organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-3-Di­methyl­amino-1-(1,3-thia­zol-2-yl)prop-2-en-1-one

aDepartment of Pharmaceutical and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, People's Republic of China, and bState Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, People's Republic of China
*Correspondence e-mail: yuluot@scu.edu.cn

(Received 19 November 2012; accepted 28 November 2012; online 5 December 2012)

In the title compound, C8H10N2OS, the 3-(dimethyl­amino)­prop-2-en-1-one unit is approximately planar [give r.m.s. deviation] and the mean plane through the seven non-H atoms makes a dihedral angle of 8.88 (3)° with the thia­zole ring. The carbonyl and ring C=N double bonds adjacent to the carbonyl group are trans [N—C—C—O = 172.31 (15) °], while the conformation of the carbonyl and propene double bonds is cis [O—C—C—C = 2.2 (2)°]. In the crystal, short C—H⋯N and C—H⋯O inter­actions together with C—H⋯π inter­actions generate a three-dimensional network.

Related literature

For the biological activity of enaminone derivatives, see: Zeng (2010[Zeng, X. X. (2010). Bioorg. Med. Chem. Lett. 20, 6282-6285.]).

[Scheme 1]

Experimental

Crystal data
  • C8H10N2OS

  • Mr = 182.24

  • Monoclinic, P 21 /n

  • a = 5.6252 (2) Å

  • b = 22.5957 (8) Å

  • c = 7.5777 (3) Å

  • β = 109.498 (4)°

  • V = 907.93 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 135 K

  • 0.35 × 0.30 × 0.30 mm

Data collection
  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.974, Tmax = 1.000

  • 3683 measured reflections

  • 1846 independent reflections

  • 1565 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.090

  • S = 1.06

  • 1846 reflections

  • 111 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the S1/N1/C1–C3 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯N1i 0.95 2.62 3.560 (2) 169
C6—H6⋯O1ii 0.95 2.60 3.462 (2) 151
C8—H8A⋯O1ii 0.98 2.31 3.269 (2) 167
C9—H9C⋯O1iii 0.98 2.51 3.433 (2) 157
C9—H9ACg1iv 0.98 2.93 3.549 (2) 122
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y, -z; (iii) x+1, y, z; (iv) x, y, z-1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Enaminone derivatives are of great importance in organic synthesis (Zeng et al., 2010). The title compound is one of the key intermediates in our synthetic investigations on compounds active against of anti-hepatocellular carcinoma and cancers. We report here its crystal structure.

In the title compound, C8H10N2OS, (Fig.1), the dihedral angle between the thiazole ring and the mean plane through the remaining non-hydrogen atoms [O1/C4 - C9] is 8.88 (3) °. The two double bonds C1N1 and C4O1 are in trans (N1—C1—C4—O1: 172.31 (15) °), and the C4O1 and C5C6 double bonds are in cis (O1—C4—C5—C6: 2.2 (2) °).

In the crystal packing (Fig.2), the molecules are stabilized by short intermolecular C—H···N/O interactions and a C9—H9···Cg1 interaction (Cg1 is the centroid of the S1/N1/C1-C3 ring, Table 1).

Related literature top

For the biological activity of enaminone derivatives, see: Zeng et al. (2010).

Experimental top

A solution of 6.36 g (50.0 mmol) of 1-thiazol-2-yl-ethanone in 16.03 ml (17.87 g,150.0 mmol) of DMF-DMA (dimethoxy-N,N-dimethylmethanamine) was stirred for 24 h at 114°C. The solvent was evaporated and the title compound was recrystallized from ethanol. Yield: 6.83 g (75%). Crystals suitable for X-ray analysis were obtained by slow evaporation from a solution of ethyl acetate.

Refinement top

All H atoms were positioned geometrically (for methyl, C—H = 0.98 Å; for the other H atoms, C—H = 0.95 Å) and refined using a riding model, withUiso(H) = kUeq(C), where k = 1.5 for methyl and 1.2 for all other H atoms.

Structure description top

Enaminone derivatives are of great importance in organic synthesis (Zeng et al., 2010). The title compound is one of the key intermediates in our synthetic investigations on compounds active against of anti-hepatocellular carcinoma and cancers. We report here its crystal structure.

In the title compound, C8H10N2OS, (Fig.1), the dihedral angle between the thiazole ring and the mean plane through the remaining non-hydrogen atoms [O1/C4 - C9] is 8.88 (3) °. The two double bonds C1N1 and C4O1 are in trans (N1—C1—C4—O1: 172.31 (15) °), and the C4O1 and C5C6 double bonds are in cis (O1—C4—C5—C6: 2.2 (2) °).

In the crystal packing (Fig.2), the molecules are stabilized by short intermolecular C—H···N/O interactions and a C9—H9···Cg1 interaction (Cg1 is the centroid of the S1/N1/C1-C3 ring, Table 1).

For the biological activity of enaminone derivatives, see: Zeng et al. (2010).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2006); cell refinement: CrysAlis PRO (Oxford Diffraction, 2006); data reduction: CrysAlis PRO (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. A crystal packing diagram of the title compound. The dashed lines represent C—H···π interactions.
(E)-3-Dimethylamino-1-(1,3-thiazol-2-yl)prop-2-en-1-one top
Crystal data top
C8H10N2OSF(000) = 384
Mr = 182.24Dx = 1.333 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.7107 Å
a = 5.6252 (2) ÅCell parameters from 1788 reflections
b = 22.5957 (8) Åθ = 3.0–28.8°
c = 7.5777 (3) ŵ = 0.31 mm1
β = 109.498 (4)°T = 135 K
V = 907.93 (6) Å3Block, yellow
Z = 40.35 × 0.30 × 0.30 mm
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
1846 independent reflections
Radiation source: Enhanced (Mo) X-ray Source1565 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
Detector resolution: 16.0874 pixels mm-1θmax = 26.4°, θmin = 3.0°
ω scansh = 47
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2006)
k = 1328
Tmin = 0.974, Tmax = 1.000l = 98
3683 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0388P)2 + 0.2132P]
where P = (Fo2 + 2Fc2)/3
1846 reflections(Δ/σ)max < 0.001
111 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C8H10N2OSV = 907.93 (6) Å3
Mr = 182.24Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.6252 (2) ŵ = 0.31 mm1
b = 22.5957 (8) ÅT = 135 K
c = 7.5777 (3) Å0.35 × 0.30 × 0.30 mm
β = 109.498 (4)°
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
1846 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2006)
1565 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 1.000Rint = 0.018
3683 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.06Δρmax = 0.28 e Å3
1846 reflectionsΔρmin = 0.26 e Å3
111 parameters
Special details top

Experimental. Absorption correction: CrysAlisPro, Agilent Technologies, Version 1.171.35.19, empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.48299 (8)0.15794 (2)0.44117 (6)0.02965 (16)
O10.5387 (2)0.06419 (5)0.19443 (16)0.0293 (3)
N10.8366 (2)0.20354 (6)0.34119 (19)0.0269 (3)
N20.9036 (2)0.06400 (6)0.19641 (18)0.0243 (3)
C10.6877 (3)0.15752 (7)0.3145 (2)0.0214 (4)
C20.6091 (3)0.22388 (9)0.5379 (2)0.0347 (4)
H20.55860.24550.62690.042*
C30.7920 (3)0.24077 (8)0.4690 (2)0.0336 (4)
H30.88410.27650.50730.040*
C40.6732 (3)0.10684 (7)0.1844 (2)0.0215 (4)
C50.8103 (3)0.11210 (7)0.0581 (2)0.0226 (4)
H50.91410.14560.06190.027*
C60.7890 (3)0.06752 (7)0.0696 (2)0.0221 (4)
H60.68000.03570.06670.026*
C80.8565 (3)0.01509 (8)0.3283 (2)0.0308 (4)
H8A0.74690.01400.29800.046*
H8B1.01690.00370.32030.046*
H8C0.77400.03000.45560.046*
C91.0815 (3)0.10914 (9)0.2102 (2)0.0342 (4)
H9A1.00280.14820.22030.051*
H9B1.12910.10170.32140.051*
H9C1.23240.10780.09820.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0328 (3)0.0320 (3)0.0283 (3)0.00526 (19)0.0159 (2)0.00177 (19)
O10.0389 (7)0.0259 (7)0.0287 (6)0.0064 (6)0.0186 (5)0.0032 (5)
N10.0274 (7)0.0248 (8)0.0253 (7)0.0021 (6)0.0046 (6)0.0015 (6)
N20.0267 (7)0.0290 (8)0.0204 (7)0.0021 (6)0.0121 (6)0.0029 (6)
C10.0214 (8)0.0238 (9)0.0178 (8)0.0062 (7)0.0050 (6)0.0029 (7)
C20.0428 (10)0.0309 (10)0.0292 (9)0.0115 (9)0.0102 (8)0.0059 (8)
C30.0378 (10)0.0255 (10)0.0318 (9)0.0040 (8)0.0040 (8)0.0064 (8)
C40.0232 (8)0.0223 (8)0.0179 (8)0.0028 (7)0.0052 (6)0.0026 (7)
C50.0238 (8)0.0235 (9)0.0209 (8)0.0005 (7)0.0079 (7)0.0018 (7)
C60.0225 (8)0.0253 (9)0.0190 (8)0.0021 (7)0.0077 (6)0.0055 (7)
C80.0439 (10)0.0298 (10)0.0247 (9)0.0073 (8)0.0193 (8)0.0019 (8)
C90.0297 (9)0.0466 (12)0.0299 (9)0.0064 (9)0.0148 (8)0.0032 (9)
Geometric parameters (Å, º) top
S1—C11.7282 (16)C3—H30.9500
S1—C21.707 (2)C4—C51.420 (2)
O1—C41.2432 (19)C5—H50.9500
N1—C11.308 (2)C5—C61.374 (2)
N1—C31.368 (2)C6—H60.9500
N2—C61.3264 (19)C8—H8A0.9800
N2—C81.454 (2)C8—H8B0.9800
N2—C91.457 (2)C8—H8C0.9800
C1—C41.495 (2)C9—H9A0.9800
C2—H20.9500C9—H9B0.9800
C2—C31.355 (3)C9—H9C0.9800
C2—S1—C189.13 (9)C6—C5—C4118.28 (15)
C1—N1—C3109.85 (14)C6—C5—H5120.9
C6—N2—C8121.51 (14)N2—C6—C5127.23 (16)
C6—N2—C9121.45 (15)N2—C6—H6116.4
C8—N2—C9117.04 (13)C5—C6—H6116.4
N1—C1—S1114.87 (12)N2—C8—H8A109.5
N1—C1—C4127.05 (14)N2—C8—H8B109.5
C4—C1—S1118.07 (12)N2—C8—H8C109.5
S1—C2—H2125.0H8A—C8—H8B109.5
C3—C2—S1109.92 (14)H8A—C8—H8C109.5
C3—C2—H2125.0H8B—C8—H8C109.5
N1—C3—H3121.9N2—C9—H9A109.5
C2—C3—N1116.23 (17)N2—C9—H9B109.5
C2—C3—H3121.9N2—C9—H9C109.5
O1—C4—C1116.99 (14)H9A—C9—H9B109.5
O1—C4—C5125.77 (15)H9A—C9—H9C109.5
C5—C4—C1117.22 (14)H9B—C9—H9C109.5
C4—C5—H5120.9
S1—C1—C4—O19.54 (19)C1—C4—C5—C6176.53 (13)
S1—C1—C4—C5169.33 (11)C2—S1—C1—N10.70 (13)
S1—C2—C3—N10.2 (2)C2—S1—C1—C4179.08 (13)
O1—C4—C5—C62.2 (2)C3—N1—C1—S10.92 (17)
N1—C1—C4—O1172.31 (15)C3—N1—C1—C4179.13 (15)
N1—C1—C4—C58.8 (2)C4—C5—C6—N2179.08 (15)
C1—S1—C2—C30.25 (14)C8—N2—C6—C5177.66 (15)
C1—N1—C3—C20.7 (2)C9—N2—C6—C52.1 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the S1/N1/C1–C3 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···N1i0.952.623.560 (2)169
C6—H6···O1ii0.952.603.462 (2)151
C8—H8A···O1ii0.982.313.269 (2)167
C9—H9C···O1iii0.982.513.433 (2)157
C9—H9A···Cg1iv0.982.933.549 (2)122
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x+1, y, z; (iv) x, y, z1.

Experimental details

Crystal data
Chemical formulaC8H10N2OS
Mr182.24
Crystal system, space groupMonoclinic, P21/n
Temperature (K)135
a, b, c (Å)5.6252 (2), 22.5957 (8), 7.5777 (3)
β (°) 109.498 (4)
V3)907.93 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.35 × 0.30 × 0.30
Data collection
DiffractometerOxford Diffraction Xcalibur Eos
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2006)
Tmin, Tmax0.974, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
3683, 1846, 1565
Rint0.018
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.090, 1.06
No. of reflections1846
No. of parameters111
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.26

Computer programs: CrysAlis PRO (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2006), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the S1/N1/C1–C3 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···N1i0.952.623.560 (2)169.3
C6—H6···O1ii0.952.603.462 (2)151.4
C8—H8A···O1ii0.982.313.269 (2)166.8
C9—H9C···O1iii0.982.513.433 (2)156.5
C9—H9A···Cg1iv0.982.933.549 (2)122.0
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x+1, y, z; (iv) x, y, z1.
 

Acknowledgements

We thank the Analytical and Testing Center of Sichuan University for the X-ray data collection.

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZeng, X. X. (2010). Bioorg. Med. Chem. Lett. 20, 6282–6285.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds