research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures and Hirshfeld surfaces of differently substituted (E)-N′-benzyl­­idene-N-methyl-2-(thio­phen-2-yl)acetohydrazides

CROSSMARK_Color_square_no_text.svg

aFundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos–FarManguinhos, Rua Sizenando Nabuco, 100, Manguinhos, 21041-250 Rio de Janeiro, Brazil, bInstituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil, and cDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: w.harrison@abdn.ac.uk

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 29 September 2017; accepted 5 October 2017; online 13 October 2017)

The syntheses and crystal structures of (E)-N′-(3-cyano­benzyl­idene)-N-methyl-2-(thio­phen-2-yl)acetohydrazide, C15H13N3OS, (I), and (E)-N′-(4-meth­oxy­benzyl­idene)-N-methyl-2-(thio­phen-2-yl)acetohydrazide, C15H16N2O2S, (II), with different substituents in the meta and para position of the benzene ring are described. Compounds (I) and (II) both crystallize with two mol­ecules in the asymmetric unit, with generally similar conformations [r.m.s. overlay fits for (I) and (II) of 0.334 and 0.280 Å, respectively] that approximate to L-shapes. The thio­phene rings in (I) are well ordered, whereas those in (II) exhibit `flip' rotational disorder [occupancies 0.662 (2) and 0.338 (2) for mol­ecule 1, and 0.549 (3) and 0.451 (3) for mol­ecule 2]. The packing for (I) features short C—H⋯O inter­actions arising from the C—H grouping adjacent to the cyanide group and C—H⋯Nc (c = cyanide) links arising from the methine groups to generate [110] double chains. Weak C—H⋯π inter­actions inter­link the chains into a three-dimensional network. The packing for (II) features numerous C—H⋯O and C—H⋯π inter­actions arising from different donor groups to generate a three-dimensional network. Hirshfeld fingerprint plots indicate significant differences in the percentage contact surfaces for (I) and (II).

1. Chemical context

Thio­phene derivatives are important heterocyclic compounds widely used as building blocks in many agrochemicals and pharmaceuticals (Swanston, 2006[Swanston, J. (2006). Thiophene. Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH.]). A valuable group of thio­phenyl derivatives are the series of acyl­hydrazine derivatives, 2-[ArCH=N—NRCO(CH2)n-thio­phene, where R = Me or H, and n = 0 or 1. Recent studies have investigated their anti-TB activities (Cardoso et al., 2014[Cardoso, L. N. F., Bispo, M. L. F., Kaiser, C. R., Wardell, J. L., Wardell, S. M. S. V., Lourenço, M. C. S. S., Bezerra, F. A. F., Soares, R. P. P., Rocha, M. N. & de Souza, M. V. N. (2014). Arch. Pharm. Chem. Life Sci. 347, 432-448.]) and anti-cancer activities (Cardoso et al., 2017[Cardoso, L. N. F., Nogueira, T. C. M., Rodrigues, F. A. R., Oliveira, A. C. A., Luciano, M. C. dos S., Pessoa, C. & de Souza, M. V. N. (2017). Med. Chem. Res. 26, 1605-1608.]). We now report the crystal structures of two derivatives of the 2-[ArCH=N—NMeCOCH2-thio­phene series, bearing different substituents at the meta and para positions of the benzene ring, viz. (E)-N′-(3-cyano­benzyl­idene)-N-methyl-2-(thio­phen-2-yl)acetohydrazide, (I)[link], and (E)-N′-(4-meth­oxy­benzyl­idene)-N-methyl-2-(thio­phen-2-yl)acetohydrazide, (II)[link]. These complement our recent structural study (Cardoso et al., 2016a[Cardoso, L. N. F., Noguiera, T. C. M., Kaiser, C. R., Wardell, J. L., Souza, M. V. N. de, Lancaster, S. T. & Harrison, W. T. A. (2016a). Acta Cryst. E72, 1677-1682.]) of isomeric ortho-, meta- and para-nitro derivatives in the same family.

2. Structural commentary

The mol­ecular structure of (I)[link] is shown in Fig. 1[link], which indicates the presence of two mol­ecules, A (containing S1) and B (containing S2), in the asymmetric unit of the triclinic unit cell. The thio­phene rings are well ordered [C11—S1—C14 = 92.14 (8); C26—S2—C29 = 92.39 (8)°]. For mol­ecule A, the dihedral angle between the thio­phene and benzene rings is 64.44 (5)°. The central CH=N—N(CH3)—C(=O) fragment (C7/C8/C9/N1/N2/O1) in (I)[link] is almost planar (r.m.s. deviation = 0.022 Å) and subtends dihedral angles of 2.28 (9) and 66.47 (5)° with the benzene and thio­phene rings, respectively. The major twist in the mol­ecule occurs about the C9—C10 bond [N2—C9—C10—C11 = −91.98 (16)°], giving the mol­ecule an approximate overall L-shape. As seen for related compounds (Cardoso et al., 2016a[Cardoso, L. N. F., Noguiera, T. C. M., Kaiser, C. R., Wardell, J. L., Souza, M. V. N. de, Lancaster, S. T. & Harrison, W. T. A. (2016a). Acta Cryst. E72, 1677-1682.]), the N1—N2 bond length of 1.3797 (17) Å is significantly shortened compared to the reference value of ∼1.41 Å for an isolated N—N single bond and the C9—N2 amide bond of 1.3702 (19) Å is lengthened: these distance data can be inter­preted in terms of significant delocalization of electrons over the methyl­idene–acetohydrazide fragment of the mol­ecule. For mol­ecule B, comparable geometrical data are as follows: C16–C21 benzene ring = A, C26–C29/S2 thio­phene ring = B, C22/N4/N5/C23/C4/O2 linking chain (r.m.s. deviation = 0.033 Å) = C; dihedral angles A/B, A/C and B/C = 66.40 (8), 10.85 (9) and 58.33 (5)°, respectively; N5—C24—C25—C26 = −82.29 (18)°, N4—N5 = 1.3651 (17), C24—N5 = 1.3766 (19) Å. These data are generally similar to the corresponding values for mol­ecule A and the r.m.s. overlay fit of mol­ecules A and B of 0.334 Å and visual inspection (Fig. 2[link]) confirms this.

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of (I)[link] showing 50% displacement ellipsoids.
[Figure 2]
Figure 2
Overlay plot of mol­ecules A (red) and B (black) for (I)[link].

Compound (II)[link] (Fig. 3[link]) also crystallizes in space group P[\overline{1}] with Z′ = 2 (mol­ecule A containing S1 and mol­ecule B containing S2). In this case, both thio­phene ring show `flip' disorder over two conformations rotated by ∼180° in a 0.662 (2):0.338 (2) ratio about the C10—C11 bond for A and a 0.549 (3):0.451 (3) ratio about the C25—C26 bond for B. The major orientation for A has the S atom pointing towards the benzene ring. For B, the disorder is close to statistical, but there is a slight preference for the S atom to point away from the benzene ring. For mol­ecule A, the dihedral angle between the thio­phene and benzene rings is 79.38 (7)°. The central CH=N—N(CH3)—C(=O) fragment (C7/C8/C9/N1/N2/O1) is almost planar (r.m.s. deviation = 0.013 Å) and the benzene and thio­phene rings are twisted from it by 0.89 (12) and 78.80 (9)°, respectively. Thus, as for (I)[link], the major twist in the mol­ecule occurs about C9—C10 [N2—C9—C10—C11 = −86.1 (3)°], and an approximate overall L-shape results. Atom C15 of the meth­oxy group deviates slightly, by 0.068 (2) Å, from the plane of its attached ring. The N1—N2 [1.3780 (16) Å] and C9—N2 [1.3690 (18) Å] bond lengths show the same pattern as for (I)[link], again indicating delocalization of electrons over the central grouping. Corresponding data for mol­ecule B in (II)[link] are as follows: C16–C21 benzene ring = A, C26–C29/S2 thio­phene ring = B, C22/N3/N4/C23/C4/O3 linking chain (r.m.s. deviation = 0.021 Å) = C; dihedral angles A/B, A/C and B/C = 70.61 (8), 9.73 (17) and 77.66 (6)°, respectively; N4—C24—C25—C26 = 84.33 (17)°, N3—N4 = 1.3768 (17), C24—N4 = 1.375 (2) Å, displacement of C30 from the A ring = 0.155 (3) Å. Again, the two mol­ecules have broadly similar conformations (Fig. 4[link]) and the r.m.s. overlay fit is 0.280 Å.

[Figure 3]
Figure 3
The mol­ecular structure of (II)[link] showing 50% displacement ellipsoids. Only the major orientation of the thio­phene ring is shown.
[Figure 4]
Figure 4
Overlay plot of mol­ecules A (red) and B (black) for (II)[link]. Only the major orientation of the thio­phene ring is shown.

3. Supra­molecular features

Given that there are no classical donor groups, the packing motifs for (I)[link] and (II)[link] are dominated by a variety of non-classical C—H⋯O, C—H⋯N and C—H⋯S, C—H⋯π and π-π- inter­actions (Tables 1[link] and 2[link]).

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg1, Cg2, Cg3 and Cg4 are the centroids of the C11–C14/S1, C1–C6, C26–C29/S2 and C16–C21 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O1i 0.95 2.31 3.1691 (19) 151
C7—H7⋯N6ii 0.95 2.53 3.452 (2) 164
C19—H19⋯O2i 0.95 2.27 3.1980 (19) 164
C22—H22⋯N3iii 0.95 2.61 3.536 (2) 164
C10—H10BCg4iv 0.99 2.97 3.4724 (18) 113
C12—H12⋯Cg3 0.95 2.60 3.436 (2) 147
C23—H23CCg2iv 0.98 2.90 3.5646 (19) 126
C25—H25BCg1v 0.99 2.71 3.6910 (18) 169
Symmetry codes: (i) x+1, y+1, z; (ii) x, y-1, z-1; (iii) x-1, y, z+1; (iv) -x, -y+1, -z+1; (v) -x, -y, -z+1.

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

Cg1, Cg2, Cg3 and Cg4 are the centroids of the C11–C14/S1, C1–C6, C26–C29/S2 and C16–C21 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯S1i 0.95 2.87 3.7326 (14) 152
C10—H10B⋯O3 0.99 2.56 3.5366 (19) 169
C13—H13⋯O2ii 0.95 2.58 3.499 (2) 164
C15—H15A⋯O3iii 0.98 2.50 3.478 (2) 176
C25—H25A⋯O1 0.99 2.38 3.3206 (19) 157
C28—H28⋯O4iv 0.95 2.42 3.307 (2) 156
C29—H29⋯O1v 0.95 2.50 3.422 (2) 163
C30—H30A⋯O1vi 0.98 2.45 3.419 (2) 168
C6—H6⋯Cg1i 0.95 2.67 3.6071 (15) 169
C8—H8CCg2i 0.98 2.72 3.4831 (16) 135
C21—H21⋯Cg3vii 0.95 2.90 3.6721 (18) 140
C23—H23ACg4vii 0.98 2.81 3.6560 (16) 145
C23—H23CCg4viii 0.98 2.88 3.6067 (16) 131
Symmetry codes: (i) -x+2, -y+1, -z; (ii) -x+2, -y+2, -z; (iii) -x+1, -y+2, -z; (iv) -x+1, -y, -z+1; (v) x-1, y, z; (vi) -x+2, -y, -z+1; (vii) -x+1, -y+1, -z+1; (viii) -x+2, -y+1, -z+1.

In (I)[link], it is notable that both C—H groupings adjacent to the cyanide groups [i.e.:C4 (mol­ecule A) and C19 (mol­ecule B) in the 4-positions of the benzene rings] participate in short C—H⋯O inter­actions to generate separate [110] chains of A and B mol­ecules, both of which feature C(10) chain motifs, with adjacent mol­ecules in the chain related by translation symmetry. We may speculate that these C—H groupings have been `activated' (made more acidic) by being adjacent to the electron-withdrawing cyanide group (Pedireddi & Desiraju, 1992[Pedireddi, V. R. & Desiraju, G. R. (1992). J. Chem. Soc. Chem. Commun. pp. 988.]). The chains are cross-linked by C—H⋯N hydrogen bonds: in each case the donor is the methine group [i.e. C7 (mol­ecule A) and C22 (mol­ecule B)] and the acceptor is the cyanide-N atom of the other asymmetric mol­ecule, i.e. AB and BA. This results in double chains (Fig. 5[link]) propagating in [110] in which R33(18) loops are apparent. The chains are cross-linked by C—H⋯π inter­actions, with all the rings (i.e. both thio­phene and both benzene rings) acting as acceptors. The shortest centroid–centroid separation between aromatic rings is 3.9895 (10) Å, indicating that any ππ stacking effects in (I)[link] are very weak at best.

[Figure 5]
Figure 5
Fragment of a [110] hydrogen-bonded chain in the crystal of (I)[link]. Symmetry codes as in Table 1[link]; additionally (iv) x + 1, y, z − 1. All hydrogen atoms not involved in hydrogen bonds omitted for clarity.

The packing for (II)[link] is less `tidy' in the sense that C—H entities belonging to several different groups (benzene ring, methyl­ene group adjacent to the thio­phene ring, thio­phene ring, meth­oxy group) act as donors and none of the C—H⋯O links are particularly short. There are mol­ecule A → mol­ecule A, AB, BA and BB links. Perhaps the most notable are a pair of bonds arising from the methyl­ene groups that generate A + B dimers incorporating R22(8) loops, as shown in Fig. 3[link] above. A number of C—H⋯π inter­actions are observed, with all the rings acting as acceptors, but there are no aromatic ππ stacking inter­actions in (II)[link] (shortest centroid–centroid separation > 4.9Å). When the different inter­molecular inter­actions are taken together, a three-dimensional network arises in the crystal of (II)[link].

4. Hirshfeld analysis

Hirshfeld surface fingerprint plots for (I)[link] (Fig. 6[link]) and (II)[link] (Fig. 7[link]) were calculated with CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia, Nedlands, Western Australia; https://hirshfeldsurface.net.]). The plot for (I)[link] has `wingtip' features that correspond to the short C—H⋯O hydrogen bonds described above, although the wingtips are not as pronounced as those seen for classical hydrogen bonds (compare: McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814-3816.]). In (II)[link], the wingtips are less apparent, presumably reflecting the longer (and weaker) C—H⋯O inter­actions in this structure, even though there are more of them in (II)[link] than in (I)[link].

[Figure 6]
Figure 6
Hirshfeld fingerprint plot for (I)
[Figure 7]
Figure 7
Hirshfeld fingerprint plot for (II)

When the fingerprint plots for (I)[link] and (II)[link] are decomposed into the separate types of contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814-3816.]), some inter­esting differences arise (Table 3[link]): H⋯H contacts represent the highest percentage in both structures, but they are far more significant in (II)[link], representing over half the contact area, some 20% more than in (I)[link]. This deficit is largely made up by N⋯H/H⋯N contacts (i.e. the C—H⋯N hydrogen bonds) in (I)[link], which are barely present in (II)[link]. The O⋯H/H⋯O contacts are slightly higher in (II)[link] than (I)[link], presumably reflecting that fact that there are many more C—H⋯O bonds in (II)[link] (compare Table 2[link]), although the H⋯O contacts are shorter in (I)[link]. The percentages of C⋯H/H⋯C contacts in the two compounds are very similar, whereas C⋯C contacts are insignificant in both structures, which presumably correlates with the very weak ππ stacking described above. Finally, S⋯H/H⋯S contacts are clearly more prominent in (I)[link] although any C—H⋯S bonds in (I)[link] would be regarded as very weak at best (shortest H⋯S separation = 2.95 Å). When the two mol­ecules in the asymmetric unit of (I)[link] are compared with each other (Table 3[link]), there is little difference between them and the same applies to (II)[link].

Table 3
Hirshfeld contact inter­actions (%)

Contact type (I) A (I) B (I) (II) A (II) B (II)
H⋯H 30.8 35.1 33.0 51.0 53.9 52.5
C⋯H/H⋯C 27.1 25.7 26.4 23.9 22.6 23.2
O⋯H/H⋯O 8.4 9.4 8.9 13.7 14.5 14.1
N⋯H/H⋯N 16.2 14.1 15.1 2.6 2.3 2.4
C⋯C 2.9 3.0 2.9 2.1 1.6 1.8
C⋯N/N⋯C 2.8 3.8 3.3 1.8 2.6 2.2
S⋯H/H⋯S 9.0 6.9 7.9 3.5 2.2 2.9
others 2.8 2.0 2.4 1.4 0.3 0.9

5. Database survey

A survey of the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) updated to September 2017 for the common central –CH=N—N(CH3)—C(=O)—CH2– fragment of the title compounds revealed seven matches, viz. ALAHEC (Cardoso et al., 2016b[Cardoso, L. N. F., Noguiera, T. C. M., Kaiser, C. R., Wardell, J. L., Wardell, S. M. S. V. & de Souza, M. V. N. (2016b). Z. Kristallogr. 231, 167-000.]); FOTMUX (Ramírez et al., 2009a[Ramírez, J., Stadler, A.-M., Rogez, G., Drillon, M. & Lehn, J.-M. (2009a). Inorg. Chem. 48, 2456-2463.]); KULREP (Ramírez et al., 2009b[Ramírez, J., Brelot, L., Osinska, I. & Stadler, A.-M. (2009b). J. Mol. Struct. 931, 20-24.]); OFEBIL (Cao et al., 2007[Cao, X.-Y., Harrowfield, J., Nitschke, J., Ramírez, J., Stadler, A.-M., Kyritsakas-Gruber, N., Madalan, A., Rissanen, K., Russo, L., Vaughan, G. & Lehn, J.-M. (2007). Eur. J. Inorg. Chem. pp. 2944-2965.]), and EYUBAD, EYUBEH and EYUBIL: this latter trio of refcodes correspond to the three isomeric nitro compounds (Cardoso et al., 2016a[Cardoso, L. N. F., Noguiera, T. C. M., Kaiser, C. R., Wardell, J. L., Souza, M. V. N. de, Lancaster, S. T. & Harrison, W. T. A. (2016a). Acta Cryst. E72, 1677-1682.]) noted in the Chemical Context section above.

6. Synthesis and crystallization

The appropriate thienyl acetohydrazide derivative (Cardoso et al., 2014[Cardoso, L. N. F., Bispo, M. L. F., Kaiser, C. R., Wardell, J. L., Wardell, S. M. S. V., Lourenço, M. C. S. S., Bezerra, F. A. F., Soares, R. P. P., Rocha, M. N. & de Souza, M. V. N. (2014). Arch. Pharm. Chem. Life Sci. 347, 432-448.]) (0.20 g, 1.0 equiv.) was suspended in acetone (5 ml) and potassium carbonate (4.0 equiv.) was added. The reaction mixture was stirred at room temperature for 30 minutes and methyl iodide (4.0 equiv.) was added. The reaction mixture was maintained at 313 K, until TLC indicated the reaction was complete. The mixture was then rotary evaporated to leave a residue, which was dissolved in water (20 ml) and extracted with ethyl acetate (3 × 10 ml). The organic fractions were combined, dried with anhydrous MgSO4, filtered and the solvent evaporated at reduced pressure. The crystals used for the intensity data collections were recrystallized from methanol solution at room temperature to yield colourless plates of (I)[link] and colourless slabs of (II)[link].

(E)-N′-(3-Cyano­benzyl­idene)-N-methyl-2-(thio­phen-2-yl)acetohydrazide, (I)[link]. Yield: 78%; yellow solid; m.p. 690–692 K. 1H NMR (400 MHz; DMSO) δ: 8.24 (1H; s; N=CH), 8.14 (1H; d; JHH = 7.9 Hz; H-11′), 8.04 (1H; s; H-7′), 7.87 (1H; d; JHH = 7.7 Hz; H-9′), 7.70–7.66 (1H; m; H-10′), 7.36 (1H; dd; JHH = 5.1 and 1.2 Hz; H-5), 6.99–6.98 (1H; m; H-3), 6.96–6.94 (1H; m; H-4) 4.41 (2H; s; CH2), 3.33 (3H; s; N-CH3). 13C NMR (125 MHz; DMSO) δ: 170.9 (C=O), 138.5 (N=CH), 137.0 (C-2), 136.0 (C-6′ and C-9′), 132.8 (C-11′), 131.4 (C-7′), 130.4 (C-10′), 130.0 (C-3), 126.7 (C-4), 125.2 (C-5), 118.5 (CN), 111.9 (C-8′), 34.3 (N—CH3), 28.1 (CH2). MS/ESI: [M + Na]: 306. IR νmax (cm−1; KBr pellets): 1678 (C=O); 3101 (N—CH3).

(E)-N′-(4-Meth­oxy­benzyl­idene)-N-methyl-2-(thio­phen-2-yl)acetohydrazide, (II)[link]. Yield: 62%; yellow solid; m.p. 629–630 K. 1H NMR (400 MHz; DMSO) δ: 7.94 (1H; s; N=CH), 7.76 (2H; d; JHH = 8.6; H-7′ and H-11′), 7.34 (1H; d; JHH = 4.8 Hz; H-5), 7.03 (2H; d; JHH = 8.6 Hz; H-9′ and H-8′ and H-10′), 6.97–6.93 (2H; m; H-3 and H-4), 4.34 (2H; s; CH2), 3.81 (3H; s; OCH3) 3.33 (3H; s; N-CH3). 13C NMR (125 MHz; DMSO) δ: 170.4 (C=O), 160.5 (C-9′), 140.4 (N=CH), 137.2 (C-2), 128.6 (C-7′ and C-11′), 127.3 (C-3), 126.5 (C-6′), 126.4 (C-4), 125.0 (C-5), 114.2 (C-8′ and C-10′), 55.2 (OCH3), 34.3 (N—CH3), 27.8 (CH2). MS/ESI: [M + Na]: 299. IR νmax (cm−1; KBr pellet): 1668 (C=O); 2962 (N—CH3).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. The hydrogen atoms were geometrically placed (C—H = 0.95–1.00 Å) and refined as riding atoms. The constraint Uiso(H) = 1.2Ueq(carrier) or 1.5Ueq(methyl carrier) was applied in all cases. The N-methyl group was allowed to rotate, but not to tip, to best fit the electron density (AFIX 137 instruction): in every case this group rotated from its initial orientation to minimize steric inter­action with H7; the final orientation leads to a rather short C8—H⋯O1 intra­molecular contact but we do not regard this as a bond. The thio­phene rings in both mol­ecules of (II)[link] show `flip' rotational disorder.

Table 4
Experimental details

  (I) (II)
Crystal data
Chemical formula C15H13N3OS C15H16N2O2S
Mr 283.34 288.36
Crystal system, space group Triclinic, P[\overline{1}] Triclinic, P[\overline{1}]
Temperature (K) 100 100
a, b, c (Å) 9.3594 (7), 10.1143 (7), 15.8070 (12) 7.2148 (5), 8.8307 (5), 24.1120 (17)
α, β, γ (°) 106.704 (5), 92.432 (7), 106.777 (5) 80.025 (6), 87.601 (7), 76.097 (6)
V3) 1359.31 (18) 1468.67 (17)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.24 0.22
Crystal size (mm) 0.18 × 0.12 × 0.03 0.19 × 0.13 × 0.05
 
Data collection
Diffractometer Rigaku Mercury CCD Rigaku Mercury CCD
Absorption correction Multi-scan (CrystalClear; Rigaku, 2012[Rigaku (2012). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Multi-scan (CrystalClear; Rigaku, 2012[Rigaku (2012). CrystalClear. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.786, 1.000 0.820, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 18105, 6217, 5204 19273, 6732, 5764
Rint 0.034 0.038
(sin θ/λ)max−1) 0.650 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.104, 1.04 0.044, 0.127, 1.06
No. of reflections 6217 6732
No. of parameters 363 367
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.51, −0.32 0.63, −0.51
Computer programs: CrystalClear (Rigaku, 2012[Rigaku (2012). CrystalClear. Rigaku Corporation, Tokyo, Japan.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: CrystalClear (Rigaku, 2012); cell refinement: CrystalClear (Rigaku, 2012); data reduction: CrystalClear (Rigaku, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008). Program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015) for (I); SHELXL2014 (Sheldrick, 2015) for (II). For both structures, molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

(E)-N'-(3-Cyanobenzylidene)-N-methyl-2-(thiophen-2-yl)acetohydrazide (I) top
Crystal data top
C15H13N3OSZ = 4
Mr = 283.34F(000) = 592
Triclinic, P1Dx = 1.385 Mg m3
a = 9.3594 (7) ÅMo Kα radiation, λ = 0.71075 Å
b = 10.1143 (7) ÅCell parameters from 15155 reflections
c = 15.8070 (12) Åθ = 2.2–27.5°
α = 106.704 (5)°µ = 0.24 mm1
β = 92.432 (7)°T = 100 K
γ = 106.777 (5)°Plate, colourless
V = 1359.31 (18) Å30.18 × 0.12 × 0.03 mm
Data collection top
Rigaku Mercury CCD
diffractometer
5204 reflections with I > 2σ(I)
ω scansRint = 0.034
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2012)
θmax = 27.5°, θmin = 2.6°
Tmin = 0.786, Tmax = 1.000h = 1112
18105 measured reflectionsk = 1213
6217 independent reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0527P)2 + 0.4808P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
6217 reflectionsΔρmax = 0.51 e Å3
363 parametersΔρmin = 0.32 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.44883 (17)0.46449 (16)0.16930 (10)0.0182 (3)
C20.44634 (18)0.57507 (16)0.24628 (10)0.0198 (3)
H20.37400.55500.28510.024*
C30.54885 (18)0.71367 (16)0.26619 (10)0.0196 (3)
H30.54530.78790.31820.024*
C40.65642 (18)0.74502 (16)0.21093 (10)0.0207 (3)
H40.72690.83970.22500.025*
C50.65933 (17)0.63477 (16)0.13419 (10)0.0183 (3)
C60.55554 (17)0.49516 (16)0.11306 (10)0.0180 (3)
H60.55790.42150.06040.022*
C70.34349 (17)0.31634 (16)0.14643 (10)0.0187 (3)
H70.34920.24300.09460.022*
C80.15716 (19)0.03219 (16)0.09561 (10)0.0227 (3)
H8A0.14460.06030.04210.034*
H8B0.07800.05880.09040.034*
H8C0.25600.01830.10180.034*
C90.04341 (17)0.11622 (16)0.23031 (10)0.0202 (3)
C100.03819 (17)0.24178 (16)0.30984 (10)0.0196 (3)
H10A0.07020.33320.29440.024*
H10B0.06680.22550.32300.024*
C110.13786 (17)0.25767 (15)0.39154 (10)0.0182 (3)
C120.09228 (19)0.22118 (17)0.46509 (10)0.0228 (3)
H120.01030.17990.47090.027*
C130.2143 (2)0.25137 (18)0.53227 (11)0.0260 (3)
H130.20190.23290.58760.031*
C140.35045 (19)0.30956 (17)0.50833 (11)0.0251 (3)
H140.44400.33710.54490.030*
C150.77123 (18)0.66406 (16)0.07614 (10)0.0201 (3)
N10.24352 (14)0.28688 (13)0.19727 (8)0.0185 (3)
N20.14646 (15)0.14648 (13)0.17394 (8)0.0194 (3)
N30.86018 (16)0.68439 (14)0.02951 (9)0.0244 (3)
O10.04085 (14)0.00766 (12)0.21693 (8)0.0268 (3)
S10.33237 (4)0.32713 (4)0.40385 (3)0.02304 (10)
C160.12951 (17)0.59905 (16)0.81831 (10)0.0178 (3)
C170.19830 (17)0.55084 (16)0.74397 (10)0.0193 (3)
H170.16000.45240.70710.023*
C180.32126 (17)0.64447 (16)0.72338 (10)0.0199 (3)
H180.36660.60960.67260.024*
C190.37944 (18)0.78915 (17)0.77615 (10)0.0212 (3)
H190.46380.85340.76170.025*
C200.31126 (18)0.83843 (16)0.85109 (10)0.0204 (3)
C210.18679 (17)0.74391 (16)0.87227 (10)0.0192 (3)
H210.14140.77820.92320.023*
C220.00144 (17)0.50111 (16)0.84135 (10)0.0183 (3)
H220.04190.53290.89480.022*
C230.23822 (18)0.31465 (17)0.89282 (10)0.0212 (3)
H23A0.15780.33860.94170.032*
H23B0.32200.23170.89510.032*
H23C0.27360.39870.89880.032*
C240.24432 (18)0.14399 (16)0.74387 (10)0.0205 (3)
C250.17210 (19)0.11278 (16)0.65922 (10)0.0209 (3)
H25A0.06130.15320.67520.025*
H25B0.19770.00610.63230.025*
C260.21947 (17)0.17434 (16)0.59025 (10)0.0189 (3)
C270.30906 (18)0.09509 (18)0.51024 (11)0.0240 (3)
H270.35510.00730.49280.029*
C280.32632 (19)0.18168 (19)0.45580 (11)0.0270 (4)
H280.38470.14370.39850.032*
C290.24891 (19)0.32583 (18)0.49576 (11)0.0248 (3)
H290.24650.39980.46940.030*
C300.37254 (18)0.98796 (17)0.90659 (11)0.0225 (3)
N40.05999 (14)0.37105 (13)0.78716 (8)0.0177 (3)
N50.18037 (15)0.27735 (13)0.80764 (8)0.0193 (3)
N60.42280 (17)1.10717 (15)0.95097 (9)0.0275 (3)
O20.35504 (14)0.05496 (12)0.75548 (8)0.0281 (3)
S20.15679 (5)0.35686 (4)0.59911 (3)0.02189 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0199 (8)0.0169 (7)0.0193 (7)0.0065 (6)0.0007 (6)0.0074 (6)
C20.0208 (8)0.0197 (7)0.0198 (7)0.0069 (6)0.0033 (6)0.0069 (6)
C30.0223 (8)0.0176 (7)0.0174 (7)0.0065 (6)0.0021 (6)0.0029 (6)
C40.0212 (8)0.0175 (7)0.0223 (8)0.0042 (6)0.0014 (6)0.0068 (6)
C50.0192 (8)0.0195 (7)0.0179 (7)0.0068 (6)0.0022 (6)0.0080 (6)
C60.0201 (8)0.0179 (7)0.0171 (7)0.0080 (6)0.0015 (6)0.0055 (6)
C70.0207 (8)0.0165 (7)0.0175 (7)0.0060 (6)0.0003 (6)0.0035 (6)
C80.0276 (9)0.0159 (7)0.0195 (7)0.0028 (6)0.0031 (6)0.0019 (6)
C90.0194 (8)0.0189 (7)0.0210 (7)0.0044 (6)0.0000 (6)0.0062 (6)
C100.0176 (7)0.0194 (7)0.0223 (7)0.0074 (6)0.0038 (6)0.0057 (6)
C110.0172 (7)0.0143 (6)0.0217 (7)0.0062 (6)0.0038 (6)0.0019 (6)
C120.0210 (8)0.0266 (8)0.0213 (8)0.0114 (6)0.0076 (6)0.0038 (6)
C130.0300 (9)0.0307 (8)0.0177 (7)0.0149 (7)0.0043 (6)0.0028 (6)
C140.0246 (8)0.0238 (8)0.0235 (8)0.0101 (6)0.0023 (6)0.0007 (6)
C150.0220 (8)0.0161 (7)0.0205 (7)0.0051 (6)0.0003 (6)0.0046 (6)
N10.0191 (7)0.0142 (6)0.0205 (6)0.0035 (5)0.0001 (5)0.0049 (5)
N20.0218 (7)0.0128 (6)0.0191 (6)0.0022 (5)0.0020 (5)0.0019 (5)
N30.0259 (7)0.0223 (7)0.0219 (7)0.0049 (6)0.0046 (6)0.0048 (5)
O10.0274 (6)0.0181 (5)0.0268 (6)0.0018 (5)0.0043 (5)0.0038 (5)
S10.0175 (2)0.02163 (19)0.0281 (2)0.00403 (15)0.00253 (15)0.00725 (16)
C160.0182 (7)0.0169 (7)0.0187 (7)0.0056 (6)0.0002 (6)0.0065 (6)
C170.0202 (8)0.0169 (7)0.0201 (7)0.0059 (6)0.0003 (6)0.0052 (6)
C180.0206 (8)0.0225 (7)0.0174 (7)0.0080 (6)0.0033 (6)0.0063 (6)
C190.0197 (8)0.0216 (7)0.0224 (8)0.0042 (6)0.0005 (6)0.0095 (6)
C200.0226 (8)0.0170 (7)0.0201 (7)0.0046 (6)0.0021 (6)0.0060 (6)
C210.0206 (8)0.0192 (7)0.0183 (7)0.0060 (6)0.0012 (6)0.0069 (6)
C220.0199 (8)0.0185 (7)0.0176 (7)0.0073 (6)0.0027 (6)0.0057 (6)
C230.0241 (8)0.0208 (7)0.0185 (7)0.0060 (6)0.0050 (6)0.0063 (6)
C240.0241 (8)0.0163 (7)0.0215 (7)0.0064 (6)0.0025 (6)0.0066 (6)
C250.0264 (8)0.0146 (7)0.0208 (7)0.0071 (6)0.0045 (6)0.0035 (6)
C260.0201 (8)0.0174 (7)0.0194 (7)0.0071 (6)0.0067 (6)0.0044 (6)
C270.0212 (8)0.0251 (8)0.0221 (8)0.0049 (6)0.0039 (6)0.0045 (6)
C280.0243 (9)0.0352 (9)0.0221 (8)0.0121 (7)0.0015 (6)0.0072 (7)
C290.0288 (9)0.0297 (8)0.0211 (8)0.0159 (7)0.0060 (6)0.0089 (6)
C300.0235 (8)0.0210 (8)0.0228 (8)0.0041 (6)0.0041 (6)0.0093 (6)
N40.0178 (6)0.0165 (6)0.0198 (6)0.0047 (5)0.0031 (5)0.0078 (5)
N50.0203 (7)0.0168 (6)0.0201 (6)0.0041 (5)0.0059 (5)0.0063 (5)
N60.0310 (8)0.0216 (7)0.0260 (7)0.0038 (6)0.0058 (6)0.0060 (6)
O20.0301 (7)0.0188 (5)0.0294 (6)0.0007 (5)0.0063 (5)0.0068 (5)
S20.0295 (2)0.01730 (18)0.01936 (19)0.00892 (15)0.00386 (15)0.00484 (14)
Geometric parameters (Å, º) top
C1—C61.392 (2)C16—C171.396 (2)
C1—C21.403 (2)C16—C211.397 (2)
C1—C71.467 (2)C16—C221.470 (2)
C2—C31.389 (2)C17—C181.381 (2)
C2—H20.9500C17—H170.9500
C3—C41.388 (2)C18—C191.391 (2)
C3—H30.9500C18—H180.9500
C4—C51.399 (2)C19—C201.402 (2)
C4—H40.9500C19—H190.9500
C5—C61.400 (2)C20—C211.399 (2)
C5—C151.444 (2)C20—C301.442 (2)
C6—H60.9500C21—H210.9500
C7—N11.2848 (19)C22—N41.2887 (19)
C7—H70.9500C22—H220.9500
C8—N21.4607 (19)C23—N51.4615 (19)
C8—H8A0.9800C23—H23A0.9800
C8—H8B0.9800C23—H23B0.9800
C8—H8C0.9800C23—H23C0.9800
C9—O11.2246 (18)C24—O21.2210 (19)
C9—N21.3702 (19)C24—N51.3766 (19)
C9—C101.523 (2)C24—C251.518 (2)
C10—C111.502 (2)C25—C261.510 (2)
C10—H10A0.9900C25—H25A0.9900
C10—H10B0.9900C25—H25B0.9900
C11—C121.367 (2)C26—C271.373 (2)
C11—S11.7316 (16)C26—S21.7294 (15)
C12—C131.426 (2)C27—C281.427 (2)
C12—H120.9500C27—H270.9500
C13—C141.360 (2)C28—C291.368 (2)
C13—H130.9500C28—H280.9500
C14—S11.7175 (17)C29—S21.7146 (17)
C14—H140.9500C29—H290.9500
C15—N31.148 (2)C30—N61.151 (2)
N1—N21.3797 (17)N4—N51.3651 (17)
C6—C1—C2119.22 (14)C17—C16—C21119.18 (14)
C6—C1—C7118.67 (13)C17—C16—C22121.66 (14)
C2—C1—C7122.10 (14)C21—C16—C22119.17 (13)
C3—C2—C1120.46 (14)C18—C17—C16120.83 (14)
C3—C2—H2119.8C18—C17—H17119.6
C1—C2—H2119.8C16—C17—H17119.6
C4—C3—C2120.75 (14)C17—C18—C19120.78 (14)
C4—C3—H3119.6C17—C18—H18119.6
C2—C3—H3119.6C19—C18—H18119.6
C3—C4—C5118.88 (14)C18—C19—C20118.77 (14)
C3—C4—H4120.6C18—C19—H19120.6
C5—C4—H4120.6C20—C19—H19120.6
C4—C5—C6120.80 (14)C21—C20—C19120.65 (14)
C4—C5—C15119.99 (13)C21—C20—C30120.45 (14)
C6—C5—C15119.21 (13)C19—C20—C30118.90 (14)
C1—C6—C5119.88 (14)C16—C21—C20119.79 (14)
C1—C6—H6120.1C16—C21—H21120.1
C5—C6—H6120.1C20—C21—H21120.1
N1—C7—C1119.32 (13)N4—C22—C16118.31 (13)
N1—C7—H7120.3N4—C22—H22120.8
C1—C7—H7120.3C16—C22—H22120.8
N2—C8—H8A109.5N5—C23—H23A109.5
N2—C8—H8B109.5N5—C23—H23B109.5
H8A—C8—H8B109.5H23A—C23—H23B109.5
N2—C8—H8C109.5N5—C23—H23C109.5
H8A—C8—H8C109.5H23A—C23—H23C109.5
H8B—C8—H8C109.5H23B—C23—H23C109.5
O1—C9—N2120.86 (14)O2—C24—N5120.83 (14)
O1—C9—C10121.55 (14)O2—C24—C25121.72 (14)
N2—C9—C10117.60 (13)N5—C24—C25117.45 (13)
C11—C10—C9112.24 (12)C26—C25—C24114.41 (13)
C11—C10—H10A109.2C26—C25—H25A108.7
C9—C10—H10A109.2C24—C25—H25A108.7
C11—C10—H10B109.2C26—C25—H25B108.7
C9—C10—H10B109.2C24—C25—H25B108.7
H10A—C10—H10B107.9H25A—C25—H25B107.6
C12—C11—C10126.61 (14)C27—C26—C25125.78 (14)
C12—C11—S1110.52 (12)C27—C26—S2110.37 (12)
C10—C11—S1122.87 (11)C25—C26—S2123.74 (11)
C11—C12—C13113.18 (15)C26—C27—C28113.37 (15)
C11—C12—H12123.4C26—C27—H27123.3
C13—C12—H12123.4C28—C27—H27123.3
C14—C13—C12112.47 (15)C29—C28—C27112.07 (15)
C14—C13—H13123.8C29—C28—H28124.0
C12—C13—H13123.8C27—C28—H28124.0
C13—C14—S1111.68 (13)C28—C29—S2111.79 (12)
C13—C14—H14124.2C28—C29—H29124.1
S1—C14—H14124.2S2—C29—H29124.1
N3—C15—C5178.57 (16)N6—C30—C20179.34 (19)
C7—N1—N2117.84 (12)C22—N4—N5119.44 (13)
C9—N2—N1116.96 (12)N4—N5—C24116.38 (12)
C9—N2—C8120.85 (12)N4—N5—C23122.32 (12)
N1—N2—C8122.11 (12)C24—N5—C23121.30 (13)
C14—S1—C1192.14 (8)C29—S2—C2692.39 (8)
C6—C1—C2—C30.1 (2)C21—C16—C17—C180.2 (2)
C7—C1—C2—C3179.36 (14)C22—C16—C17—C18179.99 (14)
C1—C2—C3—C40.6 (2)C16—C17—C18—C190.1 (2)
C2—C3—C4—C50.5 (2)C17—C18—C19—C200.3 (2)
C3—C4—C5—C60.2 (2)C18—C19—C20—C210.2 (2)
C3—C4—C5—C15179.27 (14)C18—C19—C20—C30179.21 (14)
C2—C1—C6—C50.5 (2)C17—C16—C21—C200.2 (2)
C7—C1—C6—C5178.73 (13)C22—C16—C21—C20179.92 (14)
C4—C5—C6—C10.7 (2)C19—C20—C21—C160.1 (2)
C15—C5—C6—C1178.75 (13)C30—C20—C21—C16179.44 (14)
C6—C1—C7—N1179.33 (14)C17—C16—C22—N45.5 (2)
C2—C1—C7—N11.4 (2)C21—C16—C22—N4174.70 (14)
O1—C9—C10—C1187.85 (18)O2—C24—C25—C2697.62 (18)
N2—C9—C10—C1191.98 (16)N5—C24—C25—C2682.29 (18)
C9—C10—C11—C12106.11 (17)C24—C25—C26—C27109.77 (17)
C9—C10—C11—S173.77 (15)C24—C25—C26—S274.51 (17)
C10—C11—C12—C13179.17 (14)C25—C26—C27—C28175.81 (14)
S1—C11—C12—C130.93 (17)S2—C26—C27—C280.39 (18)
C11—C12—C13—C140.3 (2)C26—C27—C28—C290.0 (2)
C12—C13—C14—S10.46 (18)C27—C28—C29—S20.47 (18)
C1—C7—N1—N2179.87 (12)C16—C22—N4—N5179.09 (13)
O1—C9—N2—N1175.82 (14)C22—N4—N5—C24175.30 (13)
C10—C9—N2—N14.0 (2)C22—N4—N5—C235.4 (2)
O1—C9—N2—C80.9 (2)O2—C24—N5—N4177.92 (14)
C10—C9—N2—C8179.28 (13)C25—C24—N5—N42.0 (2)
C7—N1—N2—C9178.23 (14)O2—C24—N5—C232.7 (2)
C7—N1—N2—C81.6 (2)C25—C24—N5—C23177.35 (13)
C13—C14—S1—C110.84 (13)C28—C29—S2—C260.59 (13)
C12—C11—S1—C141.01 (12)C27—C26—S2—C290.55 (12)
C10—C11—S1—C14179.09 (12)C25—C26—S2—C29175.74 (13)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3 and Cg4 are the centroids of the C11–C14/S1, C1–C6, C26–C29/S2 and C16–C21 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C4—H4···O1i0.952.313.1691 (19)151
C7—H7···N6ii0.952.533.452 (2)164
C19—H19···O2i0.952.273.1980 (19)164
C22—H22···N3iii0.952.613.536 (2)164
C10—H10B···Cg4iv0.992.973.4724 (18)113
C12—H12···Cg30.952.603.436 (2)147
C23—H23C···Cg2iv0.982.903.5646 (19)126
C25—H25B···Cg1v0.992.713.6910 (18)169
Symmetry codes: (i) x+1, y+1, z; (ii) x, y1, z1; (iii) x1, y, z+1; (iv) x, y+1, z+1; (v) x, y, z+1.
(E)-N'-(4-Methoxybenzylidene)-N-methyl-2-(thiophen-2-yl)acetohydrazide (II) top
Crystal data top
C15H16N2O2SZ = 4
Mr = 288.36F(000) = 608
Triclinic, P1Dx = 1.304 Mg m3
a = 7.2148 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.8307 (5) ÅCell parameters from 16502 reflections
c = 24.1120 (17) Åθ = 2.4–27.5°
α = 80.025 (6)°µ = 0.22 mm1
β = 87.601 (7)°T = 100 K
γ = 76.097 (6)°Slab, colourless
V = 1468.67 (17) Å30.19 × 0.13 × 0.05 mm
Data collection top
Rigaku Mercury CCD
diffractometer
5764 reflections with I > 2σ(I)
ω scansRint = 0.038
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2012)
θmax = 27.5°, θmin = 2.4°
Tmin = 0.820, Tmax = 1.000h = 99
19273 measured reflectionsk = 1111
6732 independent reflectionsl = 3130
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.127 w = 1/[σ2(Fo2) + (0.0663P)2 + 0.5738P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
6732 reflectionsΔρmax = 0.63 e Å3
367 parametersΔρmin = 0.51 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.67008 (18)0.60106 (16)0.02475 (6)0.0180 (3)
C20.5794 (2)0.75469 (16)0.01600 (6)0.0203 (3)
H20.57510.78040.02080.024*
C30.4965 (2)0.86847 (16)0.06029 (6)0.0218 (3)
H30.43570.97200.05390.026*
C40.50131 (19)0.83212 (16)0.11471 (6)0.0200 (3)
C50.5850 (2)0.67911 (16)0.12395 (6)0.0203 (3)
H50.58570.65290.16060.024*
C60.66768 (19)0.56475 (16)0.07866 (6)0.0194 (3)
H60.72350.46000.08470.023*
C70.76607 (19)0.48091 (16)0.02163 (6)0.0187 (3)
H70.81450.37420.01660.022*
C80.9558 (2)0.24722 (16)0.10720 (6)0.0214 (3)
H8A0.85520.19990.09680.032*
H8B1.01320.18820.14300.032*
H8C1.05410.24310.07780.032*
C90.8960 (2)0.46599 (17)0.16159 (6)0.0214 (3)
C100.8168 (2)0.64228 (17)0.16296 (6)0.0235 (3)
H10A0.69840.68160.14030.028*
H10B0.78520.65830.20220.028*
C110.9622 (2)0.73367 (16)0.13961 (6)0.0208 (3)
C121.13089 (14)0.74915 (10)0.17678 (4)0.0390 (3)0.662 (2)
H121.16020.70980.21540.047*0.662 (2)
S1A1.13089 (14)0.74915 (10)0.17678 (4)0.0390 (3)0.338 (2)
C131.2333 (2)0.84657 (19)0.13194 (8)0.0360 (4)
H131.34370.87870.14070.043*
C141.1583 (2)0.88417 (18)0.07941 (8)0.0320 (4)
H141.21180.94430.04920.038*
C150.4195 (3)0.9248 (2)0.21167 (7)0.0349 (4)
H15A0.36251.02300.23700.052*
H15B0.34530.84610.21320.052*
H15C0.55120.88410.22340.052*
N10.78323 (16)0.52285 (13)0.06906 (5)0.0181 (2)
N20.87351 (17)0.41187 (13)0.11301 (5)0.0188 (2)
O10.98112 (17)0.37640 (13)0.20239 (4)0.0287 (2)
O20.41861 (15)0.95573 (12)0.15535 (4)0.0257 (2)
S10.96968 (7)0.81888 (6)0.07181 (2)0.02516 (17)0.662 (2)
C12A0.96968 (7)0.81888 (6)0.07181 (2)0.02516 (17)0.338 (2)
H12A0.89150.82630.04020.030*0.338 (2)
C160.7764 (2)0.37271 (18)0.53247 (6)0.0232 (3)
C170.8223 (2)0.21881 (18)0.51957 (6)0.0259 (3)
H170.82250.20450.48140.031*
C180.8670 (2)0.08863 (18)0.56149 (7)0.0273 (3)
H180.89650.01470.55220.033*
C190.8691 (2)0.10806 (18)0.61799 (6)0.0246 (3)
C200.8182 (2)0.25909 (19)0.63179 (6)0.0263 (3)
H200.81500.27310.67000.032*
C210.7718 (2)0.38993 (18)0.58890 (7)0.0261 (3)
H210.73630.49310.59840.031*
C220.7391 (2)0.51354 (18)0.48843 (6)0.0246 (3)
H220.69570.61580.49830.030*
C230.6759 (2)0.79073 (19)0.40919 (7)0.0303 (3)
H23A0.55140.80360.42800.045*
H23B0.66590.86840.37440.045*
H23C0.77020.80730.43420.045*
C240.7715 (2)0.60876 (19)0.34096 (7)0.0273 (3)
C250.8229 (2)0.43990 (19)0.32963 (6)0.0269 (3)
H25A0.89840.43460.29450.032*
H25B0.90180.37000.36090.032*
C260.6444 (2)0.38433 (19)0.32416 (7)0.0270 (3)
C270.58683 (12)0.23749 (10)0.36718 (4)0.0472 (3)0.549 (3)
H270.64920.16980.39940.057*0.549 (3)
S2A0.58683 (12)0.23749 (10)0.36718 (4)0.0472 (3)0.451 (3)
C280.3942 (3)0.2460 (3)0.33734 (10)0.0525 (6)
H280.31850.17250.35020.063*
C290.3408 (3)0.3617 (3)0.29275 (9)0.0481 (5)
H290.22360.37620.27370.058*
C300.9352 (3)0.0128 (2)0.71366 (7)0.0395 (4)
H30A0.97960.11780.73650.059*
H30B0.80890.03800.72680.059*
H30C1.02530.05220.71720.059*
N30.76545 (17)0.49815 (15)0.43654 (5)0.0236 (3)
N40.73577 (18)0.63152 (15)0.39574 (5)0.0254 (3)
O30.7577 (2)0.72180 (15)0.30224 (5)0.0378 (3)
O40.92322 (17)0.02841 (13)0.65599 (5)0.0317 (3)
S20.48492 (10)0.47394 (10)0.27350 (3)0.0423 (3)0.549 (3)
C27A0.48492 (10)0.47394 (10)0.27350 (3)0.0423 (3)0.451 (3)
H27A0.48090.56070.24380.051*0.451 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0141 (6)0.0180 (6)0.0235 (7)0.0069 (5)0.0000 (5)0.0033 (5)
C20.0184 (6)0.0208 (6)0.0234 (7)0.0052 (5)0.0003 (5)0.0073 (5)
C30.0185 (6)0.0174 (6)0.0298 (8)0.0027 (5)0.0019 (5)0.0061 (5)
C40.0149 (6)0.0189 (6)0.0262 (7)0.0057 (5)0.0022 (5)0.0006 (5)
C50.0189 (6)0.0221 (7)0.0215 (7)0.0071 (5)0.0001 (5)0.0045 (5)
C60.0176 (6)0.0170 (6)0.0247 (7)0.0054 (5)0.0012 (5)0.0046 (5)
C70.0171 (6)0.0163 (6)0.0239 (7)0.0064 (5)0.0015 (5)0.0037 (5)
C80.0213 (7)0.0157 (6)0.0276 (7)0.0059 (5)0.0013 (5)0.0022 (5)
C90.0230 (7)0.0221 (7)0.0195 (7)0.0085 (5)0.0030 (5)0.0013 (5)
C100.0276 (7)0.0225 (7)0.0210 (7)0.0068 (6)0.0047 (5)0.0053 (5)
C110.0238 (7)0.0161 (6)0.0224 (7)0.0031 (5)0.0001 (5)0.0047 (5)
C120.0445 (6)0.0307 (5)0.0468 (6)0.0145 (4)0.0042 (4)0.0129 (4)
S1A0.0445 (6)0.0307 (5)0.0468 (6)0.0145 (4)0.0042 (4)0.0129 (4)
C130.0294 (8)0.0229 (7)0.0597 (12)0.0078 (6)0.0071 (8)0.0141 (7)
C140.0331 (8)0.0169 (7)0.0420 (9)0.0014 (6)0.0092 (7)0.0026 (6)
C150.0456 (10)0.0298 (8)0.0263 (8)0.0068 (7)0.0088 (7)0.0022 (6)
N10.0154 (5)0.0176 (5)0.0213 (6)0.0051 (4)0.0005 (4)0.0012 (4)
N20.0196 (6)0.0159 (5)0.0209 (6)0.0053 (4)0.0010 (4)0.0010 (4)
O10.0384 (6)0.0264 (5)0.0201 (5)0.0084 (5)0.0030 (4)0.0015 (4)
O20.0263 (5)0.0213 (5)0.0265 (5)0.0029 (4)0.0059 (4)0.0011 (4)
S10.0214 (3)0.0195 (2)0.0325 (3)0.00284 (18)0.00245 (19)0.00200 (19)
C12A0.0214 (3)0.0195 (2)0.0325 (3)0.00284 (18)0.00245 (19)0.00200 (19)
C160.0202 (7)0.0271 (7)0.0231 (7)0.0073 (5)0.0001 (5)0.0036 (6)
C170.0260 (7)0.0289 (7)0.0232 (7)0.0057 (6)0.0010 (6)0.0066 (6)
C180.0273 (8)0.0247 (7)0.0306 (8)0.0051 (6)0.0006 (6)0.0079 (6)
C190.0205 (7)0.0257 (7)0.0269 (8)0.0072 (5)0.0023 (5)0.0008 (6)
C200.0280 (8)0.0305 (8)0.0219 (7)0.0093 (6)0.0012 (6)0.0045 (6)
C210.0279 (8)0.0238 (7)0.0276 (8)0.0067 (6)0.0010 (6)0.0059 (6)
C220.0233 (7)0.0249 (7)0.0262 (7)0.0071 (6)0.0015 (6)0.0033 (6)
C230.0324 (8)0.0263 (7)0.0330 (8)0.0101 (6)0.0020 (6)0.0025 (6)
C240.0249 (7)0.0348 (8)0.0243 (7)0.0137 (6)0.0049 (6)0.0004 (6)
C250.0237 (7)0.0349 (8)0.0224 (7)0.0088 (6)0.0016 (6)0.0024 (6)
C260.0248 (7)0.0327 (8)0.0258 (7)0.0075 (6)0.0005 (6)0.0101 (6)
C270.0372 (5)0.0359 (4)0.0734 (7)0.0118 (3)0.0040 (4)0.0176 (4)
S2A0.0372 (5)0.0359 (4)0.0734 (7)0.0118 (3)0.0040 (4)0.0176 (4)
C280.0597 (13)0.0571 (13)0.0596 (13)0.0358 (11)0.0136 (11)0.0336 (11)
C290.0273 (9)0.0755 (15)0.0493 (12)0.0116 (9)0.0014 (8)0.0334 (11)
C300.0535 (11)0.0371 (9)0.0285 (9)0.0192 (8)0.0129 (8)0.0075 (7)
N30.0208 (6)0.0265 (6)0.0237 (6)0.0088 (5)0.0018 (5)0.0002 (5)
N40.0261 (6)0.0255 (6)0.0255 (6)0.0102 (5)0.0030 (5)0.0001 (5)
O30.0526 (8)0.0360 (6)0.0263 (6)0.0197 (6)0.0046 (5)0.0047 (5)
O40.0369 (6)0.0264 (6)0.0304 (6)0.0091 (5)0.0075 (5)0.0030 (4)
S20.0266 (4)0.0548 (5)0.0487 (5)0.0044 (3)0.0049 (3)0.0236 (3)
C27A0.0266 (4)0.0548 (5)0.0487 (5)0.0044 (3)0.0049 (3)0.0236 (3)
Geometric parameters (Å, º) top
C1—C61.3935 (19)C16—C211.393 (2)
C1—C21.4051 (18)C16—C171.405 (2)
C1—C71.4686 (19)C16—C221.467 (2)
C2—C31.379 (2)C17—C181.376 (2)
C2—H20.9500C17—H170.9500
C3—C41.401 (2)C18—C191.403 (2)
C3—H30.9500C18—H180.9500
C4—O21.3687 (17)C19—O41.3659 (18)
C4—C51.3931 (19)C19—C201.390 (2)
C5—C61.3970 (19)C20—C211.395 (2)
C5—H50.9500C20—H200.9500
C6—H60.9500C21—H210.9500
C7—N11.2811 (18)C22—N31.283 (2)
C7—H70.9500C22—H220.9500
C8—N21.4611 (17)C23—N41.457 (2)
C8—H8A0.9800C23—H23A0.9800
C8—H8B0.9800C23—H23B0.9800
C8—H8C0.9800C23—H23C0.9800
C9—O11.2322 (18)C24—O31.231 (2)
C9—N21.3690 (18)C24—N41.375 (2)
C9—C101.5297 (19)C24—C251.517 (2)
C10—C111.506 (2)C25—C261.502 (2)
C10—H10A0.9900C25—H25A0.9900
C10—H10B0.9900C25—H25B0.9900
C11—S1A1.5863 (17)C26—S2A1.6389 (19)
C11—C121.5863 (17)C26—C271.6389 (19)
C11—C12A1.6815 (15)C26—C27A1.6695 (17)
C11—S11.6815 (15)C26—S21.6695 (17)
C12—C131.540 (2)C27—C281.571 (2)
C12—H120.9500C27—H270.9500
S1A—C131.540 (2)S2A—C281.571 (2)
C13—C141.354 (3)C28—C291.347 (3)
C13—H130.9500C28—H280.9500
C14—C12A1.6288 (19)C29—C27A1.605 (2)
C14—S11.6288 (19)C29—S21.605 (2)
C14—H140.9500C29—H290.9500
C15—O21.430 (2)C30—O41.429 (2)
C15—H15A0.9800C30—H30A0.9800
C15—H15B0.9800C30—H30B0.9800
C15—H15C0.9800C30—H30C0.9800
N1—N21.3780 (16)N3—N41.3768 (17)
C12A—H12A0.9500C27A—H27A0.9500
C6—C1—C2118.52 (13)C21—C16—C17118.26 (14)
C6—C1—C7120.41 (12)C21—C16—C22119.78 (14)
C2—C1—C7121.07 (13)C17—C16—C22121.93 (14)
C3—C2—C1120.60 (13)C18—C17—C16120.85 (14)
C3—C2—H2119.7C18—C17—H17119.6
C1—C2—H2119.7C16—C17—H17119.6
C2—C3—C4120.31 (13)C17—C18—C19120.20 (14)
C2—C3—H3119.8C17—C18—H18119.9
C4—C3—H3119.8C19—C18—H18119.9
O2—C4—C5125.10 (13)O4—C19—C20124.70 (14)
O2—C4—C3114.90 (12)O4—C19—C18115.48 (14)
C5—C4—C3119.99 (13)C20—C19—C18119.82 (14)
C4—C5—C6119.10 (13)C19—C20—C21119.32 (14)
C4—C5—H5120.5C19—C20—H20120.3
C6—C5—H5120.5C21—C20—H20120.3
C1—C6—C5121.40 (12)C16—C21—C20121.46 (14)
C1—C6—H6119.3C16—C21—H21119.3
C5—C6—H6119.3C20—C21—H21119.3
N1—C7—C1118.66 (12)N3—C22—C16119.79 (14)
N1—C7—H7120.7N3—C22—H22120.1
C1—C7—H7120.7C16—C22—H22120.1
N2—C8—H8A109.5N4—C23—H23A109.5
N2—C8—H8B109.5N4—C23—H23B109.5
H8A—C8—H8B109.5H23A—C23—H23B109.5
N2—C8—H8C109.5N4—C23—H23C109.5
H8A—C8—H8C109.5H23A—C23—H23C109.5
H8B—C8—H8C109.5H23B—C23—H23C109.5
O1—C9—N2121.10 (13)O3—C24—N4121.06 (15)
O1—C9—C10121.10 (13)O3—C24—C25121.11 (14)
N2—C9—C10117.78 (12)N4—C24—C25117.80 (13)
C11—C10—C9110.00 (11)C26—C25—C24109.96 (13)
C11—C10—H10A109.7C26—C25—H25A109.7
C9—C10—H10A109.7C24—C25—H25A109.7
C11—C10—H10B109.7C26—C25—H25B109.7
C9—C10—H10B109.7C24—C25—H25B109.7
H10A—C10—H10B108.2H25A—C25—H25B108.2
C10—C11—S1A122.26 (11)C25—C26—S2A123.86 (12)
C10—C11—C12122.26 (11)C25—C26—C27123.86 (12)
C10—C11—C12A123.80 (11)C25—C26—C27A121.30 (12)
S1A—C11—C12A113.85 (10)S2A—C26—C27A114.82 (10)
C10—C11—S1123.80 (11)C25—C26—S2121.30 (12)
C12—C11—S1113.85 (10)C27—C26—S2114.82 (10)
C13—C12—C1199.52 (10)C28—C27—C2696.38 (12)
C13—C12—H12130.2C28—C27—H27131.8
C11—C12—H12130.2C26—C27—H27131.8
C13—S1A—C1199.52 (10)C28—S2A—C2696.38 (12)
C14—C13—C12116.71 (14)C29—C28—C27117.29 (17)
C14—C13—S1A116.71 (14)C29—C28—S2A117.29 (17)
C14—C13—H13121.6C29—C28—H28121.4
C12—C13—H13121.6C27—C28—H28121.4
C13—C14—C12A115.10 (14)C28—C29—C27A116.63 (16)
C13—C14—S1115.10 (14)C28—C29—S2116.63 (16)
C13—C14—H14122.4C28—C29—H29121.7
S1—C14—H14122.4S2—C29—H29121.7
O2—C15—H15A109.5O4—C30—H30A109.5
O2—C15—H15B109.5O4—C30—H30B109.5
H15A—C15—H15B109.5H30A—C30—H30B109.5
O2—C15—H15C109.5O4—C30—H30C109.5
H15A—C15—H15C109.5H30A—C30—H30C109.5
H15B—C15—H15C109.5H30B—C30—H30C109.5
C7—N1—N2119.49 (11)C22—N3—N4119.20 (13)
C9—N2—N1116.55 (11)C24—N4—N3116.90 (13)
C9—N2—C8120.98 (11)C24—N4—C23120.61 (13)
N1—N2—C8122.28 (11)N3—N4—C23122.45 (13)
C4—O2—C15117.14 (12)C19—O4—C30117.02 (13)
C14—S1—C1194.79 (8)C29—S2—C2694.82 (11)
C14—C12A—C1194.79 (8)C29—C27A—C2694.82 (11)
C14—C12A—H12A132.6C29—C27A—H27A132.6
C11—C12A—H12A132.6C26—C27A—H27A132.6
C6—C1—C2—C32.5 (2)C21—C16—C17—C181.8 (2)
C7—C1—C2—C3177.32 (13)C22—C16—C17—C18176.36 (15)
C1—C2—C3—C40.1 (2)C16—C17—C18—C190.6 (2)
C2—C3—C4—O2178.41 (13)C17—C18—C19—O4177.30 (14)
C2—C3—C4—C52.0 (2)C17—C18—C19—C202.7 (2)
O2—C4—C5—C6178.77 (13)O4—C19—C20—C21177.79 (14)
C3—C4—C5—C61.7 (2)C18—C19—C20—C212.2 (2)
C2—C1—C6—C52.8 (2)C17—C16—C21—C202.3 (2)
C7—C1—C6—C5177.01 (12)C22—C16—C21—C20175.90 (14)
C4—C5—C6—C10.7 (2)C19—C20—C21—C160.3 (2)
C6—C1—C7—N1172.62 (13)C21—C16—C22—N3171.72 (14)
C2—C1—C7—N17.2 (2)C17—C16—C22—N36.4 (2)
O1—C9—C10—C1192.19 (16)O3—C24—C25—C2693.93 (18)
N2—C9—C10—C1186.14 (16)N4—C24—C25—C2684.33 (17)
C9—C10—C11—S1A82.95 (15)C24—C25—C26—S2A116.66 (14)
C9—C10—C11—C1282.95 (15)C24—C25—C26—C27116.66 (14)
C9—C10—C11—C12A93.33 (14)C24—C25—C26—C27A61.63 (16)
C9—C10—C11—S193.33 (14)C24—C25—C26—S261.63 (16)
C10—C11—C12—C13178.21 (12)C25—C26—C27—C28179.91 (14)
S1—C11—C12—C131.59 (11)S2—C26—C27—C281.71 (13)
C10—C11—S1A—C13178.21 (12)C25—C26—S2A—C28179.91 (14)
C12A—C11—S1A—C131.59 (11)C27A—C26—S2A—C281.71 (13)
C11—C12—C13—C140.83 (16)C26—C27—C28—C292.45 (19)
C11—S1A—C13—C140.83 (16)C26—S2A—C28—C292.45 (19)
S1A—C13—C14—C12A0.25 (19)S2A—C28—C29—C27A2.5 (2)
C12—C13—C14—S10.25 (19)C27—C28—C29—S22.5 (2)
C1—C7—N1—N2179.76 (11)C16—C22—N3—N4177.97 (13)
O1—C9—N2—N1177.36 (13)O3—C24—N4—N3176.37 (14)
C10—C9—N2—N10.97 (18)C25—C24—N4—N35.4 (2)
O1—C9—N2—C82.3 (2)O3—C24—N4—C231.5 (2)
C10—C9—N2—C8176.08 (12)C25—C24—N4—C23176.75 (13)
C7—N1—N2—C9176.67 (12)C22—N3—N4—C24178.08 (13)
C7—N1—N2—C81.63 (19)C22—N3—N4—C230.2 (2)
C5—C4—O2—C150.3 (2)C20—C19—O4—C302.7 (2)
C3—C4—O2—C15179.90 (13)C18—C19—O4—C30177.30 (15)
C13—C14—S1—C111.12 (13)C28—C29—S2—C261.01 (18)
C10—C11—S1—C14178.21 (12)C25—C26—S2—C29179.06 (14)
C12—C11—S1—C141.65 (10)C27—C26—S2—C290.63 (12)
C13—C14—C12A—C111.12 (13)C28—C29—C27A—C261.01 (18)
C10—C11—C12A—C14178.21 (12)C25—C26—C27A—C29179.06 (14)
S1A—C11—C12A—C141.65 (10)S2A—C26—C27A—C290.63 (12)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3 and Cg4 are the centroids of the C11–C14/S1, C1–C6, C26–C29/S2 and C16–C21 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C6—H6···S1i0.952.873.7326 (14)152
C10—H10B···O30.992.563.5366 (19)169
C13—H13···O2ii0.952.583.499 (2)164
C15—H15A···O3iii0.982.503.478 (2)176
C25—H25A···O10.992.383.3206 (19)157
C28—H28···O4iv0.952.423.307 (2)156
C29—H29···O1v0.952.503.422 (2)163
C30—H30A···O1vi0.982.453.419 (2)168
C6—H6···Cg1i0.952.673.6071 (15)169
C8—H8C···Cg2i0.982.723.4831 (16)135
C21—H21···Cg3vii0.952.903.6721 (18)140
C23—H23A···Cg4vii0.982.813.6560 (16)145
C23—H23C···Cg4viii0.982.883.6067 (16)131
Symmetry codes: (i) x+2, y+1, z; (ii) x+2, y+2, z; (iii) x+1, y+2, z; (iv) x+1, y, z+1; (v) x1, y, z; (vi) x+2, y, z+1; (vii) x+1, y+1, z+1; (viii) x+2, y+1, z+1.
Hirshfeld contact interactions (%) top
Contact type(I) A(I) B(I)(II) A(II) B(II)
H···H30.835.133.051.053.952.5
C···H/H···C27.125.726.423.922.623.2
O···H/H···O8.49.48.913.714.514.1
N···H/H···N16.214.115.12.62.32.4
C···C2.93.02.92.11.61.8
C···N/N···C2.83.83.31.82.62.2
S···H/H···S9.06.97.93.52.22.9
others2.82.02.41.40.30.9
 

Acknowledgements

We thank the EPSRC National Crystallography Service (University of Southampton) for the X-ray data collections.

References

First citationCao, X.-Y., Harrowfield, J., Nitschke, J., Ramírez, J., Stadler, A.-M., Kyritsakas-Gruber, N., Madalan, A., Rissanen, K., Russo, L., Vaughan, G. & Lehn, J.-M. (2007). Eur. J. Inorg. Chem. pp. 2944–2965.  Web of Science CSD CrossRef
First citationCardoso, L. N. F., Bispo, M. L. F., Kaiser, C. R., Wardell, J. L., Wardell, S. M. S. V., Lourenço, M. C. S. S., Bezerra, F. A. F., Soares, R. P. P., Rocha, M. N. & de Souza, M. V. N. (2014). Arch. Pharm. Chem. Life Sci. 347, 432–448.  Web of Science CrossRef CAS
First citationCardoso, L. N. F., Nogueira, T. C. M., Rodrigues, F. A. R., Oliveira, A. C. A., Luciano, M. C. dos S., Pessoa, C. & de Souza, M. V. N. (2017). Med. Chem. Res. 26, 1605–1608.  Web of Science CrossRef CAS
First citationCardoso, L. N. F., Noguiera, T. C. M., Kaiser, C. R., Wardell, J. L., Souza, M. V. N. de, Lancaster, S. T. & Harrison, W. T. A. (2016a). Acta Cryst. E72, 1677–1682.  CSD CrossRef IUCr Journals
First citationCardoso, L. N. F., Noguiera, T. C. M., Kaiser, C. R., Wardell, J. L., Wardell, S. M. S. V. & de Souza, M. V. N. (2016b). Z. Kristallogr. 231, 167–000.  CAS
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816.
First citationPedireddi, V. R. & Desiraju, G. R. (1992). J. Chem. Soc. Chem. Commun. pp. 988.
First citationRamírez, J., Brelot, L., Osinska, I. & Stadler, A.-M. (2009b). J. Mol. Struct. 931, 20–24.
First citationRamírez, J., Stadler, A.-M., Rogez, G., Drillon, M. & Lehn, J.-M. (2009a). Inorg. Chem. 48, 2456–2463.  Web of Science PubMed
First citationRigaku (2012). CrystalClear. Rigaku Corporation, Tokyo, Japan.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationSwanston, J. (2006). Thiophene. Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH.
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia, Nedlands, Western Australia; https://hirshfeldsurface.net.
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds