research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 3,6-dihy­dr­oxy-4,5-di­methyl­benzene-1,2-dicarbaldehyde

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
*Correspondence e-mail: akitsu@rs.kagu.tus.ac.jp

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 23 July 2018; accepted 4 September 2018; online 14 September 2018)

The title compound, C10H10O4, was synthesized from tetra­methyl-1,4-benzo­quinone. In the crystal, the almost planar mol­ecule (r.m.s. deviation = 0.024 Å) forms intra­molecular hydrogen bonds between the aldehyde and hy­droxy groups and exhibits C2v symmetry. This achiral mol­ecule crystallizes in the chiral space group P21 with inter­molecular O—H⋯O and C—H⋯O hydrogen bonding and C—H⋯π and C=O⋯π inter­actions stabilizing the crystal packing.

1. Chemical context

A number of benzo- and naphtho­quinone derivatives with one or two side chains being capable of alkyl­ation after reduction were found to exhibit inhibitory activity against the growth of transplantable tumours in mice. Furthermore, inhibition of nucleic acid biosynthesis and of the activities of coenzyme Q mediated enzyme systems are also known for related compounds composed of 3,6-dihy­droxy-4,5-di­methyl­benzene-1,2-dicarbaldehyde (Lin & Loo, 1977[Lin, A. J. & Loo, T. L. (1977). J. Am. Chem. Soc. 99, 558-561.]; Lin et al., 1978[Lin, A. J., Shansky, C. W. & Sartorelli, A. C. (1978). J. Med. Chem. 23, 268-272.]). According to the literature, these compounds are synthesized from tetra­methyl-1,4-benzo­quinone (Lin & Loo, 1977[Lin, A. J. & Loo, T. L. (1977). J. Am. Chem. Soc. 99, 558-561.]; Lin et al., 1978[Lin, A. J., Shansky, C. W. & Sartorelli, A. C. (1978). J. Med. Chem. 23, 268-272.]). Here we report the mol­ecular and crystal structure of an achiral derviative crystallizing in a chiral space group.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound consists of a benzene ring substituted by two methyl groups, two hy­droxy groups and two aldehyde groups (Fig. 1[link]). The mol­ecular point group symmetry is C2v (H atoms excluded). The C—C bond lengths of the methyl substituents are 1.511 (2) and 1.508 (2) Å, the C—O bond lengths of the hy­droxy substituents are 1.354 (2) and 1.350 (2) Å, and the C—C bond lengths of the aldehyde substituents are 1.464 (2) and 1.462 (2) Å. Two intra­molecular O—H⋯H hydrogen bonds between the hy­droxy and aldehyde functions are observed (Table 1[link] and Fig. 1[link]). The mol­ecule is essentially planar (r.m.s. deviation = 0.024 Å), with the largest deviation found for atom O2 [0.047 (1) Å].

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of ring C1–C6.

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2 0.84 1.87 2.6079 (19) 146
O4—H4⋯O1 0.84 1.82 2.5592 (19) 146
O3—H3⋯O4i 0.84 2.40 3.036 (2) 133
O4—H4⋯O2ii 0.84 2.34 2.809 (2) 116
C7—H7⋯O2iii 0.95 2.51 3.427 (2) 162
C10—H10BCg1iv 0.98 3.13 3.645 114
Symmetry codes: (i) x-1, y-1, z; (ii) x+1, y+1, z; (iii) [-x, y+{\script{1\over 2}}, -z+1]; (iv) x+1, y, z.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, mol­ecules are connected along the b axis by O—H⋯O hydrogen bonds and along the c axis by C—H⋯O hydrogen bonds (Table 1[link] and Fig. 2[link]). As a result, chiral crystals composed of achiral mol­ecules are formed. Many examples of such chiral crystals forming from achiral mol­ecules have been reported for decades, but the prediction of chiral crystallization is still impossible (Koshima & Matsuura, 1998[Koshima, H. & Matsuura, T. (1998). J. Synth. Org. Chem. Jpn, 56, 466-477.]; Matsuura & Koshima, 2005[Matsuura, T. & Koshima, H. (2005). J. Photochem. Photobiol. Photochem. Rev. 6, 7-24.]).

[Figure 2]
Figure 2
A view of the O—H⋯O hydrogen bonds (dashed lines) present in the crystal lattice of the title compound.

The C8=O2 carbonyl group is stacked on top of the aromatic ring, with the O2⋯Cg1 distance being 3.4846 (19) Å (Cg1 is the centroid of ring C1–C6).

In addition, a weak C—H⋯π inter­action C10—H10BCg1 (3.131 Å) is also found (Table 1[link] and Fig. 3[link]).

[Figure 3]
Figure 3
Part of the crystal packing showing the C—H⋯π stacking inter­actions.

4. Database survey

A search in the Cambridge Structural Database (CSD, Version 5.39, update May 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for similar 1,2-dicarbaldehyde structures returned five relevant entries: benzene-1,2-dicarbaldehyde [IHEMAJ (Britton, 2002[Britton, D. (2002). Acta Cryst. C58, o637-o639.]) and IHEMAJ01 (Mendenhall et al., 2003[Mendenhall, D. G., Luck, R. L., Bohn, R. K. & Castejon, H. J. (2003). J. Mol. Struct. 645, 249-258.])], naphthalene-1,2-dicarbaldehyde (FIYQOT; Britton, 1999[Britton, D. (1999). Acta Cryst. C55, 978-980.]), a chromene-5,6-dicarbaldehyde derivative (IDUCUH; am Ende et al., 2013[Ende, C. W. am, Zhou, Z. & Parker, K. A. (2013). J. Am. Chem. Soc. 135, 582-585.]) and a cobalt benzene-1,2-dicarbaldehyde complex (JUKZAQ; Lenges et al., 1999[Lenges, C. P., Brookhart, M. & White, P. S. (1999). Angew. Chem. Int. Ed. 38, 552-555.]). In the first four structures, the aldehyde functions show C—H⋯O inter­actions (H⋯O distances from 2.226 to 2.360 Å). This is not the case for the cobalt complex JUKZAQ, where the two aldehyde O atoms are facing each other and complexed with cobalt, nor with the title compound where the two aldehyde O atoms are involved in intra­molecular hydrogen bonds and the two aldehyde H atoms are facing each other.

The intra­molecular O—H⋯O inter­action between the 1-carbaldehyde and 2-hy­droxy groups is also observed in compounds such as 1,8-dihy­droxy-2-naphthaldehyde (BABXUA; Peng et al., 2015[Peng, C.-Y., Shen, J.-Y., Chen, Y.-T., Wu, P.-J., Hung, W.-Y., Hu, W.-P. & Chou, P.-T. (2015). J. Am. Chem. Soc. 137, 14349-14357.]) and 2,4,6-tri­hydroxy­benzene-1,3,5-tricarbaldehyde (WEPPUE; von Richthofen et al., 2013[Richthofen, C.-G. von, Feldscher, B., Lippert, K.-A., Stammler, A., Bögge, H. & Glaser, T. (2013). Z. Naturforsch. Teil B, 68, 64-86.]).

5. Synthesis and crystallization

A mixture of tetra­methyl-1,4-benzo­quinone (2.0406 g, 12.4 mmol) and concentrated piperidine (98.0%, 35 ml) was stirred at room temperature for 35 h. The mixture was evaporated and a white inter­mediate product was obtained. To a solution of the obtained inter­mediate product dissolved in acetic acid (18 ml), a mixture of CrO3 (1.77 g) and 50% acetic acid (35 ml) was added dropwise at 353 K. After 10 min, the reaction mixture was poured onto crushed ice (100 g). The solution was filtered by vacuum filtration and a crude compound was obtained. The crude compound was dissolved in toluene and purified by silica column chromatography to afford 0.567 g (yield 23.5%) of the title compound as a yellow solid (single crystals served for X-ray analysis). IR (KBr, cm−1): 1633 (s), 3436 (m).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were located in difference Fourier maps. C-bound H atoms were constrained using a riding model [C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms, and C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for the aldehyde H atoms]. O-bound H atoms were constrained using a riding model [O—H = 0.84 Å and Uiso(H) = 1.5Ueq(O) for hy­droxy H atoms].

Table 2
Experimental details

Crystal data
Chemical formula C10H10O4
Mr 194.18
Crystal system, space group Monoclinic, P21
Temperature (K) 100
a, b, c (Å) 5.251 (2), 6.317 (2), 12.999 (5)
β (°) 91.643 (4)
V3) 431.0 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.12
Crystal size (mm) 0.38 × 0.30 × 0.13
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.785, 0.785
No. of measured, independent and observed [I > 2σ(I)] reflections 2328, 1228, 1207
Rint 0.014
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.082, 1.06
No. of reflections 1228
No. of parameters 131
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.25, −0.22
Absolute structure Flack x determined using 179 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.5 (6)
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), WinGX (Farrugia, 2012), Mercury (Macrae et al., 2006) and publCIF (Westrip, 2010).

3,6-Dihydroxy-4,5-dimethylbenzene-1,2-dicarbaldehyde top
Crystal data top
C10H10O4F(000) = 204
Mr = 194.18Dx = 1.496 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 5.251 (2) ÅCell parameters from 2083 reflections
b = 6.317 (2) Åθ = 3.1–27.5°
c = 12.999 (5) ŵ = 0.12 mm1
β = 91.643 (4)°T = 100 K
V = 431.0 (3) Å3Prism, yellow
Z = 20.38 × 0.30 × 0.13 mm
Data collection top
Bruker APEXII CCD
diffractometer
1228 independent reflections
Radiation source: fine-focus sealed tube1207 reflections with I > 2σ(I)
Detector resolution: 8.3333 pixels mm-1Rint = 0.014
φ and ω scansθmax = 27.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 66
Tmin = 0.785, Tmax = 0.785k = 38
2328 measured reflectionsl = 1616
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.029 w = 1/[σ2(Fo2) + (0.0523P)2 + 0.0966P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.082(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.25 e Å3
1228 reflectionsΔρmin = 0.22 e Å3
131 parametersAbsolute structure: Flack x determined using 179 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.5 (6)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O40.7944 (2)0.8239 (2)0.27690 (9)0.0183 (3)
H40.73570.89980.32370.027*
O20.0040 (2)0.1772 (2)0.38214 (9)0.0193 (3)
O10.5175 (2)0.9141 (2)0.42970 (9)0.0190 (3)
O30.2530 (2)0.0865 (2)0.21917 (9)0.0174 (3)
H30.14180.06890.26350.026*
C30.5775 (3)0.3220 (3)0.17026 (11)0.0136 (3)
C80.1144 (3)0.3446 (3)0.38843 (12)0.0150 (4)
H80.07170.44080.44140.018*
C40.7113 (3)0.5092 (3)0.18410 (12)0.0133 (3)
C10.3173 (3)0.4049 (3)0.31924 (12)0.0128 (3)
C20.3797 (3)0.2696 (3)0.23855 (12)0.0129 (3)
C70.3981 (3)0.7489 (3)0.41517 (12)0.0153 (4)
H70.26190.71740.45920.018*
C50.6521 (3)0.6468 (3)0.26629 (12)0.0134 (4)
C60.4550 (3)0.5985 (3)0.33345 (12)0.0125 (3)
C90.6387 (3)0.1702 (3)0.08493 (12)0.0177 (4)
H9A0.62590.24410.01870.027*
H9B0.51770.05210.08480.027*
H9C0.81220.11590.09580.027*
C100.9192 (3)0.5739 (3)0.11251 (13)0.0179 (4)
H10A1.01380.44820.09150.027*
H10B1.03560.67260.14810.027*
H10C0.84310.64290.05150.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.0187 (6)0.0167 (7)0.0198 (6)0.0064 (6)0.0074 (5)0.0031 (5)
O20.0174 (5)0.0194 (6)0.0214 (6)0.0060 (6)0.0049 (4)0.0018 (5)
O10.0228 (6)0.0164 (6)0.0180 (5)0.0036 (6)0.0033 (5)0.0035 (5)
O30.0179 (5)0.0158 (6)0.0186 (6)0.0052 (6)0.0051 (4)0.0035 (5)
C30.0127 (7)0.0166 (8)0.0117 (7)0.0021 (7)0.0015 (6)0.0001 (7)
C80.0130 (7)0.0172 (9)0.0148 (7)0.0010 (7)0.0022 (6)0.0000 (7)
C40.0108 (6)0.0163 (8)0.0130 (7)0.0007 (6)0.0024 (5)0.0020 (7)
C10.0109 (6)0.0151 (8)0.0123 (6)0.0000 (7)0.0009 (5)0.0007 (7)
C20.0115 (6)0.0128 (9)0.0144 (7)0.0017 (6)0.0000 (6)0.0010 (6)
C70.0162 (7)0.0154 (8)0.0142 (7)0.0003 (7)0.0018 (6)0.0012 (7)
C50.0114 (6)0.0151 (9)0.0137 (7)0.0014 (7)0.0001 (5)0.0011 (7)
C60.0115 (6)0.0139 (8)0.0120 (7)0.0001 (6)0.0011 (5)0.0011 (7)
C90.0185 (7)0.0192 (9)0.0157 (7)0.0000 (7)0.0034 (6)0.0048 (7)
C100.0146 (7)0.0227 (9)0.0166 (7)0.0003 (7)0.0062 (6)0.0012 (7)
Geometric parameters (Å, º) top
O4—C51.350 (2)C4—C101.511 (2)
O4—H40.84C1—C21.399 (2)
O2—C81.228 (2)C1—C61.431 (2)
O1—C71.229 (2)C7—C61.462 (2)
O3—C21.354 (2)C7—H70.95
O3—H30.84C5—C61.406 (2)
C3—C41.385 (3)C9—H9A0.98
C3—C21.424 (2)C9—H9B0.98
C3—C91.508 (2)C9—H9C0.98
C8—C11.464 (2)C10—H10A0.98
C8—H80.95C10—H10B0.98
C4—C51.419 (2)C10—H10C0.98
C5—O4—H4109.5C6—C7—H7118.4
C2—O3—H3109.5O4—C5—C6122.08 (14)
C4—C3—C2119.60 (14)O4—C5—C4116.85 (13)
C4—C3—C9121.36 (14)C6—C5—C4121.06 (16)
C2—C3—C9119.04 (16)C5—C6—C1118.92 (14)
O2—C8—C1123.97 (16)C5—C6—C7118.66 (16)
O2—C8—H8118.0C1—C6—C7122.42 (13)
C1—C8—H8118.0C3—C9—H9A109.5
C3—C4—C5119.97 (14)C3—C9—H9B109.5
C3—C4—C10121.60 (15)H9A—C9—H9B109.5
C5—C4—C10118.43 (17)C3—C9—H9C109.5
C2—C1—C6119.38 (13)H9A—C9—H9C109.5
C2—C1—C8119.46 (16)H9B—C9—H9C109.5
C6—C1—C8121.15 (15)C4—C10—H10A109.5
O3—C2—C1122.45 (14)C4—C10—H10B109.5
O3—C2—C3116.47 (14)H10A—C10—H10B109.5
C1—C2—C3121.05 (16)C4—C10—H10C109.5
O1—C7—C6123.30 (15)H10A—C10—H10C109.5
O1—C7—H7118.4H10B—C10—H10C109.5
C2—C3—C4—C50.4 (2)C3—C4—C5—O4178.32 (14)
C9—C3—C4—C5178.85 (15)C10—C4—C5—O42.5 (2)
C2—C3—C4—C10178.81 (15)C3—C4—C5—C61.3 (2)
C9—C3—C4—C102.0 (2)C10—C4—C5—C6177.94 (14)
O2—C8—C1—C21.9 (2)O4—C5—C6—C1178.18 (14)
O2—C8—C1—C6177.34 (15)C4—C5—C6—C11.4 (2)
C6—C1—C2—O3178.32 (13)O4—C5—C6—C72.0 (2)
C8—C1—C2—O32.5 (2)C4—C5—C6—C7178.41 (15)
C6—C1—C2—C30.2 (2)C2—C1—C6—C50.6 (2)
C8—C1—C2—C3179.44 (14)C8—C1—C6—C5178.56 (15)
C4—C3—C2—O3178.56 (14)C2—C1—C6—C7179.16 (16)
C9—C3—C2—O32.2 (2)C8—C1—C6—C71.6 (2)
C4—C3—C2—C10.4 (2)O1—C7—C6—C51.6 (2)
C9—C3—C2—C1179.61 (14)O1—C7—C6—C1178.61 (14)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of ring C1-C6.
D—H···AD—HH···AD···AD—H···A
O3—H3···O20.841.872.6079 (19)146
O4—H4···O10.841.822.5592 (19)146
O3—H3···O4i0.842.403.036 (2)133
O4—H4···O2ii0.842.342.809 (2)116
C7—H7···O2iii0.952.513.427 (2)162
C10—H10···Cg1iv0.983.133.645114
Symmetry codes: (i) x1, y1, z; (ii) x+1, y+1, z; (iii) x, y+1/2, z+1; (iv) x+1, y, z.
 

References

First citationBritton, D. (1999). Acta Cryst. C55, 978–980.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBritton, D. (2002). Acta Cryst. C58, o637–o639.  CrossRef IUCr Journals Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEnde, C. W. am, Zhou, Z. & Parker, K. A. (2013). J. Am. Chem. Soc. 135, 582–585.  PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKoshima, H. & Matsuura, T. (1998). J. Synth. Org. Chem. Jpn, 56, 466–477.  Web of Science CrossRef Google Scholar
First citationLenges, C. P., Brookhart, M. & White, P. S. (1999). Angew. Chem. Int. Ed. 38, 552–555.  CrossRef Google Scholar
First citationLin, A. J. & Loo, T. L. (1977). J. Am. Chem. Soc. 99, 558–561.  Google Scholar
First citationLin, A. J., Shansky, C. W. & Sartorelli, A. C. (1978). J. Med. Chem. 23, 268–272.  CrossRef Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMatsuura, T. & Koshima, H. (2005). J. Photochem. Photobiol. Photochem. Rev. 6, 7–24.  Web of Science CrossRef CAS Google Scholar
First citationMendenhall, D. G., Luck, R. L., Bohn, R. K. & Castejon, H. J. (2003). J. Mol. Struct. 645, 249–258.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPeng, C.-Y., Shen, J.-Y., Chen, Y.-T., Wu, P.-J., Hung, W.-Y., Hu, W.-P. & Chou, P.-T. (2015). J. Am. Chem. Soc. 137, 14349–14357.  Web of Science CrossRef PubMed Google Scholar
First citationRichthofen, C.-G. von, Feldscher, B., Lippert, K.-A., Stammler, A., Bögge, H. & Glaser, T. (2013). Z. Naturforsch. Teil B, 68, 64–86.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds