research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of trans-di­chlorido­(1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4N)chromium(III) bis­­(form­amide-κO)(1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4N)chromium(III) bis­­[tetra­chlorido­zincate(II)]

CROSSMARK_Color_square_no_text.svg

aBeamline Department, Pohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea, and bDepartment of Chemistry, Andong National University, Andong 36729, Republic of Korea
*Correspondence e-mail: jhchoi@anu.ac.kr

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 30 March 2020; accepted 6 April 2020; online 9 April 2020)

The structure of the title compound, [CrCl2(C10H24N4)][Cr(HCONH2)2(C10H24N4)][ZnCl4]2 (C10H24N4 = 1,4,8,11-tetra­aza­cyclo­tetra­decane, cyclam; HCONH2 = formamide, fa), has been determined from synchrotron X-ray data. The asymmetric unit contains two independent halves of the [CrCl2(cyclam)]+ and [Cr(fa)(cyclam)]3+ cations, and one tetra­chlorido­zincate anion. In each complex cation, the CrIII ion is coordinated by the four N atoms of the cyclam ligand in the equatorial plane and two Cl ligands or two O-bonded formamide mol­ecules in a trans axial arrangement, displaying a distorted octa­hedral geometry with crystallographic inversion symmetry. The Cr—N(cyclam) bond lengths are in the range 2.061 (2) to 2.074 (2) Å, while the Cr—Cl and Cr—O(fa) bond distances are 2.3194 (7) and 1.9953 (19) Å, respectively. The macrocyclic cyclam moieties adopt the centrosymmetric trans-III conformation with six- and five-membered chelate rings in chair and gauche conformations. The crystal structure is stabilized by inter­molecular hydrogen bonds involving the NH or CH groups of cyclam and the NH2 group of coordinated formamide as donors, and Cl atoms of the ZnCl42− anion as acceptors.

1. Chemical context

The 14-membered cyclam (1,4,8,11-tetra­aza­cyclo­tetra­decane, C10H24N4) has a moderately flexible structure, and its metal complexes can form either trans or cis-[ML2(cyclam)]n+ (L = a monodentate ligand) geometric isomers (Poon & Pun, 1980[Poon, C.-K. & Pun, K.-C. (1980). Inorg. Chem. 19, 568-569.]). Furthermore, the trans isomer can adopt five conformers, viz. trans-I (+ + + +), trans-II (+ − + +), trans-III (+ − − +), trans-IV (+ + − −) and trans-V (+ − + −), which differ in the chirality of the sec-NH centres (Choi, 2009[Choi, J.-H. (2009). Inorg. Chim. Acta, 362, 4231-4236.]), and where the plus sign indicates the hydrogen atom of the NH group is above the plane of the macrocycle and the minus sign indicates that it is below. The trans-I, trans-II and trans-V conformations can also fold to form cis-I, cis-II and cis-V conformers, respectively (Subhan et al., 2011[Subhan, M. A., Choi, J.-H. & Ng, S. W. (2011). Z. Anorg. Allg. Chem. 637, 2193-2197.]). Recently, it has been shown that cyclam derivatives and their metal complexes exhibit stem-cell mobilization and anti-HIV activity (Ronconi & Sadler, 2007[Ronconi, L. & Sadler, P. J. (2007). Coord. Chem. Rev. 251, 1633-1648.]; De Clercq, 2010[De Clercq, E. (2010). J. Med. Chem. 53, 1438-1450.]; Ross et al., 2012[Ross, A., Choi, J.-H., Hunter, T. M., Pannecouque, C., Moggach, S. A., Parsons, S., De Clercq, E. & Sadler, P. J. (2012). Dalton Trans. 41, 6408-6418.]). The conformation of the macrocycle and the orientations of the N—H bonds in the complex are very important factors for co-receptor recognition. Therefore, knowledge of the conformation and the crystal packing in transition-metal compounds containing cyclam has become important in the development of new highly effective anti-HIV drugs (De Clercq, 2010[De Clercq, E. (2010). J. Med. Chem. 53, 1438-1450.]). In addition, the formamide group can be coordinated to a metal ion through the oxygen or nitro­gen atoms (Balahura & Jordan, 1970[Balahura, R. J. & Jordan, R. B. (1970). J. Am. Chem. Soc. 92, 1533-1539.]). It should be noted that the geometric assignment and determination of the coordination mode based on spectroscopic properties is not always conclusive. We describe here the synthesis and structural characterization of a new double complex, [CrCl2(cyclam)][Cr(fa-O)2(cyclam)][ZnCl4]2, (I)[link], which was performed to elucidate and confirm its mol­ecular structure unambiguously.

[Scheme 1]

2. Structural commentary

Fig. 1[link] shows a displacement ellipsoid plot of (I)[link] with the atom-numbering scheme. The crystallographic asymmetric unit of (I)[link] is composed of two halves of independent [CrCl2(cyclam)]+ and [Cr(fa)(cyclam)]3+ cations and one tetra­chlorido­zincate anion. The two Cr atoms are located on crystallographic centers of symmetry, so these complex cations both have mol­ecular Ci symmetry. Each cyclam moiety in the two CrIII complex cations adopts the most stable trans-III conformation. The CrIII ions are six-coordinated in a distorted octa­hedral geometry with the four N atoms of the macrocyclic ligand in equatorial positions and two Cl ligands or two O atoms of formamide mol­ecules in axial positions (Fig. 1[link]). The Cr—N(cyclam) bond lengths are in the range 2.061 (2) to 2.074 (2) Å, in good agreement with those observed in trans-[Cr(ONO)2)(cyclam)]BF4 [2.064 (4)–2.073 (4) Å; De Leo et al., 2000[De Leo, M. A., Bu, X., Bentow, J. & Ford, P. C. (2000). Inorg. Chim. Acta, 300-302, 944-950.]], trans-[Cr(NH3)2(cyclam)][ZnCl4]Cl·H2O [2.0501 (15)–2.0615 (15) Å; Moon & Choi, 2016a[Moon, D. & Choi, J.-H. (2016a). Acta Cryst. E72, 456-459.]], trans-[Cr(NCS)2(cyclam)]2[ZnCl4] [2.0614 (10)–2.0700 (10) Å; Moon et al., 2015[Moon, D., Ryoo, K. S. & Choi, J.-H. (2015). Acta Cryst. E71, 540-543.]], trans-[Cr(NCS)2(cyclam)]ClO4 [2.046 (2)–2.060 (2) Å; Friesen et al., 1997[Friesen, D. A., Quail, J. W., Waltz, W. L. & Nashiem, R. E. (1997). Acta Cryst. C53, 687-691.]], trans-[Cr(nic-O)2(cyclam)]ClO4 [2.057 (4)–2.064 (4) Å; Choi, 2009[Choi, J.-H. (2009). Inorg. Chim. Acta, 362, 4231-4236.]], [Cr(ox)(cyclam)]ClO4 [2.062 (4)–2.085 (5) Å; Choi et al., 2004b[Choi, J.-H., Oh, I.-G., Suzuki, T. & Kaizaki, S. (2004b). J. Mol. Struct. 694, 39-44.]], [Cr(acac)(cyclam)](ClO4)2·0.5H2O [2.065 (5)–2.089 (5) Å; Subhan et al., 2011[Subhan, M. A., Choi, J.-H. & Ng, S. W. (2011). Z. Anorg. Allg. Chem. 637, 2193-2197.]] and cis-[Cr(ONO)2(cyclam)]NO2 [2.0874 (16)–2.0916 (15) Å; Choi et al., 2004a[Choi, J.-H., Oh, I.-G., Lim, W.-T. & Park, K.-M. (2004a). Acta Cryst. C60, m238-m240.]]. However, the Cr—N bond lengths for the secondary amine of cyclam in the trans isomer are slightly shorter than those of the primary amine found in trans-[CrCl2(Me2tn)2]Cl [2.0861 (18)–2.1076 (18) Å; Choi et al., 2007[Choi, J.-H., Clegg, W., Nichol, G. S., Lee, S. H., Park, Y. C. & Habibi, M. H. (2007). Spectrochim. Acta Part A, 68, 796-801.]] and trans-[CrCl2(Me2tn)2]2ZnCl4 [2.0741 (19)–2.0981 (18) Å; Choi et al., 2011[Choi, J.-H., Joshi, T. & Spiccia, L. (2011). Z. Anorg. Allg. Chem. 637, 1194-1198.]]. The Cr—Cl and Cr–O (fa) bond lengths are 2.3194 (7) and 1.9953 (19) Å, respectively. The Cr—Cl distance is comparable to the values in trans-[CrCl2(cyclam)]Cl [2.3295 (6) Å; Solano-Peralta et al., 2004[Solano-Peralta, A., Sosa-Torres, M. E., Flores-Alamo, M., El-Mkami, H., Smith, G. M., Toscano, R. A. & Nakamura, T. (2004). Dalton Trans. pp. 2444-2449.]], trans-[CrCl2(cyclam)]2[ZnCl4] [2.3472 (9) Å; Flores-Vélez et al., 1991[Flores-Vélez, L. M., Sosa-Rivadeneyra, J., Sosa-Torres, M. E., Rosales-Hoz, M. J. & Toscano, R. A. (1991). J. Chem. Soc. Dalton Trans. pp. 3243-3247.]] and [CrCl2(cyclam)][Cr(ox)(cyclam)](ClO4)2 [2.3358 (14) Å; Moon & Choi, 2016b[Moon, D. & Choi, J.-H. (2016b). Acta Cryst. E72, 1417-1420.]]. As expected, the five-membered chelate rings adopt a gauche conformation, and the six-membered ring is in the chair conformation. The average bond angles of the five- and six-membered chelate rings around chromium(III) are 85.03 (9) and 94.97 (9)°, respectively. The uncoordinated ZnCl42− counter-anion remains outside the coordination sphere of the two CrIII ions and has a distorted tetra­hedral geometry as a result of its involvement in hydrogen-bonding inter­actions. It exhibits Zn—Cl bond distances in the range 2.2555 (8) to 2.3035 (8) Å and Cl—Zn—Cl angles ranging from 104.84 (4)–114.54 (3)°.

[Figure 1]
Figure 1
Mol­ecular structure of (I)[link], drawn with displacement ellipsoids at the 50% probability level. The primed and double-primed atoms are related by symmetry operations (−x + 1, −y + 1, −z + 1) and (−x + 1, −y + 1, −z), respectively. Hydrogen bonds are shown as dashed lines.

3. Supra­molecular features

Extensive C—H⋯Cl and N–H⋯Cl hydrogen-bonding inter­actions occur between the NH or CH groups of cyclam and the NH2 group of formamide, the Cl ligand and the Cl atoms of the tetra­chloro­zincate anion (Table 1[link]). The ZnCl42− anion is linked to two [CrCl2(cyclam)]+ and [Cr(fa)(cyclam)]3+ cations via a series of N—H⋯Cl and C—H⋯Cl hydrogen bonds. In addition, two CrIII complex cations are inter­connected to each other via a C3—H3A⋯Cl1vi [symmetry code: (vi) −x + [{3\over 2}], y + [{1\over 2}], −z + [{1\over 2}]] hydrogen bond. The extensive array of these contacts generates a three-dimensional network and helps to consolidate the crystal structure. The crystal packing diagram of (I)[link] viewed perpendicular to the bc plane is shown in Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl4i 0.99 2.46 3.346 (2) 149
N2—H2⋯Cl3 0.99 2.31 3.255 (2) 159
N3—H3AN⋯Cl5ii 0.87 2.65 3.505 (3) 167
N3—H3BN⋯Cl2iii 0.87 2.61 3.334 (3) 141
C2—H2A⋯Cl2i 0.98 2.65 3.606 (3) 165
N4—H4⋯Cl3iv 0.99 2.56 3.493 (2) 157
N5—H5⋯Cl4v 0.99 2.76 3.549 (2) 137
C3—H3A⋯Cl1vi 0.98 2.71 3.650 (3) 160
C4—H4A⋯Cl5ii 0.98 2.78 3.555 (3) 136
C7—H7AB⋯Cl2iv 0.98 2.81 3.738 (3) 159
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+1; (iv) -x+1, -y+1, -z; (v) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Crystal packing of (I)[link], viewed along the a axis. Dashed lines represent hydrogen-bonding inter­actions [N—H⋯Cl (pink) and C—H⋯Cl (green)].

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.41, November 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) indicated 76 hits for a [CrL2(C10H24N4)]n+ unit. More than 30 different ligand types L including halogenides, cyanide, azide, thio­cyanate, oxalate, ammonia, sulfate, nitrite, DMSO and esters have been reported. It has been found that trans-[Cr(NCS)2(C10H24N4)]ClO4 (RAVGEA; Friesen et al., 1997[Friesen, D. A., Quail, J. W., Waltz, W. L. & Nashiem, R. E. (1997). Acta Cryst. C53, 687-691.]), trans-[Cr(nic-O)2(C10H24N4)]ClO4 (NUKMUC; Choi, 2009[Choi, J.-H. (2009). Inorg. Chim. Acta, 362, 4231-4236.]) and trans-[Cr(ONO)2)(C10H24N4)]BF4 (MEMHAN; De Leo et al., 2000[De Leo, M. A., Bu, X., Bentow, J. & Ford, P. C. (2000). Inorg. Chim. Acta, 300-302, 944-950.]) adopt the trans-III conformations. On the other hand, cis-[Cr(NCS)2(C10H24N4)]ClO4 (RAVGOK; Friesen et al., 1997[Friesen, D. A., Quail, J. W., Waltz, W. L. & Nashiem, R. E. (1997). Acta Cryst. C53, 687-691.]), [Cr(C2O4)(C10H24N4)]ClO4 (IHAFOM; Choi et al., 2004b[Choi, J.-H., Oh, I.-G., Suzuki, T. & Kaizaki, S. (2004b). J. Mol. Struct. 694, 39-44.]), [Cr(CH3COCHCOCH3)(C10H24N4)](ClO4)2·0.5H2O (SAYSES; Subhan et al., 2011[Subhan, M. A., Choi, J.-H. & Ng, S. W. (2011). Z. Anorg. Allg. Chem. 637, 2193-2197.]) and cis-[Cr(NCS)2(C10H24N4)]NCS (ADUXOO; Moon et al., 2013[Moon, D., Choi, J.-H., Ryoo, K. S. & Hong, Y. P. (2013). Acta Cryst. E69, m376-m377.]) have the folded cis-V conformations. A search of the CSD gave 698 hits for cyclam (C10H24N4) with any metal but no hit for uncomplexed cyclam. In addition, no compounds containing [Cr(HCONH2)2(C10H24N4)]3+ were known until now.

5. Synthesis and crystallization

The free ligand cyclam and formamide were purchased from Sigma–Aldrich. The formamide was purified and dried by standard methods. All other chemicals were reagent-grade materials and used without further purification. The starting material, trans-[Cr(CN)2(cyclam)]ClO4, was prepared according to the literature (Kane-Maguire et al., 1983[Kane-Maguire, N. A. P., Bennett, J. A. & Miller, P. K. (1983). Inorg. Chim. Acta, 76, L123-L125.]). The yellow solid, trans-[Cr(CN)2(cyclam)]ClO4 (0.08 g) was dissolved in 5 mL of 0.01 M HCl, and heated for 2 h at 333 K. The solution was added to 3 mL of 6 M HCl containing 0.2 g of solid ZnCl2, and then 2 mL of formamide were added dropwise under magnetic stirring. The resulting solution was filtered, and allowed to stand at room temperature for a few weeks to give purple crystals of (I)[link] suitable for X-ray structural analysis.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.94–0.98 Å and N—H = 0.87–0.99 Å and with Uiso(H) = 1.2Ueq(C,N).

Table 2
Experimental details

Crystal data
Chemical formula [CrCl2(C10H24N4)][Cr(CH3NO)2(C10H24N4)][ZnCl4]2
Mr 1079.99
Crystal system, space group Monoclinic, P21/n
Temperature (K) 220
a, b, c (Å) 10.406 (2), 13.212 (3), 15.011 (3)
β (°) 95.85 (3)
V3) 2053.0 (7)
Z 2
Radiation type Synchrotron, λ = 0.610 Å
μ (mm−1) 1.53
Crystal size (mm) 0.13 × 0.11 × 0.08
 
Data collection
Diffractometer Rayonix MX225HS CCD area detector
Absorption correction Empirical (using intensity measurements) (HKL3000sm SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.])
Tmin, Tmax 0.856, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 20797, 5718, 5424
Rint 0.065
(sin θ/λ)max−1) 0.693
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.120, 1.08
No. of reflections 5718
No. of parameters 220
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.02, −1.05
Computer programs: PAL BL2D-SMDC (Shin et al., 2016[Shin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369-373.]), HKL3000sm (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SHELXT2018 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND 4 (Putz & Brandenburg, 2014[Putz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: PAL BL2D-SMDC (Shin et al., 2016); cell refinement: HKL3000sm (Otwinowski & Minor, 1997); data reduction: HKL3000sm (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND 4 (Putz & Brandenburg, 2014); software used to prepare material for publication: publCIF (Westrip, 2010).

trans-Dichlorido(1,4,8,11-tetraazacyclotetradecane-κ4N)chromium(III) bis(formamide-κO)(1,4,8,11-tetraazacyclotetradecane-κ4N)chromium(III) bis[tetrachloridozincate(II)] top
Crystal data top
[CrCl2(C10H24N4)][Cr(CH3NO)2(C10H24N4)][ZnCl4]2F(000) = 1100
Mr = 1079.99Dx = 1.747 Mg m3
Monoclinic, P21/nSynchrotron radiation, λ = 0.610 Å
a = 10.406 (2) ÅCell parameters from 71380 reflections
b = 13.212 (3) Åθ = 0.4–33.7°
c = 15.011 (3) ŵ = 1.53 mm1
β = 95.85 (3)°T = 220 K
V = 2053.0 (7) Å3Plate, purple
Z = 20.13 × 0.11 × 0.08 mm
Data collection top
Rayonix MX225HS CCD area detector
diffractometer
5424 reflections with I > 2σ(I)
Radiation source: PLSII 2D bending magnetRint = 0.065
ω scanθmax = 25.0°, θmin = 1.8°
Absorption correction: empirical (using intensity measurements)
(HKL3000sm Scalepack; Otwinowski & Minor, 1997)
h = 1414
Tmin = 0.856, Tmax = 1.000k = 1818
20797 measured reflectionsl = 2020
5718 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.120 w = 1/[σ2(Fo2) + (0.0579P)2 + 2.3444P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
5718 reflectionsΔρmax = 1.02 e Å3
220 parametersΔρmin = 1.05 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cr10.5000000.5000000.5000000.01905 (11)
O10.40779 (18)0.59415 (14)0.57570 (12)0.0304 (4)
N10.6599 (2)0.50926 (16)0.59314 (13)0.0263 (4)
H10.7333090.4788120.5656540.032*
N20.5477 (2)0.62362 (15)0.42632 (14)0.0270 (4)
H20.6127810.6006750.3870540.032*
N30.2731 (3)0.6910 (2)0.64216 (15)0.0381 (5)
H3AN0.3323560.7366280.6550710.046*
H3BN0.1957810.6998390.6579960.046*
C10.6336 (3)0.4436 (2)0.66990 (16)0.0335 (5)
H1A0.5762300.4787620.7076140.040*
H1AB0.7144870.4279100.7065290.040*
C20.6985 (3)0.6141 (2)0.62080 (19)0.0352 (6)
H2A0.7767790.6115630.6629330.042*
H2AB0.6297290.6450400.6516540.042*
C30.7237 (3)0.6793 (2)0.5405 (2)0.0399 (6)
H3A0.7688050.7407990.5627730.048*
H3AB0.7819410.6421610.5049190.048*
C40.6046 (3)0.7105 (2)0.4789 (2)0.0362 (6)
H4A0.5398890.7388320.5149560.043*
H4AB0.6285990.7633020.4378940.043*
C50.4294 (3)0.6526 (2)0.36674 (17)0.0343 (5)
H5A0.4529080.6954650.3176210.041*
H5AB0.3697900.6904440.4007520.041*
C60.3001 (3)0.60960 (19)0.59923 (15)0.0280 (5)
H60.2350600.5610160.5857940.034*
Cr20.5000000.5000000.0000000.02063 (12)
Cl10.53785 (6)0.37596 (5)0.10350 (4)0.03271 (14)
N40.3223 (2)0.52342 (16)0.07214 (13)0.0249 (4)
H40.3124410.4702070.1187670.030*
N50.4335 (2)0.38790 (16)0.08048 (13)0.0259 (4)
H50.4317250.3243630.0454100.031*
C70.3340 (2)0.62148 (19)0.11970 (16)0.0289 (5)
H7A0.3264910.6779190.0781760.035*
H7AB0.2645870.6275790.1686950.035*
C80.2067 (2)0.5165 (2)0.02153 (17)0.0307 (5)
H8A0.1285050.5240490.0632730.037*
H8AB0.2086340.5722390.0217030.037*
C90.2009 (3)0.4161 (2)0.02812 (19)0.0342 (5)
H9A0.2103520.3611210.0145330.041*
H9AB0.1149860.4096550.0488990.041*
C100.3022 (3)0.4014 (2)0.10863 (17)0.0319 (5)
H10A0.3016400.4604000.1481210.038*
H10B0.2794820.3417750.1426240.038*
C110.5356 (3)0.3751 (2)0.15662 (16)0.0297 (5)
H11A0.5245700.3101270.1864610.036*
H11B0.5295970.4293930.2004690.036*
Zn10.96538 (3)0.56371 (2)0.28510 (2)0.02620 (9)
Cl20.98118 (7)0.39522 (5)0.26256 (6)0.04267 (17)
Cl30.74908 (6)0.60423 (6)0.27489 (4)0.03418 (15)
Cl41.06521 (7)0.61932 (6)0.41833 (4)0.03892 (16)
Cl51.04313 (8)0.64946 (6)0.17226 (5)0.04333 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr10.0141 (2)0.0235 (2)0.0203 (2)0.00100 (17)0.00503 (17)0.00244 (16)
O10.0269 (9)0.0323 (8)0.0318 (8)0.0007 (7)0.0021 (7)0.0048 (7)
N10.0193 (9)0.0342 (10)0.0252 (9)0.0019 (8)0.0023 (7)0.0054 (7)
N20.0258 (9)0.0278 (9)0.0290 (9)0.0009 (8)0.0112 (8)0.0015 (7)
N30.0382 (12)0.0437 (12)0.0337 (11)0.0089 (11)0.0106 (9)0.0063 (9)
C10.0319 (13)0.0465 (14)0.0219 (10)0.0058 (11)0.0012 (9)0.0015 (9)
C20.0252 (12)0.0393 (13)0.0396 (13)0.0027 (11)0.0040 (10)0.0118 (11)
C30.0270 (12)0.0382 (13)0.0551 (16)0.0124 (11)0.0073 (12)0.0071 (12)
C40.0354 (14)0.0298 (11)0.0448 (14)0.0075 (11)0.0120 (11)0.0030 (10)
C50.0367 (13)0.0367 (12)0.0302 (11)0.0044 (11)0.0076 (10)0.0056 (10)
C60.0286 (11)0.0343 (11)0.0216 (9)0.0002 (10)0.0045 (8)0.0011 (8)
Cr20.0185 (2)0.0252 (2)0.0181 (2)0.00430 (18)0.00144 (18)0.00252 (16)
Cl10.0330 (3)0.0374 (3)0.0274 (3)0.0097 (3)0.0014 (2)0.0065 (2)
N40.0218 (9)0.0307 (9)0.0218 (8)0.0056 (8)0.0000 (7)0.0043 (7)
N50.0242 (9)0.0311 (9)0.0224 (8)0.0015 (8)0.0022 (7)0.0003 (7)
C70.0258 (11)0.0338 (11)0.0264 (10)0.0108 (10)0.0003 (8)0.0010 (9)
C80.0189 (10)0.0417 (13)0.0313 (11)0.0054 (10)0.0024 (9)0.0029 (10)
C90.0216 (11)0.0435 (13)0.0375 (13)0.0062 (11)0.0029 (10)0.0013 (11)
C100.0261 (11)0.0406 (13)0.0297 (11)0.0020 (10)0.0066 (9)0.0008 (10)
C110.0301 (12)0.0351 (12)0.0235 (10)0.0041 (10)0.0011 (9)0.0028 (9)
Zn10.02112 (15)0.03240 (16)0.02530 (14)0.00089 (11)0.00344 (11)0.00152 (10)
Cl20.0293 (3)0.0332 (3)0.0636 (4)0.0034 (3)0.0047 (3)0.0042 (3)
Cl30.0233 (3)0.0487 (4)0.0312 (3)0.0076 (3)0.0060 (2)0.0028 (2)
Cl40.0373 (3)0.0493 (4)0.0288 (3)0.0094 (3)0.0033 (2)0.0059 (3)
Cl50.0461 (4)0.0509 (4)0.0353 (3)0.0029 (3)0.0155 (3)0.0100 (3)
Geometric parameters (Å, º) top
Cr1—O11.9953 (19)Cr2—N42.069 (2)
Cr1—O1i1.9954 (19)Cr2—N4ii2.069 (2)
Cr1—N22.061 (2)Cr2—N5ii2.074 (2)
Cr1—N2i2.061 (2)Cr2—N52.074 (2)
Cr1—N1i2.065 (2)Cr2—Cl12.3194 (7)
Cr1—N12.065 (2)Cr2—Cl1ii2.3194 (7)
O1—C61.226 (3)N4—C81.490 (3)
N1—C11.489 (3)N4—C71.490 (3)
N1—C21.490 (3)N4—H40.9900
N1—H10.9900N5—C101.482 (3)
N2—C41.482 (3)N5—C111.488 (3)
N2—C51.495 (3)N5—H50.9900
N2—H20.9900C7—C11ii1.519 (4)
N3—C61.299 (3)C7—H7A0.9800
N3—H3AN0.8700C7—H7AB0.9800
N3—H3BN0.8700C8—C91.526 (4)
C1—C5i1.509 (4)C8—H8A0.9800
C1—H1A0.9800C8—H8AB0.9800
C1—H1AB0.9800C9—C101.533 (4)
C2—C31.525 (4)C9—H9A0.9800
C2—H2A0.9800C9—H9AB0.9800
C2—H2AB0.9800C10—H10A0.9800
C3—C41.525 (4)C10—H10B0.9800
C3—H3A0.9800C11—H11A0.9800
C3—H3AB0.9800C11—H11B0.9800
C4—H4A0.9800Zn1—Cl52.2555 (8)
C4—H4AB0.9800Zn1—Cl22.2602 (9)
C5—H5A0.9800Zn1—Cl42.2792 (9)
C5—H5AB0.9800Zn1—Cl32.3035 (8)
C6—H60.9400
O1—Cr1—O1i180.0N4—Cr2—N4ii180.0
O1—Cr1—N288.14 (8)N4—Cr2—N5ii85.50 (8)
O1i—Cr1—N291.86 (8)N4ii—Cr2—N5ii94.49 (8)
O1—Cr1—N2i91.86 (8)N4—Cr2—N594.49 (8)
O1i—Cr1—N2i88.14 (8)N4ii—Cr2—N585.51 (8)
N2—Cr1—N2i180.00 (7)N5ii—Cr2—N5180.0
O1—Cr1—N1i91.23 (8)N4—Cr2—Cl187.64 (6)
O1i—Cr1—N1i88.77 (8)N4ii—Cr2—Cl192.36 (6)
N2—Cr1—N1i84.54 (9)N5ii—Cr2—Cl191.43 (6)
N2i—Cr1—N1i95.46 (9)N5—Cr2—Cl188.57 (6)
O1—Cr1—N188.77 (8)N4—Cr2—Cl1ii92.36 (6)
O1i—Cr1—N191.23 (8)N4ii—Cr2—Cl1ii87.64 (6)
N2—Cr1—N195.45 (9)N5ii—Cr2—Cl1ii88.57 (6)
N2i—Cr1—N184.54 (9)N5—Cr2—Cl1ii91.43 (6)
N1i—Cr1—N1180.0Cl1—Cr2—Cl1ii180.0
C6—O1—Cr1140.79 (18)C8—N4—C7114.01 (19)
C1—N1—C2113.0 (2)C8—N4—Cr2116.69 (15)
C1—N1—Cr1106.88 (16)C7—N4—Cr2105.58 (15)
C2—N1—Cr1114.80 (16)C8—N4—H4106.6
C1—N1—H1107.3C7—N4—H4106.6
C2—N1—H1107.3Cr2—N4—H4106.6
Cr1—N1—H1107.3C10—N5—C11113.65 (19)
C4—N2—C5112.3 (2)C10—N5—Cr2116.90 (16)
C4—N2—Cr1115.64 (16)C11—N5—Cr2105.93 (15)
C5—N2—Cr1107.20 (15)C10—N5—H5106.6
C4—N2—H2107.1C11—N5—H5106.6
C5—N2—H2107.1Cr2—N5—H5106.6
Cr1—N2—H2107.1N4—C7—C11ii108.69 (19)
C6—N3—H3AN120.0N4—C7—H7A110.0
C6—N3—H3BN120.0C11ii—C7—H7A110.0
H3AN—N3—H3BN120.0N4—C7—H7AB110.0
N1—C1—C5i108.4 (2)C11ii—C7—H7AB110.0
N1—C1—H1A110.0H7A—C7—H7AB108.3
C5i—C1—H1A110.0N4—C8—C9112.1 (2)
N1—C1—H1AB110.0N4—C8—H8A109.2
C5i—C1—H1AB110.0C9—C8—H8A109.2
H1A—C1—H1AB108.4N4—C8—H8AB109.2
N1—C2—C3111.6 (2)C9—C8—H8AB109.2
N1—C2—H2A109.3H8A—C8—H8AB107.9
C3—C2—H2A109.3C8—C9—C10115.9 (2)
N1—C2—H2AB109.3C8—C9—H9A108.3
C3—C2—H2AB109.3C10—C9—H9A108.3
H2A—C2—H2AB108.0C8—C9—H9AB108.3
C4—C3—C2115.9 (2)C10—C9—H9AB108.3
C4—C3—H3A108.3H9A—C9—H9AB107.4
C2—C3—H3A108.3N5—C10—C9111.7 (2)
C4—C3—H3AB108.3N5—C10—H10A109.3
C2—C3—H3AB108.3C9—C10—H10A109.3
H3A—C3—H3AB107.4N5—C10—H10B109.3
N2—C4—C3111.7 (2)C9—C10—H10B109.3
N2—C4—H4A109.3H10A—C10—H10B107.9
C3—C4—H4A109.3N5—C11—C7ii108.09 (19)
N2—C4—H4AB109.3N5—C11—H11A110.1
C3—C4—H4AB109.3C7ii—C11—H11A110.1
H4A—C4—H4AB107.9N5—C11—H11B110.1
N2—C5—C1i107.6 (2)C7ii—C11—H11B110.1
N2—C5—H5A110.2H11A—C11—H11B108.4
C1i—C5—H5A110.2Cl5—Zn1—Cl2110.19 (3)
N2—C5—H5AB110.2Cl5—Zn1—Cl4109.31 (3)
C1i—C5—H5AB110.2Cl2—Zn1—Cl4114.54 (3)
H5A—C5—H5AB108.5Cl5—Zn1—Cl3104.84 (4)
O1—C6—N3122.1 (3)Cl2—Zn1—Cl3107.73 (3)
O1—C6—H6118.9Cl4—Zn1—Cl3109.78 (4)
N3—C6—H6118.9
C2—N1—C1—C5i168.9 (2)C8—N4—C7—C11ii171.66 (19)
Cr1—N1—C1—C5i41.6 (2)Cr2—N4—C7—C11ii42.3 (2)
C1—N1—C2—C3179.6 (2)C7—N4—C8—C9178.4 (2)
Cr1—N1—C2—C356.6 (3)Cr2—N4—C8—C954.8 (2)
N1—C2—C3—C472.1 (3)N4—C8—C9—C1070.3 (3)
C5—N2—C4—C3179.0 (2)C11—N5—C10—C9179.0 (2)
Cr1—N2—C4—C355.5 (3)Cr2—N5—C10—C955.1 (3)
C2—C3—C4—N271.2 (3)C8—C9—C10—N570.4 (3)
C4—N2—C5—C1i169.7 (2)C10—N5—C11—C7ii171.3 (2)
Cr1—N2—C5—C1i41.6 (2)Cr2—N5—C11—C7ii41.7 (2)
Cr1—O1—C6—N3170.2 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl4iii0.992.463.346 (2)149
N2—H2···Cl30.992.313.255 (2)159
N3—H3AN···Cl5iv0.872.653.505 (3)167
N3—H3BN···Cl2i0.872.613.334 (3)141
C2—H2A···Cl2iii0.982.653.606 (3)165
N4—H4···Cl3ii0.992.563.493 (2)157
N5—H5···Cl4v0.992.763.549 (2)137
C3—H3A···Cl1vi0.982.713.650 (3)160
C4—H4A···Cl5iv0.982.783.555 (3)136
C7—H7AB···Cl2ii0.982.813.738 (3)159
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z; (iii) x+2, y+1, z+1; (iv) x1/2, y+3/2, z+1/2; (v) x+3/2, y1/2, z+1/2; (vi) x+3/2, y+1/2, z+1/2.
 

Funding information

This work was supported by a Research Grant of Andong National University. The X-ray crystallography experiment at the PLS-II BL2D-SMC beamline was supported in part by MSIT and POSTECH.

References

First citationBalahura, R. J. & Jordan, R. B. (1970). J. Am. Chem. Soc. 92, 1533–1539.  CrossRef CAS Web of Science Google Scholar
First citationChoi, J.-H. (2009). Inorg. Chim. Acta, 362, 4231–4236.  Web of Science CSD CrossRef CAS Google Scholar
First citationChoi, J.-H., Clegg, W., Nichol, G. S., Lee, S. H., Park, Y. C. & Habibi, M. H. (2007). Spectrochim. Acta Part A, 68, 796–801.  Web of Science CSD CrossRef Google Scholar
First citationChoi, J.-H., Joshi, T. & Spiccia, L. (2011). Z. Anorg. Allg. Chem. 637, 1194–1198.  Web of Science CSD CrossRef CAS Google Scholar
First citationChoi, J.-H., Oh, I.-G., Lim, W.-T. & Park, K.-M. (2004a). Acta Cryst. C60, m238–m240.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationChoi, J.-H., Oh, I.-G., Suzuki, T. & Kaizaki, S. (2004b). J. Mol. Struct. 694, 39–44.  Web of Science CSD CrossRef CAS Google Scholar
First citationDe Clercq, E. (2010). J. Med. Chem. 53, 1438–1450.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDe Leo, M. A., Bu, X., Bentow, J. & Ford, P. C. (2000). Inorg. Chim. Acta, 300–302, 944–950.  Web of Science CSD CrossRef CAS Google Scholar
First citationFlores-Vélez, L. M., Sosa-Rivadeneyra, J., Sosa-Torres, M. E., Rosales-Hoz, M. J. & Toscano, R. A. (1991). J. Chem. Soc. Dalton Trans. pp. 3243–3247.  Google Scholar
First citationFriesen, D. A., Quail, J. W., Waltz, W. L. & Nashiem, R. E. (1997). Acta Cryst. C53, 687–691.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKane-Maguire, N. A. P., Bennett, J. A. & Miller, P. K. (1983). Inorg. Chim. Acta, 76, L123–L125.  CAS Google Scholar
First citationMoon, D. & Choi, J.-H. (2016a). Acta Cryst. E72, 456–459.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMoon, D. & Choi, J.-H. (2016b). Acta Cryst. E72, 1417–1420.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMoon, D., Choi, J.-H., Ryoo, K. S. & Hong, Y. P. (2013). Acta Cryst. E69, m376–m377.  CSD CrossRef IUCr Journals Google Scholar
First citationMoon, D., Ryoo, K. S. & Choi, J.-H. (2015). Acta Cryst. E71, 540–543.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPoon, C.-K. & Pun, K.-C. (1980). Inorg. Chem. 19, 568–569.  CrossRef CAS Web of Science Google Scholar
First citationPutz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationRonconi, L. & Sadler, P. J. (2007). Coord. Chem. Rev. 251, 1633–1648.  Web of Science CrossRef CAS Google Scholar
First citationRoss, A., Choi, J.-H., Hunter, T. M., Pannecouque, C., Moggach, S. A., Parsons, S., De Clercq, E. & Sadler, P. J. (2012). Dalton Trans. 41, 6408–6418.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369–373.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSolano-Peralta, A., Sosa-Torres, M. E., Flores-Alamo, M., El-Mkami, H., Smith, G. M., Toscano, R. A. & Nakamura, T. (2004). Dalton Trans. pp. 2444–2449.  Google Scholar
First citationSubhan, M. A., Choi, J.-H. & Ng, S. W. (2011). Z. Anorg. Allg. Chem. 637, 2193–2197.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds