research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The crystal structures of benzyl­ammonium phenyl­acetate and its hydrate

CROSSMARK_Color_square_no_text.svg

aInstitut Laue-Langevin, 71 Avenue des Martyrs, 38000 Grenoble, France, and bLudwig-Maximilians-Universität, Department Chemie, Butenandtstrasse, 5–13, 81377 München, Germany
*Correspondence e-mail: hessd@ill.fr

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 11 December 2018; accepted 7 January 2019; online 11 January 2019)

The title compounds benzyl­ammonium phenyl­acetate, C7H10N+·C8H7O2 (1), and its monohydrate, C7H10N+·C8H7O2·H2O (2), can be obtained by evaporating methano­lic solutions containing equimolar amounts of benzyl­amine and phenyl­acetic acid in the absence and presence of water, respectively. N—H⋯O hydrogen bonds in the crystal structure of 1 lead to the formation of hydro­philic channels running along the b-axis direction. The hydrogen-bonding system is best described by fused R34(10) ring patterns, often observed in ammonium carboxyl­ate salts. In 2, the presence of the crystal water leads to the formation of a two-dimensional hydrogen-bonding network. The benzyl moieties in 1 and 2 form hydro­phobic layers in the crystal structures with the aromatic rings adopting edge-to-face arrangements.

1. Chemical context

Many proteins can self-assemble into insoluble aggregates, so-called amyloids, with a high content of β-strands. Amyloid fibrils are qualitatively similar for different proteins, with filaments of a few nanometers in diameter that can grow up to several micrometers in length (McManus et al., 2016[McManus, J. J., Charbonneau, P., Zaccarelli, E. & Asherie, N. (2016). Curr. Opin. Colloid Interface Sci. 22, 73-79.]). The amyloid state of proteins is linked to various human diseases, e.g. Alzheimer's disease (Eisenberg & Jucker, 2012[Eisenberg, D. & Jucker, M. (2012). Cell, 148, 1188-1203.]). Besides proteins, oligopeptides (Ozbas et al., 2004[Ozbas, B., Rajagopal, K., Schneider, J. P. & Pochan, D. J. (2004). Phys. Rev. Lett. 93, 268106.]) down to simple dipeptides (Reches & Gazit, 2003[Reches, M. & Gazit, E. (2003). Science, 300, 625-627.]) and even the amino acid phenyl­alanine (Mossou et al., 2014[Mossou, E., Teixeira, S. C. M., Mitchell, E. P., Mason, S. A., Adler-Abramovich, L., Gazit, E. & Forsyth, V. T. (2014). Acta Cryst. C70, 326-331.]; Do et al., 2015[Do, T. D., Kincannon, W. M. & Bowers, M. T. (2015). J. Am. Chem. Soc. 137, 10080-10083.]) can also self-assemble into stable nanofilaments in aqueous solution. Apart from the obvious link to amyloid diseases, such structures are also inter­esting for technical applications (Gazit, 2007[Gazit, E. (2007). Chem. Soc. Rev. 36, 1263-1269.]; Manna et al., 2015[Manna, M. K., Rasale, D. B. & Das, A. K. (2015). RSC Adv. 5, 90158-90167.]). Hydrogen bonds between ammonium and carboxyl­ate groups, as well as the presence of hydro­phobic residues (e.g. aromatic residues) play an important role in the formation of self-assembled structures of (di)peptides or amino acids (Görbitz, 2010[Görbitz, C. H. (2010). Acta Cryst. B66, 84-93.]; Mossou et al., 2014[Mossou, E., Teixeira, S. C. M., Mitchell, E. P., Mason, S. A., Adler-Abramovich, L., Gazit, E. & Forsyth, V. T. (2014). Acta Cryst. C70, 326-331.]; Reches & Gazit, 2003[Reches, M. & Gazit, E. (2003). Science, 300, 625-627.]). Similarly, the packing motifs of ammonium carboxyl­ate salts are governed by the formation of hydrogen-bonded networks between the ammonium and carboxyl­ate groups, as well as the nature of the residues of the ammonium and carboxyl­ate residues (Kinbara et al., 1996[Kinbara, K., Hashimoto, Y., Sukegawa, M., Nohira, H. & Saigo, K. (1996). J. Am. Chem. Soc. 118, 3441-3449.]; Odendal et al., 2010[Odendal, J. A., Bruce, J. C., Koch, K. R. & Haynes, D. A. (2010). CrystEngComm, 12, 2398-2408.]).

[Scheme 1]

Herein, we report the crystal structures of benzyl­ammonium phenyl­acetate and its hydrate. Both show a similar crystal packing to the zwitterionic form of L-phenyl­alanine reported by Mossou et al. (2014[Mossou, E., Teixeira, S. C. M., Mitchell, E. P., Mason, S. A., Adler-Abramovich, L., Gazit, E. & Forsyth, V. T. (2014). Acta Cryst. C70, 326-331.]). This resemblance raises the question of whether a system such as benzyl­ammonium phenyl­acetate is also capable of forming nanofilaments.

2. Structural commentary

Benzyl­ammonium phenyl­acetate (1) crystallizes in the monoclinic space group C2/c and its hydrate (2) in the monoclinic space group P21/n. The asymmetric units of 1 and its hydrate 2 are shown in Fig. 1[link]. In compound 1, the ammonium group of the benzyl­ammonium is orientated almost perpendicular to the phenyl ring [90.2 (2)°], while the carboxyl­ate group of the phenyl­acetate adopts a torsion angle of −70.2 (4)°, while in the hydrate 2 the torsion angles between the phenyl rings and the functional groups are 72.4 (4) and 54.4 (4)° for the phenyl­acetate and benzyl­ammonium, respectively.

[Figure 1]
Figure 1
ORTEP representation of the asymmetric unit in (a) 1 and (b) 2 (50% probability ellipsoids).

3. Supra­molecular features

3.1. Crystal packing

The crystal packing of benzyl­ammonium phenyl­acetate (1) consists of columns arranged around the twofold screw axis along b (Fig. 2[link]). These columns are composed of hydro­philic channels, formed by the ammonium and carboxyl­ate groups, surrounded by a shell made up by the phenyl moieties. The crystal packing of the hydrate (2) consists of hydro­philic and hydro­phobic layers alternating along the c-axis direction, as shown in Fig. 3[link]. The hydro­philic layer is composed of the water mol­ecules, the ammonium and the carboxyl­ate groups.

[Figure 2]
Figure 2
Crystal packing of 1 with views along the b axis (left) and along the c axis (right). Yellow dotted lines mark a column arranged around a twofold screw axis. Hydro­philic areas are highlighted in blue, hydro­phobic areas in green.
[Figure 3]
Figure 3
Crystal packing of 2 with views along the a axis (left) and along the b axis (right). Hydro­philic areas are highlighted in blue, hydro­phobic areas in green.

3.2. Inter­molecular contacts and Hirshfeld analysis

We used CrystalExplorer17 to analyse the Hirshfeld surfaces of the mol­ecules in the crystal structures of 1 and 2 and to qu­antify inter­molecular contacts between them (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia, Australia.]; McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]). Table 1[link] summarizes the relative contributions to the Hirshfeld surface areas for the inter­molecular contacts found in the mol­ecules of 1 and 2. There are three main groups of (inner⋯outer) inter­molecular contacts that can be found on the Hirshfeld surfaces, namely O⋯H/H⋯O, C⋯H/H⋯C and H⋯H inter­molecular contacts. Fig. 4[link] shows the fingerprint plots of the benzyl­ammonium and phenyl­acetate mol­ecules in 1 and 2, highlighting the O⋯H/H⋯O and C⋯H/H⋯C contacts.

Table 1
Contributions of close inter­molecular contacts to the Hirshfeld surface areas of the mol­ecules in 1 and 2

Compound mol­ecule O⋯H H⋯O C⋯H H⋯C C⋯O O⋯C H⋯H
1 benzyl­ammonium 0.0 15.8 13.6 13.8 1.3 0.0 55.5
  phenyl­acetate 21.5 4.1 16.9 6.6 0.0 0.7 50.2
2 benzyl­ammonium 0.0 13.2 15.6 11.4 0.0 0.0 59.7
  phenyl­acetate 21.6 5.2 15.7 11.3 0.3 0.2 45.7
  water 30.5 22.4 0.0 1.8 0.0 0.0 44.9
[Figure 4]
Figure 4
Comparison of the fingerprint plots of the benzyl­ammonium and phenyl­acetate mol­ecules in 1 and 2, highlighting O⋯H/H⋯O and C⋯H/H⋯C contacts. di and de are plotted in Å on the x- and y-axis, respectively.

Mapping the Hirshfeld surfaces with different functions is a helpful tool for visualizing the nature of those inter­molecular contacts. For example, the normalized contact distance dnorm mapped on the Hirshfeld surface using a red–white–blue colour scheme indicates distances shorter, around or greater than the van der Waals separation distances, respectively. The normalized contact distance is defined by the following equation

[ d_{norm}={{d_{i}-r^{vdw}_{i}}\over{r^{vdw}_{i}}}+{{d_{e}-r^{vdw}_{e}}\over{r^{vdw}_{e}}}],

where di and de are the distances to the nearest atoms inside and outside the surface and rvdw is the van der Waals radius of the appropriate atom inter­nal or external to the surface (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]). Fig. 5[link] shows the benzyl­ammonium and phenyl­acetate mol­ecules in 1 with dnorm mapped. A number of contacts with distances below the sum of the van der Waals radius can directly be identified by red spots. The most intense ones (A/A′, B/B′, C/C′ in Fig. 5[link]) can be attributed to N—H⋯O hydrogen bonds between the benzyl­ammonium and phenyl­acetate mol­ecules. The remaining spots are due to non-classical C—H⋯O hydrogen bonds among the phenyl­acetate mol­ecules (D/D′, E/E′ in Fig. 5[link]) and an aliphatic C—H⋯π inter­action between benzyl­ammonium and phenyl­acetate (F/F′ in Fig. 5[link]). Fig. 6[link] shows the normalized contact distance dnorm mapped on the Hirshfeld surface of the mol­ecules in 2, highlighting the N—H⋯O (C/C′, D/D′ and E/E′) and O—H⋯O (A/A′, B/B′) hydrogen bonds as the primary inter­molecular inter­actions, followed by the non-classical C—H⋯O hydrogen bonds (F/F′ and G/G′). Two further close contacts of the type C—H⋯C (H/H′ and I/I′) can be identified.

[Figure 5]
Figure 5
Hirshfeld surfaces of benzyl­ammonium (bottom) and phenyl­acetate (top) mol­ecules in 1 mapped with dnorm. Red spots indicate contact areas shorter than the van der Waals separation. Those contacts can be attributed to the following inter­molecular inter­actions: N1—H11⋯O1 (A/A′), N—H13⋯O2 (B/B′), N—H12⋯O2 (C/C′), C2—H2B⋯O1 (D/D′), C8—H8⋯O1 (E/E′), and C9—H9Bπ (F/F′). The map ranges from −0.6825 to 1.3335 a.u. for phenyl­acetate and −0.6822 to 1.4269 a.u. for benzyl­ammonium.
[Figure 6]
Figure 6
Hirshfeld surfaces of phenyl­acetate (top), benzyl­ammonium (middle) and water (bottom) mol­ecules in 2 mapped with dnorm. Red spots indicate contact areas shorter than the van der Waals separation. Contacts can be attributed to the following inter­molecular inter­actions: O3—H32⋯O2 (A/A′), O3—H31⋯O2 (B/B′), N—H12⋯O1 (C/C′), N—H11⋯O1 (D/D′), N—H13⋯O3 (E/E′), C9—H9B⋯O3 (F/F′), C15—H15⋯O2 (G/G′), C5—H5⋯C1 (H/H′) and C9—H9A⋯C4 (I/I′). The map ranges from −0.6666 to 1.2024 a.u. for phenyl­acetate, −0.6268 to 1.1600 a.u. for benzyl­ammonium and −0.6680 to 1.0780 a.u. for water.

Fig. 4[link] shows the fingerprint plots of the benzyl­ammonium and phenyl­acetate mol­ecules in 1 and 2. O⋯H/H⋯O contacts can be attributed mainly to classical and non-classical, i.e. C—H⋯O, hydrogen bonds. Naturally no O⋯H contacts, but only H⋯O contacts are found on the Hirshfeld surface of the benzyl­ammonium mol­ecules, resulting in a single spike (i.e. N—H⋯O hydrogen bonds) highlighted in the fingerprint plots (a) and (e) in Fig. 4[link]. The phenyl­acetate mol­ecules can act as hydrogen-bond acceptors via their oxygen atoms (i.e. O⋯H contacts), visible through the intense spike in the fingerprint plots (c) and (d) in Fig. 4[link]. In addition, H⋯O contacts are observed for the phenyl­acetate mol­ecules in 1 and 2. Such contacts can come from non-classical C—H⋯O hydrogen bonds, where the phenyl­acetate acts as a donor. However, a spike in the fingerprint plots indicating short hydrogen–oxygen distances is only observed for phenyl­acetate in compound 1 (Fig. 4[link]c) and not in compound 2 (Fig. 4[link]g), implying that C—H⋯O hydrogen bonds may be more important in 1 than in the hydrate 2. C⋯H/H⋯C inter­molecular contacts can arise from close ring contacts of the phenyl rings in the hydro­phobic layers, but also from aliphatic C—H⋯π inter­actions. An examination of the crystal packings in Figs. 2[link] and 3[link] reveals that the phenyl rings are not stacked in a planar, parallel fashion. This is consistent with the absence of C⋯C inter­molecular contacts, which would be expected in such a case (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia, Australia.]). O⋯H/H⋯O and C⋯H/H⋯C contacts will be discussed in more detail below.

3.2.1. O⋯H/H⋯O inter­molecular contacts

As mentioned above, O⋯H/H⋯O contacts can be attributed mainly to classical and non-classical hydrogen bonds. In compound 1, inter­molecular oxygen–hydrogen contacts amount to about 16 and 26% of the Hirshfeld surface area for the benzyl­ammonium and phenyl­acetate mol­ecules, respectively. In the hydrate 2, the values are about 13 and 27%, respectively. The hydrogen-bond parameters for 1 and 2 are summarized in Tables 2[link] and 3[link], respectively. In 1, the classical hydrogen-bonding system involves the benzyl­ammonium mol­ecule as a donor and the phenyl­acetate mol­ecule as an acceptor for N—H⋯O hydrogen bonds. In 2, this system is extended by the presence of the water mol­ecule of crystallization acting as a hydrogen-bond donor and acceptor at the same time. The hydrogen-bonding system in 1 can be described by chain patterns corresponding to a second level graph set C22(6)C22(6)C12(4) (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). However, a more obvious feature is the ring structure denoted by a third level pattern R34(10) (Fig. 7[link]a).

Table 2
Hydrogen-bond geometry (Å, °) for 1[link]

Cg1 is the centroid of the C3–C8 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H11⋯O1i 0.97 (2) 1.77 (2) 2.7177 (19) 165 (2)
N1—H12⋯O2ii 1.01 (2) 1.73 (2) 2.7306 (19) 170.1 (18)
N1—H13⋯O2iii 0.95 (3) 1.85 (3) 2.7938 (19) 174 (2)
C2—H2B⋯O1iv 0.99 2.40 3.375 (2) 169
C8—H8⋯O1iii 0.95 2.63 3.539 (2) 161
C9—H9⋯Cg1v 0.95 2.92 3.877 (2) 163
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{3\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y+1, z; (iv) [-x+{\script{1\over 2}}, -y-{\script{1\over 2}}, -z+1]; (v) [x, -y+1, z-{\script{1\over 2}}].

Table 3
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H32⋯O2i 0.83 (4) 1.90 (4) 2.728 (4) 175 (4)
O3—H31⋯O2ii 0.97 (4) 1.81 (4) 2.771 (4) 169 (3)
N1—H11⋯O1 0.89 (4) 1.92 (4) 2.791 (4) 168 (4)
N1—H12⋯O1iii 0.90 (4) 1.96 (4) 2.805 (4) 157 (4)
N1—H13⋯O3 0.94 (4) 1.87 (4) 2.809 (4) 170 (3)
C9—H9B⋯O3iv 0.99 2.51 3.196 (4) 126
C15—H15⋯O2i 0.95 2.57 3.412 (4) 147
Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y+1, -z+1; (iii) -x, -y+1, -z+1; (iv) -x, -y, -z+1.
[Figure 7]
Figure 7
(a) Hydrogen-bonding patterns in 1. A section of the C21(4) chain pattern is highlighted in orange, and a section of one of the two possible C22(6) chain patterns is highlighted in red. The R43(10) ring pattern is highlighted in blue. Colour code for the hydrogen bonds: N1—H11⋯O1 green, N1—H12⋯O2 magenta, N1—H13⋯O2 blue. (b) Cation–anion ladder motif in 1 formed by the repetition of benzyl­ammonium–phenyl­acetate pairs. Phenyl rings and CH2 H atoms are omitted for clarity.

The R34(10) ring pattern is a common feature of ammonium carboxyl­ate salts and has been described earlier (Kinbara et al., 1996[Kinbara, K., Hashimoto, Y., Sukegawa, M., Nohira, H. & Saigo, K. (1996). J. Am. Chem. Soc. 118, 3441-3449.]). Related to this particular ring pattern is an electrostatic ladder motif. Two benzyl­ammonium–phenyl­acetate (cation–anion) pairs form a dimeric ring, which associates with further cation–anion pairs to form a ladder running along the twofold screw axis of the crystal (Fig. 7[link]b). Such a motif is common in ammonium carboxyl­ate salts (Odendal et al., 2010[Odendal, J. A., Bruce, J. C., Koch, K. R. & Haynes, D. A. (2010). CrystEngComm, 12, 2398-2408.]). Evidently, the presence of crystal water in 2 leads to a change in the hydrogen-bonding system compared to 1. Going from 1 to 2, water replaces one of the N—H⋯O bonds between benzyl­ammonium and phenyl­acetate. Consequently, the fused R34(10) pattern in 1 is disrupted and two alternating R24(8) patterns bridged by a carboxyl­ate group are formed (Fig. 8[link]a). Those rows are then connected among each other via the freed N—H donor group of the benzyl­ammonium mol­ecules and water mol­ecules as acceptors to form a two-dimensional hydrogen-bonding network network (Fig. 8[link]b). Non-classical hydrogen bonds in 1 are formed exclusively between the phenyl­acetate mol­ecules, forming fused R22(8) and R22(10) ring patterns alternating along the columns around the twofold screw axis along b. The hydrogen-bonding system is shown in Fig. 9[link]a. In 2, the benzyl­ammonium mol­ecule acts as a donor for two discrete non-classical C—H⋯O hydrogen bonds (Fig. 9[link]b), one with the water mol­ecule of crystallization as acceptor (C9—H9B⋯O3) and a second one with an oxygen atom of the carboxyl­ate group of phenyl­acetate (C15—H15⋯O2).

[Figure 8]
Figure 8
(a) Transformation of the hydrogen-bonding network in 1 to the network found in 2 by incorporation of crystal water. (b) The two-dimensional hydrogen-bonding network in 2. Rows of alternating R42(8) motifs (hydrogen bonds highlighted in blue and magenta, respectively) are connected via discrete N—H⋯O hydrogen bonds (highlighted in yellow). Phenyl rings and CH2 H atoms are omitted for clarity.
[Figure 9]
Figure 9
(a) The C—H⋯O hydrogen-bonding pattern among the phenyl­acetate mol­ecules in 1 consisting of alternating, fused R22(8) and R22(10)rings. (b) Discrete C—H⋯O hydrogen bonds in 2.
3.2.2. C⋯H/H⋯C inter­molecular contacts

Carbon–hydrogen inter­molecular contacts contribute to around one quarter of the Hirshfeld surface areas of the benzyl­ammonium and phenyl­acetate mol­ecules in both 1 and 2. As explained above, those contacts are mainly due to close contacts between the phenyl rings in the hydro­phobic layers of the crystal packing, but also to (aliphatic) C—H⋯π inter­actions. An automated search using PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) revealed four short ring inter­actions and one aliphatic C—H⋯π inter­action in 1 (Fig. 10[link]) and six short ring inter­actions and one aliphatic C—H⋯π inter­action in 2 (Fig. 11[link]). The phenyl rings adopt `Y'- and `T'-shaped edge-to-face arrangements (Martinez & Iverson, 2012[Martinez, C. R. & Iverson, B. L. (2012). Chem. Sci. 3, 2191-2201.]) with centroid–centroid distances of 5.019 (1)–5.738 (1) Å in 1 and 5.177 (2)–5.961 (2) Å in 2. Those distances are in the same range as the centroid–centroid distance observed in crystalline benzene (Klebe & Diederich, 1993[Klebe, G. & Diederich, F. (1993). Philos. Trans. R. Soc. London Ser. A, 345, 37-48.]). Close H⋯C contacts, i.e. smaller than the sum of the van der Waals radii (Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]; Hu et al., 2014[Hu, S.-Z., Zhou, Z.-H., Xie, Z.-X. & Robertson, B. E. (2014). Z. Krist. Cryst. Mater. 229, 517-523.]) of the two elements, are found as part of the aliphatic C—H⋯π inter­actions. In 1, the aliphatic C—H⋯π inter­action is observed between benzyl­ammonium (donor) and phenyl­acetate (acceptor), with the shortest distance being 2.762 Å between C9—H9B⋯C4 (Fig. 10[link]c). In 2, phenyl­acetate acts as a donor and benzlyammonium as an acceptor for the aliphatic C—H⋯π inter­action. The closest distance of 2.811 Å is found between C2—H2B⋯C10 (Fig. 11[link]d). Two more close contacts of the type (C—)H⋯C can be identified in 2 via the dnorm-mapped Hirshfeld surfaces (see H/H′ and I/I′ in Fig. 6[link]). In the first case, the carbon hydrogen distance C5—H5⋯C1 (2.812 Å) between two phenyl­acetate mol­ecules is just below the sum of the van der Waals distances. In the second case, the carbon hydrogen distance C9—H9A⋯C4 between benzyl­ammonium and phenyl­acetate is 2.798 Å.

[Figure 10]
Figure 10
Short ring and aliphatic C—H⋯π inter­actions in 1.
[Figure 11]
Figure 11
Short ring and aliphatic C—H⋯π inter­actions in 2.

4. Database survey

A structure search on WebCSD (30.11.2018) resulted in 196 hits for structures including benzyl­ammonium and 22 hits for structures including phenyl­acetate. Structures with packings closely related to those of 1 and 2 containing mol­ecules similar to benzyl­ammonium and phenyl­acetate can be found in Trivedi & Dastidar (2006[Trivedi, D. R. & Dastidar, P. (2006). Chem. Mater. 18, 1470-1478.]; CEKJEI, CEKJIM, CEKJOS), Olmstead et al. (2008[Olmstead, M. M., Franco, J. U. & Pham, D. (2008). Private Communication (Refcode HOLDOC). CCDC, Cambridge, England.]; HOLDOC), Cai et al.. (2009[Cai, Y.-J., Dai, X.-B., Liu, L., Li, J. & Li, H.-Y. (2009). Acta Cryst. E65, o2341.]; BUDQEX), Das et al. (2009[Das, U. K., Trivedi, D. R., Adarsh, N. N. & Dastidar, P. (2009). J. Org. Chem. 74, 7111-7121.]; HUKJIH), Mahieux et al. (2012[Mahieux, J., Gonella, S., Sanselme, M. & Coquerel, G. (2012). CrystEngComm, 14, 103-111.]; FAHGIG), Tiritiris & Kantlehner (2011[Tiritiris, I. & Kantlehner, W. (2011). Z. Naturforsch. B: Chem. Sci. 66, 164-176.]; HOLDOC01) and Mossou et al. (2014[Mossou, E., Teixeira, S. C. M., Mitchell, E. P., Mason, S. A., Adler-Abramovich, L., Gazit, E. & Forsyth, V. T. (2014). Acta Cryst. C70, 326-331.]; QQQAUJ03). For a more general view on ammonium carboxyl­ate salts, see Odendal et al. (2010[Odendal, J. A., Bruce, J. C., Koch, K. R. & Haynes, D. A. (2010). CrystEngComm, 12, 2398-2408.]) who described the packing motifs in the crystal structures of such salts, and Kinbara et al. (1996[Kinbara, K., Hashimoto, Y., Sukegawa, M., Nohira, H. & Saigo, K. (1996). J. Am. Chem. Soc. 118, 3441-3449.]) who described the role of hydrogen-bonded networks in the crystal structures of salts of chiral primary amines with achiral carb­oxy­lic acids.

5. Synthesis and crystallization

Benzyl­amine (185701), phenyl­acetic acid (P16621) and methanol (32213) were obtained from Sigma–Aldrich.

Benzyl­ammonium phenyl­acetate (1) was obtained as follows. 40 mg of phenyl­acetic acid (0.29 mmol) were dissolved in 1 ml of methanol and 32 µl of benzyl­amine (0.29 mmol) were added under gentle stirring. The solvent was then evaporated slowly under ambient conditions to yield colourless crystals of compound 1.

Benzyl­ammonium phenyl­acetate hydrate (2) was obtained by dissolving 40 mg of phenyl­acetic acid (0.29 mmol) in 200 µl of methanol and 32 µl of benzyl­amine (0.29 mmol) were added under gentle stirring. The solution was diluted with 1.8 ml of ultra-pure water and evaporated slowly at ambient conditions to yield colourless crystals of compound 2.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. In 1 and 2, the C-bound hydrogen atoms were positioned with idealized coordinates (C—H = 0.95–0.99 Å) and refined as riding on their parent atoms with Uiso(H) = 1.2Ueq(N/O). The N-bound hydrogen atoms in 1 were refined freely. In 2, the coordinates of the N- and O-bound hydrogen atoms were freely refined while the isotropic displacement parameters of the hydrogen atoms were calculated as Uiso(H) = 1.2Ueq(N/O).

Table 4
Experimental details

  1 2
Crystal data
Chemical formula C7H10N+·C8H7O2 C7H10N+·C8H7O2·H2O
Mr 243.29 261.31
Crystal system, space group Monoclinic, C2/c Monoclinic, P21/n
Temperature (K) 100 100
a, b, c (Å) 25.913 (2), 5.9021 (5), 19.0842 (16) 6.8235 (7), 7.8766 (7), 26.364 (2)
β (°) 114.692 (3) 93.218 (3)
V3) 2651.9 (4) 1414.7 (2)
Z 8 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.08 0.09
Crystal size (mm) 0.10 × 0.04 × 0.02 0.10 × 0.06 × 0.04
 
Data collection
Diffractometer Bruker D8 Venture TXS Bruker D8 Venture TXS
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.651, 0.971 0.814, 0.971
No. of measured, independent and observed [I > 2σ(I)] reflections 14421, 2398, 1800 7319, 2461, 2090
Rint 0.092 0.043
(sin θ/λ)max−1) 0.602 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.103, 1.03 0.075, 0.170, 1.25
No. of reflections 2398 2461
No. of parameters 175 187
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.17, −0.23 0.30, −0.27
Computer programs: APEX3 and SAINT (Bruker, 2015[Bruker (2015). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]), CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia, Australia.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and RPLUTO (CCDC, 2018[CCDC (2018). RPLUTO. Cambridge Crystallographic Data Centre, Cambridge, England.]).

Supporting information


Computing details top

For both structures, data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), Mercury (Macrae et al., 2006), CrystalExplorer17 (Turner et al., 2017); software used to prepare material for publication: PLATON (Spek, 2009), RPLUTO (CCDC, 2018).

Benzylammonium phenylacetate (1) top
Crystal data top
C7H10N+·C8H7O2F(000) = 1040
Mr = 243.29Dx = 1.219 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 25.913 (2) ÅCell parameters from 4302 reflections
b = 5.9021 (5) Åθ = 3.5–25.4°
c = 19.0842 (16) ŵ = 0.08 mm1
β = 114.692 (3)°T = 100 K
V = 2651.9 (4) Å3Block, colourless
Z = 80.10 × 0.04 × 0.02 mm
Data collection top
Bruker D8 Venture TXS
diffractometer
2398 independent reflections
Radiation source: rotating anode (TXS), Bruker TXS1800 reflections with I > 2σ(I)
Focusing mirrors monochromatorRint = 0.092
Detector resolution: 7.4074 pixels mm-1θmax = 25.4°, θmin = 3.3°
mix of phi and ω scansh = 3030
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 77
Tmin = 0.651, Tmax = 0.971l = 2222
14421 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0352P)2 + 1.6577P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2398 reflectionsΔρmax = 0.17 e Å3
175 parametersΔρmin = 0.22 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. C-H: constr N-H: refall

Reflections affected by the beamstop or those of higher order and significant higher Fo2 than Fc2 (caused by X-ray mirror) have been omitted in the refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.28279 (5)0.35459 (19)0.41706 (7)0.0205 (3)
O20.24772 (5)0.07061 (19)0.33362 (7)0.0214 (3)
N10.27388 (7)0.8748 (3)0.20667 (9)0.0204 (4)
H110.2496 (9)0.977 (4)0.1667 (13)0.040 (6)*
H120.2666 (8)0.714 (4)0.1867 (12)0.035 (6)*
H130.2661 (10)0.883 (4)0.2511 (14)0.048 (7)*
C10.27013 (7)0.1506 (3)0.40169 (10)0.0169 (4)
C20.28113 (7)0.0118 (3)0.46855 (10)0.0190 (4)
H2A0.26870.16560.44760.023*
H2B0.25770.03530.49580.023*
C30.34259 (7)0.0220 (3)0.52591 (10)0.0186 (4)
C40.36866 (8)0.1595 (3)0.57485 (10)0.0223 (4)
H40.34760.29370.57190.027*
C50.42493 (8)0.1460 (3)0.62768 (11)0.0266 (4)
H50.44210.27050.66080.032*
C60.45623 (8)0.0480 (3)0.63248 (11)0.0307 (5)
H60.49480.05730.66880.037*
C70.43098 (8)0.2279 (3)0.58411 (12)0.0321 (5)
H70.45230.36110.58690.038*
C80.37457 (8)0.2153 (3)0.53139 (11)0.0255 (4)
H80.35760.34070.49860.031*
C90.33454 (8)0.9379 (3)0.22888 (11)0.0273 (5)
H9A0.34111.09480.24910.033*
H9B0.34280.93260.18280.033*
C100.37371 (7)0.7794 (3)0.28918 (10)0.0220 (4)
C110.38860 (8)0.8179 (3)0.36684 (11)0.0281 (5)
H11A0.37630.95250.38260.034*
C120.42124 (8)0.6622 (4)0.42177 (11)0.0354 (5)
H12A0.43100.68980.47480.042*
C130.43957 (9)0.4672 (4)0.39950 (13)0.0375 (5)
H13A0.46140.35920.43710.045*
C140.42609 (8)0.4292 (3)0.32244 (13)0.0357 (5)
H140.43940.29620.30720.043*
C150.39330 (8)0.5841 (3)0.26732 (12)0.0296 (5)
H150.38410.55700.21440.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0266 (7)0.0168 (7)0.0177 (6)0.0002 (5)0.0089 (5)0.0000 (5)
O20.0305 (7)0.0202 (7)0.0134 (6)0.0023 (5)0.0091 (5)0.0006 (5)
N10.0279 (9)0.0181 (9)0.0150 (8)0.0000 (7)0.0089 (7)0.0013 (7)
C10.0161 (9)0.0203 (10)0.0168 (9)0.0024 (7)0.0093 (7)0.0017 (7)
C20.0233 (10)0.0179 (9)0.0177 (9)0.0015 (7)0.0104 (8)0.0006 (7)
C30.0246 (10)0.0200 (9)0.0152 (9)0.0000 (7)0.0122 (8)0.0030 (7)
C40.0282 (10)0.0225 (10)0.0185 (9)0.0023 (8)0.0119 (8)0.0019 (7)
C50.0301 (11)0.0271 (10)0.0219 (10)0.0060 (8)0.0102 (8)0.0001 (8)
C60.0220 (10)0.0371 (12)0.0287 (11)0.0007 (9)0.0064 (9)0.0081 (9)
C70.0290 (11)0.0275 (11)0.0393 (12)0.0081 (9)0.0140 (10)0.0062 (9)
C80.0301 (11)0.0197 (10)0.0283 (11)0.0014 (8)0.0138 (9)0.0005 (8)
C90.0283 (11)0.0274 (11)0.0263 (10)0.0026 (8)0.0116 (9)0.0046 (8)
C100.0200 (10)0.0245 (10)0.0232 (10)0.0038 (7)0.0105 (8)0.0019 (8)
C110.0233 (10)0.0377 (12)0.0260 (11)0.0018 (8)0.0128 (9)0.0017 (9)
C120.0253 (11)0.0591 (15)0.0216 (10)0.0011 (10)0.0097 (9)0.0073 (10)
C130.0219 (11)0.0422 (13)0.0402 (13)0.0006 (9)0.0051 (10)0.0176 (10)
C140.0222 (11)0.0292 (11)0.0481 (14)0.0001 (8)0.0073 (10)0.0029 (10)
C150.0246 (11)0.0318 (11)0.0299 (11)0.0029 (8)0.0090 (9)0.0037 (9)
Geometric parameters (Å, º) top
O1—C11.250 (2)C7—C81.388 (3)
O2—C11.272 (2)C7—H70.9500
N1—C91.494 (2)C8—H80.9500
N1—H110.97 (2)C9—C101.501 (3)
N1—H121.01 (2)C9—H9A0.9900
N1—H130.95 (3)C9—H9B0.9900
C1—C21.525 (2)C10—C111.385 (3)
C2—C31.511 (2)C10—C151.392 (3)
C2—H2A0.9900C11—C121.385 (3)
C2—H2B0.9900C11—H11A0.9500
C3—C81.388 (3)C12—C131.378 (3)
C3—C41.396 (2)C12—H12A0.9500
C4—C51.386 (3)C13—C141.381 (3)
C4—H40.9500C13—H13A0.9500
C5—C61.384 (3)C14—C151.385 (3)
C5—H50.9500C14—H140.9500
C6—C71.379 (3)C15—H150.9500
C6—H60.9500
C9—N1—H11109.1 (13)C8—C7—H7119.8
C9—N1—H12110.4 (11)C7—C8—C3120.88 (18)
H11—N1—H12109.2 (17)C7—C8—H8119.6
C9—N1—H13109.0 (14)C3—C8—H8119.6
H11—N1—H13111.2 (19)N1—C9—C10110.87 (15)
H12—N1—H13107.9 (17)N1—C9—H9A109.5
O1—C1—O2124.09 (15)C10—C9—H9A109.5
O1—C1—C2118.04 (15)N1—C9—H9B109.5
O2—C1—C2117.86 (15)C10—C9—H9B109.5
C3—C2—C1113.80 (14)H9A—C9—H9B108.1
C3—C2—H2A108.8C11—C10—C15118.89 (17)
C1—C2—H2A108.8C11—C10—C9120.98 (17)
C3—C2—H2B108.8C15—C10—C9120.05 (17)
C1—C2—H2B108.8C12—C11—C10120.66 (19)
H2A—C2—H2B107.7C12—C11—H11A119.7
C8—C3—C4118.27 (17)C10—C11—H11A119.7
C8—C3—C2120.20 (16)C13—C12—C11120.06 (19)
C4—C3—C2121.53 (16)C13—C12—H12A120.0
C5—C4—C3120.69 (17)C11—C12—H12A120.0
C5—C4—H4119.7C12—C13—C14119.87 (19)
C3—C4—H4119.7C12—C13—H13A120.1
C6—C5—C4120.34 (18)C14—C13—H13A120.1
C6—C5—H5119.8C13—C14—C15120.2 (2)
C4—C5—H5119.8C13—C14—H14119.9
C7—C6—C5119.42 (18)C15—C14—H14119.9
C7—C6—H6120.3C14—C15—C10120.26 (19)
C5—C6—H6120.3C14—C15—H15119.9
C6—C7—C8120.39 (18)C10—C15—H15119.9
C6—C7—H7119.8
O1—C1—C2—C359.1 (2)C2—C3—C8—C7179.60 (17)
O2—C1—C2—C3122.12 (17)N1—C9—C10—C1186.5 (2)
C1—C2—C3—C8110.26 (18)N1—C9—C10—C1590.2 (2)
C1—C2—C3—C470.2 (2)C15—C10—C11—C121.6 (3)
C8—C3—C4—C50.3 (2)C9—C10—C11—C12175.07 (17)
C2—C3—C4—C5179.29 (16)C10—C11—C12—C130.4 (3)
C3—C4—C5—C60.3 (3)C11—C12—C13—C141.0 (3)
C4—C5—C6—C70.1 (3)C12—C13—C14—C151.3 (3)
C5—C6—C7—C80.4 (3)C13—C14—C15—C100.0 (3)
C6—C7—C8—C30.4 (3)C11—C10—C15—C141.4 (3)
C4—C3—C8—C70.0 (3)C9—C10—C15—C14175.34 (18)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C3–C8 ring.
D—H···AD—HH···AD···AD—H···A
N1—H11···O1i0.97 (2)1.77 (2)2.7177 (19)165 (2)
N1—H12···O2ii1.01 (2)1.73 (2)2.7306 (19)170.1 (18)
N1—H13···O2iii0.95 (3)1.85 (3)2.7938 (19)174 (2)
C2—H2B···O1iv0.992.403.375 (2)169
C8—H8···O1iii0.952.633.539 (2)161
C9—H9···Cg1v0.952.923.877 (2)163
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x, y+1, z; (iv) x+1/2, y1/2, z+1; (v) x, y+1, z1/2.
Benzylammonium phenylacetate (2) top
Crystal data top
C7H10N+·C8H7O2·H2OF(000) = 560
Mr = 261.31Dx = 1.227 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 6.8235 (7) ÅCell parameters from 4619 reflections
b = 7.8766 (7) Åθ = 2.7–25.0°
c = 26.364 (2) ŵ = 0.09 mm1
β = 93.218 (3)°T = 100 K
V = 1414.7 (2) Å3Block, colourless
Z = 40.10 × 0.06 × 0.04 mm
Data collection top
Bruker D8 Venture TXS
diffractometer
2461 independent reflections
Radiation source: rotating anode (TXS), Bruker TXS2090 reflections with I > 2σ(I)
Focusing mirrors monochromatorRint = 0.043
Detector resolution: 7.4074 pixels mm-1θmax = 25.0°, θmin = 3.5°
mix of phi and ω scansh = 77
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 98
Tmin = 0.814, Tmax = 0.971l = 3127
7319 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.075H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.170 w = 1/[σ2(Fo2) + 3.8665P]
where P = (Fo2 + 2Fc2)/3
S = 1.25(Δ/σ)max < 0.001
2461 reflectionsΔρmax = 0.30 e Å3
187 parametersΔρmin = 0.27 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. C-H constr N-H and O-H: refxyz

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2350 (3)0.5687 (3)0.47484 (9)0.0213 (6)
O20.4238 (4)0.7897 (3)0.45801 (10)0.0245 (6)
O30.2403 (4)0.0283 (3)0.51346 (10)0.0230 (6)
H320.296 (6)0.048 (6)0.4981 (15)0.028*
H310.355 (6)0.089 (5)0.5279 (15)0.028*
N10.0153 (5)0.2727 (4)0.45885 (12)0.0205 (7)
H110.091 (6)0.364 (5)0.4595 (14)0.025*
H120.084 (6)0.296 (5)0.4786 (15)0.025*
H130.101 (6)0.191 (5)0.4742 (14)0.025*
C10.3709 (5)0.6394 (4)0.45153 (13)0.0174 (7)
C20.4705 (5)0.5289 (5)0.41280 (13)0.0213 (8)
H2A0.53660.43320.43110.026*
H2B0.36760.48020.38920.026*
C30.6199 (5)0.6182 (4)0.38174 (13)0.0190 (8)
C40.8017 (5)0.6658 (4)0.40418 (14)0.0210 (8)
H40.83330.63850.43880.025*
C50.9377 (5)0.7532 (5)0.37627 (14)0.0236 (8)
H51.06040.78600.39210.028*
C60.8942 (6)0.7920 (5)0.32577 (14)0.0272 (9)
H60.98620.85220.30690.033*
C70.7154 (6)0.7424 (5)0.30294 (14)0.0280 (9)
H70.68510.76740.26810.034*
C80.5802 (5)0.6560 (5)0.33093 (14)0.0239 (8)
H80.45830.62230.31490.029*
C90.0635 (5)0.2271 (5)0.40676 (13)0.0226 (8)
H9A0.16050.31360.39470.027*
H9B0.13200.11650.40800.027*
C100.0974 (5)0.2156 (4)0.36952 (13)0.0198 (8)
C110.0829 (6)0.3063 (5)0.32460 (14)0.0253 (8)
H11A0.02720.37780.31740.030*
C120.2285 (6)0.2938 (5)0.28976 (14)0.0330 (10)
H12A0.21750.35670.25900.040*
C130.3896 (6)0.1892 (5)0.30013 (15)0.0315 (10)
H13A0.48870.18000.27640.038*
C140.4056 (6)0.0986 (5)0.34496 (14)0.0273 (9)
H140.51640.02780.35210.033*
C150.2608 (5)0.1105 (4)0.37956 (14)0.0222 (8)
H150.27220.04720.41020.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0211 (13)0.0190 (13)0.0243 (13)0.0042 (10)0.0064 (10)0.0027 (11)
O20.0237 (14)0.0181 (13)0.0321 (15)0.0035 (11)0.0068 (10)0.0066 (12)
O30.0200 (14)0.0212 (14)0.0279 (15)0.0001 (11)0.0032 (10)0.0061 (12)
N10.0205 (16)0.0160 (16)0.0254 (17)0.0024 (13)0.0050 (13)0.0044 (14)
C10.0122 (17)0.0197 (18)0.0201 (18)0.0014 (14)0.0011 (13)0.0014 (15)
C20.0248 (19)0.0182 (18)0.0213 (19)0.0018 (15)0.0051 (14)0.0035 (15)
C30.0200 (18)0.0145 (17)0.0229 (19)0.0030 (14)0.0052 (14)0.0045 (15)
C40.0241 (19)0.0192 (18)0.0197 (18)0.0003 (15)0.0020 (14)0.0012 (15)
C50.0208 (18)0.0188 (19)0.031 (2)0.0001 (15)0.0034 (15)0.0036 (16)
C60.029 (2)0.025 (2)0.029 (2)0.0042 (17)0.0114 (16)0.0020 (17)
C70.032 (2)0.031 (2)0.0213 (19)0.0023 (18)0.0045 (15)0.0034 (17)
C80.0175 (18)0.030 (2)0.024 (2)0.0029 (16)0.0018 (14)0.0048 (17)
C90.0228 (19)0.0222 (19)0.0229 (19)0.0023 (15)0.0019 (14)0.0030 (16)
C100.0242 (19)0.0157 (17)0.0195 (18)0.0086 (15)0.0026 (14)0.0055 (15)
C110.030 (2)0.025 (2)0.0211 (19)0.0030 (16)0.0035 (15)0.0024 (16)
C120.046 (3)0.035 (2)0.0176 (19)0.011 (2)0.0033 (17)0.0000 (18)
C130.029 (2)0.039 (2)0.028 (2)0.0050 (18)0.0110 (16)0.0072 (19)
C140.028 (2)0.025 (2)0.029 (2)0.0025 (16)0.0054 (16)0.0052 (17)
C150.029 (2)0.0142 (17)0.0236 (19)0.0006 (15)0.0046 (15)0.0017 (15)
Geometric parameters (Å, º) top
O1—C11.270 (4)C6—H60.9500
O2—C11.247 (4)C7—C81.391 (5)
O3—H320.83 (4)C7—H70.9500
O3—H310.97 (4)C8—H80.9500
N1—C91.490 (4)C9—C101.516 (5)
N1—H110.89 (4)C9—H9A0.9900
N1—H120.90 (4)C9—H9B0.9900
N1—H130.94 (4)C10—C111.382 (5)
C1—C21.529 (5)C10—C151.402 (5)
C2—C31.516 (5)C11—C121.394 (5)
C2—H2A0.9900C11—H11A0.9500
C2—H2B0.9900C12—C131.389 (6)
C3—C81.384 (5)C12—H12A0.9500
C3—C41.395 (5)C13—C141.380 (6)
C4—C51.398 (5)C13—H13A0.9500
C4—H40.9500C14—C151.385 (5)
C5—C61.382 (5)C14—H140.9500
C5—H50.9500C15—H150.9500
C6—C71.386 (5)
H32—O3—H31100 (4)C6—C7—H7120.0
C9—N1—H11113 (3)C8—C7—H7120.0
C9—N1—H12110 (2)C3—C8—C7121.3 (3)
H11—N1—H12106 (4)C3—C8—H8119.4
C9—N1—H13114 (2)C7—C8—H8119.4
H11—N1—H13102 (3)N1—C9—C10112.0 (3)
H12—N1—H13111 (3)N1—C9—H9A109.2
O2—C1—O1124.3 (3)C10—C9—H9A109.2
O2—C1—C2119.7 (3)N1—C9—H9B109.2
O1—C1—C2116.0 (3)C10—C9—H9B109.2
C3—C2—C1115.7 (3)H9A—C9—H9B107.9
C3—C2—H2A108.3C11—C10—C15119.0 (3)
C1—C2—H2A108.3C11—C10—C9120.3 (3)
C3—C2—H2B108.3C15—C10—C9120.7 (3)
C1—C2—H2B108.3C10—C11—C12120.6 (4)
H2A—C2—H2B107.4C10—C11—H11A119.7
C8—C3—C4118.3 (3)C12—C11—H11A119.7
C8—C3—C2121.5 (3)C13—C12—C11119.9 (4)
C4—C3—C2120.3 (3)C13—C12—H12A120.1
C3—C4—C5120.7 (3)C11—C12—H12A120.1
C3—C4—H4119.7C14—C13—C12119.9 (4)
C5—C4—H4119.7C14—C13—H13A120.0
C6—C5—C4120.2 (3)C12—C13—H13A120.0
C6—C5—H5119.9C13—C14—C15120.3 (4)
C4—C5—H5119.9C13—C14—H14119.9
C5—C6—C7119.5 (3)C15—C14—H14119.9
C5—C6—H6120.3C14—C15—C10120.3 (3)
C7—C6—H6120.3C14—C15—H15119.8
C6—C7—C8120.1 (3)C10—C15—H15119.8
O2—C1—C2—C34.5 (5)C6—C7—C8—C30.2 (6)
O1—C1—C2—C3174.7 (3)N1—C9—C10—C11126.9 (4)
C1—C2—C3—C8107.2 (4)N1—C9—C10—C1554.4 (4)
C1—C2—C3—C472.2 (4)C15—C10—C11—C120.0 (5)
C8—C3—C4—C51.6 (5)C9—C10—C11—C12178.8 (3)
C2—C3—C4—C5177.8 (3)C10—C11—C12—C130.1 (6)
C3—C4—C5—C60.7 (5)C11—C12—C13—C140.3 (6)
C4—C5—C6—C70.5 (6)C12—C13—C14—C150.5 (6)
C5—C6—C7—C80.8 (6)C13—C14—C15—C100.5 (6)
C4—C3—C8—C71.4 (5)C11—C10—C15—C140.2 (5)
C2—C3—C8—C7178.1 (3)C9—C10—C15—C14178.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H32···O2i0.83 (4)1.90 (4)2.728 (4)175 (4)
O3—H31···O2ii0.97 (4)1.81 (4)2.771 (4)169 (3)
N1—H11···O10.89 (4)1.92 (4)2.791 (4)168 (4)
N1—H12···O1iii0.90 (4)1.96 (4)2.805 (4)157 (4)
N1—H13···O30.94 (4)1.87 (4)2.809 (4)170 (3)
C9—H9B···O3iv0.992.513.196 (4)126
C15—H15···O2i0.952.573.412 (4)147
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z+1; (iii) x, y+1, z+1; (iv) x, y, z+1.
Contributions of close intermolecular contacts to the Hirshfeld surface areas of the molecules in 1 and 2 top
CompoundmoleculeO···HH···OC···HH···CC···OO···CH···H
1benzylammonium0.015.813.613.81.30.055.5
phenylacetate21.54.116.96.60.00.750.2
2benzylammonium0.013.215.611.40.00.059.7
phenylacetate21.65.215.711.30.30.245.7
water30.522.40.01.80.00.044.9
 

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2015). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2016). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCai, Y.-J., Dai, X.-B., Liu, L., Li, J. & Li, H.-Y. (2009). Acta Cryst. E65, o2341.  CrossRef IUCr Journals Google Scholar
First citationCCDC (2018). RPLUTO. Cambridge Crystallographic Data Centre, Cambridge, England.  Google Scholar
First citationDas, U. K., Trivedi, D. R., Adarsh, N. N. & Dastidar, P. (2009). J. Org. Chem. 74, 7111–7121.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDo, T. D., Kincannon, W. M. & Bowers, M. T. (2015). J. Am. Chem. Soc. 137, 10080–10083.  CrossRef CAS Google Scholar
First citationEisenberg, D. & Jucker, M. (2012). Cell, 148, 1188–1203.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGazit, E. (2007). Chem. Soc. Rev. 36, 1263–1269.  CrossRef CAS Google Scholar
First citationGörbitz, C. H. (2010). Acta Cryst. B66, 84–93.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHu, S.-Z., Zhou, Z.-H., Xie, Z.-X. & Robertson, B. E. (2014). Z. Krist. Cryst. Mater. 229, 517–523.  CAS Google Scholar
First citationKinbara, K., Hashimoto, Y., Sukegawa, M., Nohira, H. & Saigo, K. (1996). J. Am. Chem. Soc. 118, 3441–3449.  CrossRef CAS Web of Science Google Scholar
First citationKlebe, G. & Diederich, F. (1993). Philos. Trans. R. Soc. London Ser. A, 345, 37–48.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMahieux, J., Gonella, S., Sanselme, M. & Coquerel, G. (2012). CrystEngComm, 14, 103–111.  CrossRef CAS Google Scholar
First citationManna, M. K., Rasale, D. B. & Das, A. K. (2015). RSC Adv. 5, 90158–90167.  CrossRef CAS Google Scholar
First citationMartinez, C. R. & Iverson, B. L. (2012). Chem. Sci. 3, 2191–2201.  Web of Science CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMcManus, J. J., Charbonneau, P., Zaccarelli, E. & Asherie, N. (2016). Curr. Opin. Colloid Interface Sci. 22, 73–79.  Web of Science CrossRef CAS Google Scholar
First citationMossou, E., Teixeira, S. C. M., Mitchell, E. P., Mason, S. A., Adler-Abramovich, L., Gazit, E. & Forsyth, V. T. (2014). Acta Cryst. C70, 326–331.  Web of Science CrossRef IUCr Journals Google Scholar
First citationOdendal, J. A., Bruce, J. C., Koch, K. R. & Haynes, D. A. (2010). CrystEngComm, 12, 2398–2408.  Web of Science CrossRef CAS Google Scholar
First citationOlmstead, M. M., Franco, J. U. & Pham, D. (2008). Private Communication (Refcode HOLDOC). CCDC, Cambridge, England.  Google Scholar
First citationOzbas, B., Rajagopal, K., Schneider, J. P. & Pochan, D. J. (2004). Phys. Rev. Lett. 93, 268106.  CrossRef Google Scholar
First citationReches, M. & Gazit, E. (2003). Science, 300, 625–627.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTiritiris, I. & Kantlehner, W. (2011). Z. Naturforsch. B: Chem. Sci. 66, 164–176.  Google Scholar
First citationTrivedi, D. R. & Dastidar, P. (2006). Chem. Mater. 18, 1470–1478.  CrossRef CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia, Australia.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds