which have the chlorine atoms on the outsides (Fig. 3[link]). In addition, a C22—O3⋯Cg1ii inter­action [C22—O3 = 1.3576 (15) Å, O3⋯Cg1ii = 3.6287 (11) Å and C22—O3⋯Cg1ii = 115.38 (8)°; symmetry code: (ii) x, [{1\over 2}] − y, [{1\over 2}] + z; where Cg1 is the centroid of the N1/C5-C9 ring) are also observed in the crystal structure.

[Figure 2]
Figure 2
A portion of one chain viewed along the a-axis direction with the inter­molecular N—H⋯O hydrogen bonds depicted by dashed lines.
[Figure 3]
Figure 3
Packing viewed along the b-axis direction with N—H⋯O hydrogen bonds depicted by dashed lines.

The inter­molecular inter­actions in the crystal of the title compound were investigated and visualized by performing a Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) using Crystal Explorer 17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, M. A., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer. University of Western Australia.]). The Hirshfeld surface plotted over dnorm in the range −0.3918 to +1.6138 a.u. is shown in Fig. 4[link] with red areas indicating distances shorter (in closer contact) and blue those longer (distant contact) than the van der Waals separations. The closest contacts are listed in Table 2[link]. The O—H⋯O and N—H⋯O hydrogen bonds are clearly shown by the dark-red circles (Tables 1[link] and 2[link]; Fig. 4[link]).

Table 2
Summary of short inter­atomic contacts (Å) in the title compound

Contact Distance Symmetry operation
Cl2⋯H14 3.06 -x, −[{1\over 2}] + y, [{1\over 2}] − z;
H14⋯Cl1 2.98 -x, 1 − y, 1 − z;
H17A⋯Cl1 3.02 -x, 1 − y, −z;
S1⋯H18B 3.17 1 − x, −[{1\over 2}] + y, [{1\over 2}] − z;
H21B⋯H4AB 2.51 1 − x, 1 − y, 1 − z;
H3⋯O3 2.17 x, [{1\over 2}] − y, −[{1\over 2}] + z;
H1⋯H18C 2.26 x, [{3\over 2}] − y, [{1\over 2}] + z;
H18B⋯N2 2.86 1 − x, 1 − y, −z.
[Figure 4]
Figure 4
(a) Front and (b) back sides of the three-dimensional Hirshfeld surface of the title compound plotted over dnorm in the range −0.3918 to +1.6138 a.u.

Fig. 5[link] shows the full two-dimensional fingerprint plot (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) and those delineated into the major contacts: H⋯H (37.3%; Fig. 5[link]b), Cl⋯H/H⋯Cl (17.6%; Fig. 5[link]c), O⋯H/H⋯O (11.1%; Fig. 5[link]d), C⋯H/H⋯C (10.9%; Fig. 5[link]e) and N⋯H/H⋯N (9.7%; Fig. 5[link]f). The other contacts are negligible with individual contributions of less than 2.9% and are given in Table 3[link].

Table 3
Percentage contributions of inter­atomic contacts to the Hirshfeld surface for the title compound

Contact Percentage contribution
H⋯H 37.3
Cl⋯H/H⋯Cl 17.6
O⋯H/H⋯O 11.1
C⋯H/H⋯C 10.9
N⋯H/H⋯N 9.7
S⋯H/H⋯S 2.9
Cl⋯C/C⋯Cl 1.7
O⋯C/C⋯O 1.6
S⋯C/C⋯S 1.6
Cl⋯O/O⋯Cl 1.6
C⋯C 1.3
N⋯C/C⋯N 1.1
S⋯O/O⋯S 0.8
S⋯N/N⋯S 0.4
N⋯N 0.2
Cl⋯Cl 0.2
O⋯N/N⋯O 0.1
[Figure 5]
Figure 5
A view of the two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) Cl⋯H/H⋯Cl, (d) O⋯H/H⋯O, (e) C⋯H/H⋯C and (f) N⋯H/H⋯N inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

4. Database survey

A survey of the Cambridge Structural Database (CSD, version 5.42, November 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) reveals nine comparable tetra­hydro­iso­quinoline derivatives, 7-acetyl-8-(4-chloro­phen­yl)-3-(ethyl­sulfan­yl)-6-hy­droxy-1,6-dimethyl-5,6,7,8-tetra­hydro­iso­quinoline-4-carbo­nitrile (refcode NAQRIJ: Mague et al., 2017[Mague, J. T., Mohamed, S. K., Akkurt, M., Bakhite, E. A. & Albayati, M. R. (2017). IUCrData, 2, x170390.]), 2-methyl-1,2,3,4-tetra­hydro­iso­quinoline trihydrate (KUGLIK: Langenohl et al., 2020[Langenohl, F., Otte, F. & Strohmann, C. (2020). Acta Cryst. E76, 298-302.]), 2′-benzoyl-1′-(4-meth­oxy­phen­yl)-1-methyl-1′,5′,6′,10′b-tetra­hydro-2′H-spiro­[indole-3,3′-pyrrolo­[2,1-a]isoquinolin]-2(1H)-one (DUSVIZ: Selvaraj et al., 2020[Selvaraj, J. P., Mary, S., Dhruba, J. B., Huidrom, B. S., Panneerselvam, Y. & Piskala Subburaman, K. (2020). Acta Cryst. E76, 1548-1550.]), 2-[(7-acetyl-4-cyano-6-hy­droxy-1,6-dimethyl-8-phenyl-5,6,7,8-tetra­hydro­isoquinolin-3-yl)sulfan­yl]-N-phenyl­acetamide (AKIVUO: Al-Taifi et al., 2021[Al-Taifi, E. A., Maraei, I. S., Bakhite, E. A., Demirtas, G., Mague, J. T., Mohamed, S. K. & Ramli, Y. (2021). Acta Cryst. E77, 121-125.]), 3-amino-1-oxo-2,6,8-triphenyl-1,2,7,8-tetra­hydro­iso­quinoline-4-carbo­nitrile (ULUTAZ: Naghiyev et al., 2021[Naghiyev, F. N., Grishina, M. M., Khrustalev, V. N., Khalilov, A. N., Akkurt, M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 195-199.]), 4-fluoro-3-(4-meth­oxy­phen­yl)-1-oxo-2-phenyl-1,2,3,4-tetra­hy­dro­iso­quinoline-4-carb­oxy­lic acid (CARCOQ: Lehmann et al., 2017[Lehmann, A., Lechner, L., Radacki, K., Braunschweig, H. & Holzgrabe, U. (2017). Acta Cryst. E73, 867-870.]), 2-[3-methyl-4-phenyl-3,4-di­hydro­isoquinolin-2(1H)-yl]-1,2-di­phenyl­ethan-1-ol (POPYEB: Ben Ali & Retailleau, 2019[Ben Ali, K. & Retailleau, P. (2019). Acta Cryst. E75, 1399-1402.]), (1R,3S)-6,7-dimeth­oxy-3-(meth­oxy­diphenyl­meth­yl)-1-phenyl-1,2,3,4-tetra­hydro­iso­quinoline (ENOCIU: Naicker et al., 2011[Naicker, T., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2011). Acta Cryst. C67, o100-o103.]) and 1,2,3,4-tetra­hydro­iso­quinoline-2-sulfonamide (NIWPAL: Bouasla et al., 2008[Bouasla, R., Berredjem, M., Aouf, N.-E. & Barbey, C. (2008). Acta Cryst. E64, o432.]).

In the crystal of NAQRIJ, dimers form through complementary sets of inversion-related O—H⋯O and C—H⋯O hydrogen bonds. These are connected into zigzag chains along the c-axis direction by pairwise C—H⋯N inter­actions that also form inversion dimers. In the crystal of KUGLIK, the heterocyclic amines are alternately connected to the hydrogen-bonding system along the c axis, which leads to the formation of syndiotactic polymer chains in this direction. The hydrogen-bonding network of the water mol­ecules forms a water plane along the b and c axes with different ring systems (only counting the oxygen atoms) and graph-set motifs of the hydrogen-bonding network. In the crystal of DUSVIZ, mol­ecules are linked via C—H⋯O hydrogen bonds. For the major disorder component, these form C(11) chains that propagate parallel to the a axis. In the crystal of AKIVUO, a layer structure with the layers parallel to (10[\overline{1}]) is generated by O—H⋯O and C—H⋯O hydrogen bonds. In the crystal of ULUTAZ, mol­ecules are linked via N—H⋯O and C—H⋯N hydrogen bonds, forming a three-dimensional network. Furthermore, the crystal packing is dominated by C—H⋯π bonds with a strong inter­action involving the phenyl H atoms. In the crystal of CARCOQ, mol­ecules are linked by O—H⋯O hydrogen bonds, forming chains propagating along the a-axis direction. The chains are linked by C—H⋯F hydrogen bonds, forming layers lying parallel to the ab plane. In the crystal of POPYEB, mol­ecules are packed in a herringbone manner parallel to (103) and (10[\overline{3}]) via weak C—H⋯O and C—H⋯π(ring) inter­actions. In the crystal structure of ENOCIU, various C—H⋯π and C—H⋯O inter­actions link the mol­ecules. In the crystal of NIWPAL, the mol­ecules are linked by N—H⋯O inter­molecular hydrogen bonds involving the sulfonamide function to form an infinite two-dimensional network parallel to the (001) plane.

5. Synthesis and crystallization

The title compound was obtained by refluxing of 7-acetyl-8-(4-chloro­phen­yl)-4-cyano-1,6-dimethyl-6-hy­droxy-5,6,7,8-tetra­hydro­iso­quinoline-3(2H)-thione, (0.77 g, 2 mmol) with N-(4-chloro­phen­yl)-2-chloro­acetamide (0.40 g, 2 mmol) and (0.98 g, 12 mmol) of anhydrous sodium acetate in pure ethanol (30 ml) for 1 h as shown in Fig. 6[link]. The product that formed during cooling was collected and recrystallized from ethanol to give good quality crystals suitable for X-ray diffraction. Yield: 1.00 g, 91%; m.p. 491–493 K.

[Figure 6]
Figure 6
Synthesis scheme for 2-{[7-acetyl-8-(4-chloro­phen­yl)-4-cyano-6-hy­droxy-1,6-dimethyl-5,6,7,8-tetra­hydro­isoquinolin-3-yl]sulfan­yl}-N-(4-chloro­phen­yl)acetamide.

IR: 3522 cm−1 (O—H), 3277 cm−1 (N—H), 2991, 2920 cm−1 (C—H, aliphatic), 2217 cm−1 (C≡N), 1694 (C=O, acet­yl), 1666 cm−1 (C=O, amide). 1H NMR (400 MHz, DMSO-d6): δ 10.95 (s, 1H, NH); 8.17–8.24 (m, 2H, Ar-H); 7.79–7.81 (d, 2H, Ar-H); 7.26–7.32 (m, 2H, Ar-H); 7.03–7.05 (d, 2H, Ar-H); 4.88 (s, 1H, OH); 4.53–4.55 (d, 1H, CH at C-8); 4.19–4.20 (dd, 2H, SCH2); 3.24–3.29 (d, 1H, CH at C-5); 2.87–2.90 (m, 2H: CH at C-5 and CH at C-7); 2.13 (s, 3H, COCH3); 1.86 (s, 3H, CH3 attached to pyridine ring); 1.27 (s, 3H, CH3). Analysis calculated for C28H25Cl2N3O3S (554.47): C 60.65%, H 4.54%, N 7.58%, S 5.78%. Found: C 60.34%, H 4.57%, N 7.68%, S 5.97%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. All C-bound H atoms were placed in geometrically idealized positions (C—H = 0.95–1.00 Å) while those attached to O and to N were placed in locations derived from a difference map, refined for a few cycles to ensure that reasonable displacement parameters could be achieved, and then their coordinates were adjusted to give O—H = 0.87 and N—H = 0.91 Å. All H atoms were included as riding contributions with isotropic displacement parameters 1.2–1.5 times those of the parent atoms.

Table 4
Experimental details

Crystal data
Chemical formula C28H25Cl2N3O3S
Mr 554.47
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 18.2076 (8), 14.2859 (6), 10.2713 (5)
β (°) 98.245 (1)
V3) 2644.1 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.36
Crystal size (mm) 0.29 × 0.21 × 0.17
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.85, 0.94
No. of measured, independent and observed [I > 2σ(I)] reflections 50860, 7143, 5685
Rint 0.037
(sin θ/λ)max−1) 0.689
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.115, 1.07
No. of reflections 7143
No. of parameters 337
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.55, −0.22
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

2-{[7-Acetyl-8-(4-chlorophenyl)-4-cyano-6-hydroxy-1,6-dimethyl-5,6,7,8-tetrahydroisoquinolin-3-yl]sulfanyl}-N-(4-chlorophenyl)acetamide top
Crystal data top
C28H25Cl2N3O3SF(000) = 1152
Mr = 554.47Dx = 1.393 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 18.2076 (8) ÅCell parameters from 9990 reflections
b = 14.2859 (6) Åθ = 2.5–29.3°
c = 10.2713 (5) ŵ = 0.36 mm1
β = 98.245 (1)°T = 150 K
V = 2644.1 (2) Å3Column, colourless
Z = 40.29 × 0.21 × 0.17 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
7143 independent reflections
Radiation source: fine-focus sealed tube5685 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 8.3333 pixels mm-1θmax = 29.3°, θmin = 1.8°
φ and ω scansh = 2425
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1919
Tmin = 0.85, Tmax = 0.94l = 1414
50860 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: mixed
wR(F2) = 0.115H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0726P)2 + 0.1632P]
where P = (Fo2 + 2Fc2)/3
7143 reflections(Δ/σ)max = 0.001
337 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.22 e Å3
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, colllected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 20 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 1.00 Å) while those attached to nitrogen and to oxygen were placed in locations derived from a difference map and their coordinates adjusted to give N—H = 0.91 and O—H = 0.87 %A. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.02990 (2)0.36422 (4)0.33858 (4)0.04981 (14)
Cl20.06724 (2)0.10721 (4)0.37194 (6)0.06092 (16)
S10.51601 (2)0.33832 (2)0.47637 (3)0.02002 (9)
O10.18797 (6)0.75204 (7)0.15363 (11)0.0362 (2)
O20.34473 (5)0.71519 (6)0.18526 (9)0.0251 (2)
H2A0.3066430.7521760.1834340.038*
O30.38487 (5)0.25324 (7)0.72696 (9)0.0266 (2)
N30.38125 (6)0.22031 (7)0.50946 (10)0.0202 (2)
H30.4056020.2262360.4385110.024*
N10.39445 (6)0.43662 (7)0.50524 (10)0.0195 (2)
N20.54848 (7)0.44181 (10)0.16630 (12)0.0346 (3)
C10.25066 (6)0.57818 (8)0.28505 (12)0.0182 (2)
H10.2506420.6381030.3353700.022*
C20.24356 (7)0.60275 (8)0.13694 (12)0.0192 (2)
H20.2295730.5447130.0848060.023*
C30.31715 (7)0.64019 (9)0.09934 (12)0.0193 (2)
C40.37436 (7)0.56220 (9)0.12178 (12)0.0197 (2)
H4A0.3621550.5139610.0528680.024*
H4AB0.4237390.5881260.1123040.024*
C50.37853 (6)0.51651 (8)0.25450 (11)0.0169 (2)
C60.44083 (6)0.46236 (8)0.30248 (12)0.0175 (2)
C70.44414 (6)0.41916 (8)0.42543 (12)0.0178 (2)
C80.33611 (6)0.49192 (8)0.46270 (12)0.0189 (2)
C90.32273 (6)0.52698 (8)0.33326 (11)0.0175 (2)
C100.18187 (7)0.52296 (9)0.30652 (12)0.0210 (2)
C110.17522 (8)0.42867 (10)0.27233 (14)0.0270 (3)
H110.2155120.3973640.2417910.032*
C120.11017 (8)0.37991 (11)0.28247 (15)0.0335 (3)
H120.1059070.3156810.2586350.040*
C130.05205 (8)0.42535 (12)0.32726 (14)0.0331 (3)
C140.05739 (7)0.51863 (12)0.36358 (14)0.0329 (3)
H140.0171440.5492280.3952750.040*
C150.12252 (7)0.56685 (10)0.35299 (14)0.0273 (3)
H150.1266180.6308900.3779020.033*
C160.18163 (7)0.67507 (10)0.10366 (13)0.0249 (3)
C170.11592 (9)0.64770 (13)0.00686 (17)0.0427 (4)
H17A0.1316380.6364290.0791270.064*
H17B0.0791440.6982190.0007730.064*
H17C0.0938780.5904910.0369920.064*
C180.30814 (8)0.67229 (10)0.04373 (13)0.0281 (3)
H18A0.2883900.6206720.1011820.042*
H18B0.3564920.6914270.0660720.042*
H18C0.2737550.7253790.0558360.042*
C190.50033 (7)0.45056 (9)0.22598 (12)0.0216 (3)
C200.28761 (7)0.51467 (10)0.56440 (12)0.0259 (3)
H20A0.2672770.5778620.5488720.039*
H20B0.3169510.5116680.6520830.039*
H20C0.2468490.4693880.5588110.039*
C210.48904 (7)0.30133 (9)0.63011 (12)0.0211 (2)
H21A0.5265620.2560960.6712590.025*
H21B0.4911870.3565640.6887470.025*
C220.41320 (7)0.25678 (8)0.62599 (12)0.0200 (2)
C230.30606 (7)0.19224 (9)0.48223 (12)0.0208 (2)
C240.28725 (8)0.12164 (10)0.38993 (13)0.0261 (3)
H240.3248450.0916340.3498710.031*
C250.21356 (8)0.09505 (10)0.35639 (15)0.0323 (3)
H250.2005330.0465100.2941290.039*
C260.15947 (8)0.13995 (11)0.41455 (16)0.0338 (3)
C270.17712 (8)0.21117 (11)0.50392 (15)0.0321 (3)
H270.1390560.2424870.5411320.039*
C280.25087 (7)0.23702 (10)0.53944 (13)0.0263 (3)
H280.2635230.2851120.6025580.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0360 (2)0.0749 (3)0.0390 (2)0.0295 (2)0.00696 (17)0.0015 (2)
Cl20.0240 (2)0.0690 (3)0.0864 (4)0.01335 (19)0.0033 (2)0.0080 (3)
S10.01734 (15)0.01972 (16)0.02272 (16)0.00206 (10)0.00195 (11)0.00332 (11)
O10.0341 (6)0.0269 (5)0.0470 (6)0.0108 (4)0.0042 (5)0.0020 (5)
O20.0255 (5)0.0200 (4)0.0296 (5)0.0013 (3)0.0039 (4)0.0026 (4)
O30.0287 (5)0.0354 (5)0.0161 (4)0.0012 (4)0.0043 (4)0.0027 (4)
N30.0210 (5)0.0238 (5)0.0162 (5)0.0028 (4)0.0042 (4)0.0008 (4)
N10.0211 (5)0.0195 (5)0.0177 (5)0.0002 (4)0.0022 (4)0.0015 (4)
N20.0323 (7)0.0426 (8)0.0314 (7)0.0089 (5)0.0125 (5)0.0027 (5)
C10.0173 (5)0.0184 (6)0.0191 (6)0.0012 (4)0.0029 (4)0.0008 (4)
C20.0197 (6)0.0187 (6)0.0184 (6)0.0017 (4)0.0006 (4)0.0021 (4)
C30.0207 (6)0.0193 (6)0.0179 (6)0.0017 (4)0.0026 (4)0.0019 (4)
C40.0209 (6)0.0221 (6)0.0164 (5)0.0033 (4)0.0043 (4)0.0022 (4)
C50.0193 (5)0.0158 (5)0.0154 (5)0.0000 (4)0.0016 (4)0.0003 (4)
C60.0184 (5)0.0163 (5)0.0182 (5)0.0002 (4)0.0040 (4)0.0008 (4)
C70.0171 (5)0.0165 (5)0.0193 (6)0.0004 (4)0.0005 (4)0.0010 (4)
C80.0199 (5)0.0193 (6)0.0178 (5)0.0005 (4)0.0031 (4)0.0012 (4)
C90.0180 (5)0.0168 (5)0.0173 (5)0.0001 (4)0.0015 (4)0.0002 (4)
C100.0187 (6)0.0252 (6)0.0190 (6)0.0004 (5)0.0022 (4)0.0031 (5)
C110.0275 (7)0.0259 (7)0.0281 (7)0.0024 (5)0.0057 (5)0.0005 (5)
C120.0367 (8)0.0324 (8)0.0309 (7)0.0116 (6)0.0034 (6)0.0013 (6)
C130.0264 (7)0.0466 (9)0.0256 (7)0.0129 (6)0.0018 (5)0.0062 (6)
C140.0204 (6)0.0488 (9)0.0305 (7)0.0008 (6)0.0068 (5)0.0044 (6)
C150.0228 (6)0.0304 (7)0.0292 (7)0.0026 (5)0.0058 (5)0.0015 (5)
C160.0217 (6)0.0304 (7)0.0229 (6)0.0051 (5)0.0041 (5)0.0082 (5)
C170.0278 (8)0.0559 (11)0.0405 (9)0.0102 (7)0.0091 (7)0.0009 (7)
C180.0299 (7)0.0321 (7)0.0227 (6)0.0062 (5)0.0058 (5)0.0106 (5)
C190.0241 (6)0.0207 (6)0.0199 (6)0.0038 (5)0.0026 (5)0.0014 (5)
C200.0270 (6)0.0322 (7)0.0195 (6)0.0072 (5)0.0068 (5)0.0040 (5)
C210.0219 (6)0.0207 (6)0.0195 (6)0.0004 (4)0.0012 (5)0.0025 (5)
C220.0234 (6)0.0178 (6)0.0181 (6)0.0031 (4)0.0010 (4)0.0029 (4)
C230.0222 (6)0.0218 (6)0.0182 (6)0.0023 (5)0.0023 (4)0.0043 (5)
C240.0278 (7)0.0265 (7)0.0238 (6)0.0036 (5)0.0025 (5)0.0012 (5)
C250.0324 (7)0.0308 (7)0.0318 (7)0.0082 (6)0.0014 (6)0.0025 (6)
C260.0231 (7)0.0382 (8)0.0384 (8)0.0073 (6)0.0016 (6)0.0047 (6)
C270.0244 (7)0.0371 (8)0.0356 (8)0.0010 (6)0.0067 (6)0.0032 (6)
C280.0261 (7)0.0267 (7)0.0263 (6)0.0001 (5)0.0045 (5)0.0001 (5)
Geometric parameters (Å, º) top
Cl1—C131.7471 (14)C10—C111.3929 (18)
Cl2—C261.7376 (14)C11—C121.3907 (19)
S1—C71.7674 (12)C11—H110.9500
S1—C211.7989 (13)C12—C131.376 (2)
O1—C161.2120 (18)C12—H120.9500
O2—C31.4325 (15)C13—C141.383 (2)
O2—H2A0.8699C14—C151.3891 (19)
O3—C221.2238 (15)C14—H140.9500
N3—C221.3576 (15)C15—H150.9500
N3—C231.4154 (15)C16—C171.494 (2)
N3—H30.9096C17—H17A0.9800
N1—C71.3288 (16)C17—H17B0.9800
N1—C81.3454 (15)C17—H17C0.9800
N2—C191.1464 (17)C18—H18A0.9800
C1—C91.5219 (16)C18—H18B0.9800
C1—C101.5228 (16)C18—H18C0.9800
C1—C21.5485 (17)C20—H20A0.9800
C1—H11.0000C20—H20B0.9800
C2—C161.5313 (17)C20—H20C0.9800
C2—C31.5424 (17)C21—C221.5155 (17)
C2—H21.0000C21—H21A0.9900
C3—C41.5201 (16)C21—H21B0.9900
C3—C181.5256 (17)C23—C281.3906 (19)
C4—C51.5034 (16)C23—C241.3929 (18)
C4—H4A0.9900C24—C251.3894 (19)
C4—H4AB0.9900C24—H240.9500
C5—C91.3945 (17)C25—C261.381 (2)
C5—C61.4027 (16)C25—H250.9500
C6—C71.3991 (16)C26—C271.377 (2)
C6—C191.4365 (17)C27—C281.3901 (19)
C8—C91.4089 (16)C27—H270.9500
C8—C201.4971 (18)C28—H280.9500
C10—C151.3917 (18)
C7—S1—C2199.68 (6)C14—C13—Cl1119.42 (12)
C3—O2—H2A103.5C13—C14—C15118.97 (13)
C22—N3—C23124.26 (11)C13—C14—H14120.5
C22—N3—H3118.3C15—C14—H14120.5
C23—N3—H3115.9C14—C15—C10121.13 (13)
C7—N1—C8119.05 (10)C14—C15—H15119.4
C9—C1—C10113.12 (10)C10—C15—H15119.4
C9—C1—C2112.04 (10)O1—C16—C17122.54 (13)
C10—C1—C2107.77 (9)O1—C16—C2119.68 (12)
C9—C1—H1107.9C17—C16—C2117.76 (12)
C10—C1—H1107.9C16—C17—H17A109.5
C2—C1—H1107.9C16—C17—H17B109.5
C16—C2—C3110.39 (10)H17A—C17—H17B109.5
C16—C2—C1109.11 (10)C16—C17—H17C109.5
C3—C2—C1111.81 (10)H17A—C17—H17C109.5
C16—C2—H2108.5H17B—C17—H17C109.5
C3—C2—H2108.5C3—C18—H18A109.5
C1—C2—H2108.5C3—C18—H18B109.5
O2—C3—C4106.43 (9)H18A—C18—H18B109.5
O2—C3—C18110.39 (10)C3—C18—H18C109.5
C4—C3—C18110.06 (10)H18A—C18—H18C109.5
O2—C3—C2110.21 (10)H18B—C18—H18C109.5
C4—C3—C2108.00 (10)N2—C19—C6179.01 (15)
C18—C3—C2111.60 (10)C8—C20—H20A109.5
C5—C4—C3113.58 (10)C8—C20—H20B109.5
C5—C4—H4A108.8H20A—C20—H20B109.5
C3—C4—H4A108.8C8—C20—H20C109.5
C5—C4—H4AB108.8H20A—C20—H20C109.5
C3—C4—H4AB108.8H20B—C20—H20C109.5
H4A—C4—H4AB107.7C22—C21—S1117.46 (8)
C9—C5—C6118.36 (10)C22—C21—H21A107.9
C9—C5—C4122.22 (10)S1—C21—H21A107.9
C6—C5—C4119.41 (10)C22—C21—H21B107.9
C7—C6—C5119.23 (11)S1—C21—H21B107.9
C7—C6—C19120.24 (10)H21A—C21—H21B107.2
C5—C6—C19120.52 (11)O3—C22—N3123.49 (12)
N1—C7—C6121.94 (11)O3—C22—C21119.13 (11)
N1—C7—S1118.73 (9)N3—C22—C21117.35 (11)
C6—C7—S1119.32 (9)C28—C23—C24119.91 (12)
N1—C8—C9122.47 (11)C28—C23—N3121.55 (11)
N1—C8—C20114.72 (10)C24—C23—N3118.43 (12)
C9—C8—C20122.81 (11)C25—C24—C23120.08 (13)
C5—C9—C8117.88 (10)C25—C24—H24120.0
C5—C9—C1121.92 (10)C23—C24—H24120.0
C8—C9—C1120.15 (11)C26—C25—C24119.27 (13)
C15—C10—C11118.59 (12)C26—C25—H25120.4
C15—C10—C1120.76 (12)C24—C25—H25120.4
C11—C10—C1120.53 (11)C27—C26—C25121.25 (13)
C12—C11—C10120.64 (14)C27—C26—Cl2119.44 (12)
C12—C11—H11119.7C25—C26—Cl2119.30 (12)
C10—C11—H11119.7C26—C27—C28119.71 (14)
C13—C12—C11119.54 (14)C26—C27—H27120.1
C13—C12—H12120.2C28—C27—H27120.1
C11—C12—H12120.2C27—C28—C23119.75 (13)
C12—C13—C14121.12 (13)C27—C28—H28120.1
C12—C13—Cl1119.45 (12)C23—C28—H28120.1
C9—C1—C2—C16165.26 (10)C2—C1—C9—C58.11 (15)
C10—C1—C2—C1669.67 (12)C10—C1—C9—C852.56 (15)
C9—C1—C2—C342.86 (13)C2—C1—C9—C8174.62 (11)
C10—C1—C2—C3167.93 (10)C9—C1—C10—C15137.21 (12)
C16—C2—C3—O269.67 (12)C2—C1—C10—C1598.37 (13)
C1—C2—C3—O251.99 (13)C9—C1—C10—C1146.77 (16)
C16—C2—C3—C4174.46 (10)C2—C1—C10—C1177.64 (14)
C1—C2—C3—C463.88 (12)C15—C10—C11—C121.0 (2)
C16—C2—C3—C1853.36 (14)C1—C10—C11—C12175.08 (12)
C1—C2—C3—C18175.02 (10)C10—C11—C12—C130.3 (2)
O2—C3—C4—C569.02 (12)C11—C12—C13—C140.6 (2)
C18—C3—C4—C5171.35 (11)C11—C12—C13—Cl1179.46 (11)
C2—C3—C4—C549.30 (13)C12—C13—C14—C150.7 (2)
C3—C4—C5—C916.26 (16)Cl1—C13—C14—C15179.38 (11)
C3—C4—C5—C6162.89 (11)C13—C14—C15—C100.1 (2)
C9—C5—C6—C71.48 (17)C11—C10—C15—C140.9 (2)
C4—C5—C6—C7179.33 (11)C1—C10—C15—C14175.16 (12)
C9—C5—C6—C19179.09 (11)C3—C2—C16—O159.41 (16)
C4—C5—C6—C190.10 (17)C1—C2—C16—O163.84 (15)
C8—N1—C7—C65.13 (17)C3—C2—C16—C17119.10 (13)
C8—N1—C7—S1174.45 (9)C1—C2—C16—C17117.65 (14)
C5—C6—C7—N18.16 (18)C7—S1—C21—C2259.47 (10)
C19—C6—C7—N1172.41 (11)C23—N3—C22—O314.1 (2)
C5—C6—C7—S1171.42 (9)C23—N3—C22—C21167.77 (11)
C19—C6—C7—S18.01 (16)S1—C21—C22—O3160.99 (10)
C21—S1—C7—N13.28 (11)S1—C21—C22—N320.84 (15)
C21—S1—C7—C6176.31 (10)C22—N3—C23—C2831.66 (18)
C7—N1—C8—C94.53 (18)C22—N3—C23—C24152.12 (12)
C7—N1—C8—C20174.30 (11)C28—C23—C24—C250.9 (2)
C6—C5—C9—C87.41 (16)N3—C23—C24—C25177.19 (12)
C4—C5—C9—C8171.75 (11)C23—C24—C25—C260.6 (2)
C6—C5—C9—C1175.26 (11)C24—C25—C26—C270.7 (2)
C4—C5—C9—C15.58 (17)C24—C25—C26—Cl2179.63 (11)
N1—C8—C9—C510.85 (17)C25—C26—C27—C281.8 (2)
C20—C8—C9—C5167.89 (11)Cl2—C26—C27—C28179.33 (11)
N1—C8—C9—C1171.78 (11)C26—C27—C28—C231.5 (2)
C20—C8—C9—C19.49 (18)C24—C23—C28—C270.1 (2)
C10—C1—C9—C5130.18 (12)N3—C23—C28—C27176.03 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O10.872.142.8746 (14)142
N3—H3···O3i0.912.172.9362 (13)141
Symmetry code: (i) x, y+1/2, z1/2.
Summary of short interatomic contacts (Å) in the title compound top
ContactDistanceSymmetry operation
Cl2···H143.06-x, -1/2 + y, 1/2 - z;
H14···Cl12.98-x, 1 - y, 1 - z;
H17A···Cl13.02-x, 1 - y, -z;
S1···H18B3.171 - x, -1/2 + y, 1/2 - z;
H21B···H4AB2.511 - x, 1 - y, 1 - z;
H3···O32.17x, 1/2 - y, -1/2 + z;
H1···H18C2.26x, 3/2 - y, 1/2 + z;
H18B···N22.861 - x, 1 - y, -z.
Percentage contributions of interatomic contacts to the Hirshfeld surface for the title compound top
ContactPercentage contribution
H···H37.3
Cl···H/H···Cl17.6
O···H/H···O11.1
C···H/H···C10.9
N···H/H···N9.7
S···H/H···S2.9
Cl···C/C···Cl1.7
O···C/C···O1.6
S···C/C···S1.6
Cl···O/O···Cl1.6
C···C1.3
N···C/C···N1.1
S···O/O···S0.8
S···N/N···S0.4
N···N0.2
Cl···Cl0.2
O···N/N···O0.1
 

Acknowledgements

Author contributions are as follows. Conceptualization, SKM and MA; methodology, ISM and JTM; investigation, ISM and JTM; writing (original draft), JTM, MA and SKM; writing (review and editing), AM and SKM; visualisation, SKM and AM; funding acquisition, SAHA; resources EAB, ISM and SAHA; supervision, AM, SKM and JTM.

Funding information

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

References

First citationAl-Taifi, E. A., Maraei, I. S., Bakhite, E. A., Demirtas, G., Mague, J. T., Mohamed, S. K. & Ramli, Y. (2021). Acta Cryst. E77, 121–125.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBen Ali, K. & Retailleau, P. (2019). Acta Cryst. E75, 1399–1402.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBouasla, R., Berredjem, M., Aouf, N.-E. & Barbey, C. (2008). Acta Cryst. E64, o432.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChrzanowska, M., Schönenberger, B., Brossi, A. & Flippen-Anderson, J. L. (1987). Helv. Chim. Acta, 70, 1721–1731.  CSD CrossRef CAS Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationCzarnocki, Z., Suh, D., MacLean, D. B., Hultin, P. G. & Szarek, W. A. (1992). Can. J. Chem. 70, 1555–1561.  CrossRef CAS Web of Science Google Scholar
First citationGill, R., Brazell, C., Woodruff, G. N. & Kemp, J. A. (1991). Br. J. Pharmacol. 103, 2030–2036.  CrossRef PubMed CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHouston, J. & Rodger, I. (1974). Clin. Exp. Pharmacol. Physiol. 1, 401–413.  CrossRef CAS Web of Science Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLangenohl, F., Otte, F. & Strohmann, C. (2020). Acta Cryst. E76, 298–302.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLehmann, A., Lechner, L., Radacki, K., Braunschweig, H. & Holzgrabe, U. (2017). Acta Cryst. E73, 867–870.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMague, J. T., Mohamed, S. K., Akkurt, M., Bakhite, E. A. & Albayati, M. R. (2017). IUCrData, 2, x170390.  Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationNaghiyev, F. N., Grishina, M. M., Khrustalev, V. N., Khalilov, A. N., Akkurt, M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 195–199.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNaicker, T., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2011). Acta Cryst. C67, o100–o103.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOhkubo, M., Kuno, A., Katsuta, K., Ueda, Y., Shirakawa, K., Nakanishi, H., Nakanishi, I., Kinoshita, T. & Takasugi, H. (1996). Chem. Pharm. Bull. 44, 95–102.  CSD CrossRef CAS Google Scholar
First citationSelvaraj, J. P., Mary, S., Dhruba, J. B., Huidrom, B. S., Panneerselvam, Y. & Piskala Subburaman, K. (2020). Acta Cryst. E76, 1548–1550.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationThompson, W. J., Anderson, P. S., Britcher, S. F., Lyle, T. A., Thies, J. E., Magill, C. A., Varga, S. L., Schwering, J. E., Lyle, P. A., Christy, M. E., et al. (1990). J. Med. Chem. 33, 789–808.  CrossRef PubMed CAS Web of Science Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, M. A., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer. University of Western Australia.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds