metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Acetyl­acetonato-κ2O,O′)(phthalo­cyaninato-κ4N)(phen­an­throline-κ2N,N′)erbium(III)

aSchool of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China
*Correspondence e-mail: lhf4612@163.com

(Received 26 December 2011; accepted 30 January 2012; online 4 February 2012)

The title complex, [Er(C32H16N8)(C5H7O2)(C12H8N2)], possesses a mirror plane and the asymmetric unit is half of the mol­ecule. The ErIII cation, lying on the mirror plane, is eight-coordinated by two O atoms from acetyl­acetone, two N (Nphen) atoms from 1,10-phenanthroline and four isoindole N (Niso) atoms from the phthalocyanine ligand in an anti­prismatic geometry. The Er—N distances are in the range 2.376 (5)–2.529 (4) Å and the Er—O distance is 2.272 (3) Å. Notably, the Er—Niso bonds are shorter than the Er—Nphen bonds, but longer than the Er—O bonds.

Related literature

For background to phthalocyanines, see: Kuznetsova et al. (2002[Kuznetsova, N. A., Gretsova, N. S., Derkacheva, V. M., Mikhalenko, S. A., Solov'eva, L. I., Yuzhakova, O. A., Kaliya, O. L. & Luk'yanets, E. A. (2002). Russ. J. Gen. Chem. 72, 300-306.]); Kalashnikova et al. (2007[Kalashnikova, I. P., Nefedov, S. E., Tomilova, L. G. & Zefirov, N. S. (2007). Russ. Chem. Bull. 56, 2426-2432.]). For a similar erbium complex, see: Zugle et al. (2011[Zugle, R., Litwinski, C. & Nyokong, T. (2011). Polyhedron, 30, 1612-1619.]).

[Scheme 1]

Experimental

Crystal data
  • [Er(C32H16N8)(C5H7O2)(C12H8N2)]

  • Mr = 959.10

  • Monoclinic, P 21 /m

  • a = 9.913 (2) Å

  • b = 16.887 (3) Å

  • c = 12.622 (3) Å

  • β = 106.72 (3)°

  • V = 2023.7 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.13 mm−1

  • T = 293 K

  • 0.28 × 0.22 × 0.17 mm

Data collection
  • Bruker SMART1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.576, Tmax = 0.696

  • 19901 measured reflections

  • 4769 independent reflections

  • 3876 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.092

  • S = 1.13

  • 4769 reflections

  • 287 parameters

  • H-atom parameters constrained

  • Δρmax = 2.01 e Å−3

  • Δρmin = −2.24 e Å−3

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA]); cell refinement: SAINT-Plus (Bruker, 2003[Bruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In recent years, lanthanide complexes with organic ligands have been widely used in areas such as fluorescent materials, electroluminescence and as fluorescence probes. Phthalocyanines (Pc) are of the most famous macrocyclic compounds that possess interesting physical and chemical properties (Kuznetsova et al., 2002; Kalashnikova et al., 2007; Zugle et al., 2011). Therefore, synthesis and characterization of novel phthalocyanine complexes of lanthanides remain attractive to researchers, where diverse ratio of Pc/Ln could be expected. These lanthanide phthalocyanine derivatives have high intrinsic conductivity and interesting electrochemical behavior. Herein, we present the synthesis and structure of a phthalocyaninato erbium complex Er(C32H16N8)(C12H8N2)(C5H7O2). The complex is mirror-related and the central ErIII ion is located on the mirror plane. The ErIII ion is eight-coordinated to two O atoms from acetylacetone, two N (Nphen) atoms from 1,10-phenanthroline and four isoindole N (Niso) atoms from the phthalocyanine ligand (Fig. 1). The Er—N distances are in the range of 2.376 (5)–2.529 (4) Å, and the Er—O distance is 2.272 (3) Å. The Er—Niso bond distances are shorter than the Er—Nphen bond distances, but longer than the Er—O bond distances. The symmetry-related Pc2- units are not parallel. The positive charge of the ErIII ion is balanced by the Pc2- and acac- groups. Strong ππ interactions (Fig. 2) could be found between the pyrrolyl group of Pc and the aromatic ring of 1,10-phenanthroline with a Cg1ii···Cg2 distance of 3.424 (3) Å and between the aromatic ring of the isoindole of Pc and the 1,10-phenanthroline with a Cg2···Cg3ii distance of 3.657 (3) Å (Cg1, Cg2 and Cg3 are the centroids of the rings with atoms N5, C13, C14, C13i,C14i, atoms C17, C18, C22, C17i, C18i, C22i, and atoms C14–C16, C14i-C16i, respectively; symmetry codes: (i) x, -y + 3/2, z, (ii) 1 + x, y,z).

Related literature top

For background to phthalocyanines, see: Kuznetsova et al. 2002; Kalashnikova et al. 2007. For a similar erbium complex, see: Zugle et al. 2011.

Experimental top

A mixture of Er(acac)3.H2O (0.0481 g, 0.10 mmol), dicyanobenzene (0.0512 g, 0.40 mmol), and DBU (0.076 g, 0.50 mmol) in n-pentanol (3 ml) was heated at 100 ° for 1.5 h under a slow stream of nitrogen (acac: acetylacetone; DBU: 1,8-diazabicyclo(5.4.0)undec-7-ene). After the volatiles were removed in vacuo, the residue was chromatographed on a silica gel column with CHCl3 with 2.5% of methanol (v:v) as the eluent to give a blue band containing Er(Pc)(acac)(phen) (23 mg, 20%). Single crystals suitable for X-ray analyses were obtained by slow diffusion of methanol into the chloroform solution of the complex. Calc. for C49H31ErN10O2: C 31.26, H 3.26, N 14.60. Found: C 31.20, H 3.24, N 14.61.

Refinement top

H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å (aromatic C), C—H = 0.96 Å (methyl C) and with Uiso(H) = 1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids [symmetry code A: x, -y + 3/2, z].
[Figure 2] Fig. 2. ππ interaction between the phthalocyanine isoindole group and the adjacent 1,10-phenanthroline ring as shown by the red dashed line [symmetry code: 1 + x, y, z].
(Acetylacetonato-κ2O,O')(phthalocyaninato- κ4N)(phenanthroline-κ2N,N')erbium(III) top
Crystal data top
[Er(C32H16N8)(C5H7O2)(C12H8N2)]F(000) = 958
Mr = 959.10Dx = 1.574 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybCell parameters from 15893 reflections
a = 9.913 (2) Åθ = 6.2–54.9°
b = 16.887 (3) ŵ = 2.13 mm1
c = 12.622 (3) ÅT = 293 K
β = 106.72 (3)°Block, purple
V = 2023.7 (7) Å30.28 × 0.22 × 0.17 mm
Z = 2
Data collection top
Bruker SMART1000 CCD
diffractometer
4769 independent reflections
Radiation source: fine-focus sealed tube3876 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
Detector resolution: 0 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 2121
Tmin = 0.576, Tmax = 0.696l = 1616
19901 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0219P)2 + 5.3744P]
where P = (Fo2 + 2Fc2)/3
4769 reflections(Δ/σ)max < 0.001
287 parametersΔρmax = 2.01 e Å3
0 restraintsΔρmin = 2.24 e Å3
Crystal data top
[Er(C32H16N8)(C5H7O2)(C12H8N2)]V = 2023.7 (7) Å3
Mr = 959.10Z = 2
Monoclinic, P21/mMo Kα radiation
a = 9.913 (2) ŵ = 2.13 mm1
b = 16.887 (3) ÅT = 293 K
c = 12.622 (3) Å0.28 × 0.22 × 0.17 mm
β = 106.72 (3)°
Data collection top
Bruker SMART1000 CCD
diffractometer
4769 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3876 reflections with I > 2σ(I)
Tmin = 0.576, Tmax = 0.696Rint = 0.050
19901 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.13Δρmax = 2.01 e Å3
4769 reflectionsΔρmin = 2.24 e Å3
287 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Er10.56660 (3)0.75000.21203 (3)0.03343 (10)
O10.5186 (3)0.83217 (18)0.0633 (3)0.0439 (8)
N10.6747 (6)0.75000.4083 (5)0.0414 (13)
N20.7009 (4)0.8908 (2)0.4457 (3)0.0474 (10)
N30.4958 (4)0.8662 (2)0.2898 (3)0.0380 (8)
N40.2664 (4)0.8910 (2)0.1574 (3)0.0406 (9)
N50.3167 (5)0.75000.1645 (5)0.0375 (12)
N60.7888 (4)0.8299 (2)0.2344 (3)0.0425 (9)
C11.0327 (7)0.7909 (4)0.7333 (6)0.097 (3)
H1A1.09390.81810.79180.117*
C20.9429 (6)0.8332 (4)0.6473 (6)0.082 (2)
H2A0.94350.88830.64720.098*
C30.8524 (5)0.7913 (3)0.5617 (4)0.0537 (14)
C40.7385 (5)0.8153 (3)0.4657 (4)0.0432 (11)
C50.5860 (5)0.9128 (3)0.3669 (4)0.0421 (11)
C60.5352 (5)0.9944 (3)0.3562 (4)0.0479 (12)
C70.5881 (7)1.0633 (3)0.4118 (5)0.0688 (18)
H7A0.67291.06360.46780.083*
C80.5102 (8)1.1316 (3)0.3812 (6)0.086 (2)
H8A0.54401.17880.41690.103*
C90.3831 (8)1.1317 (3)0.2985 (6)0.0763 (19)
H9A0.33331.17880.28000.092*
C100.3293 (6)1.0629 (3)0.2435 (5)0.0584 (14)
H10A0.24311.06260.18900.070*
C110.4085 (5)0.9943 (3)0.2722 (4)0.0430 (11)
C120.3848 (5)0.9130 (2)0.2331 (4)0.0405 (11)
C130.2344 (4)0.8157 (3)0.1314 (4)0.0384 (10)
C140.0918 (4)0.7912 (3)0.0671 (4)0.0445 (11)
C150.0314 (5)0.8337 (3)0.0220 (4)0.0534 (13)
H15A0.03150.88880.02130.064*
C160.1538 (5)0.7911 (3)0.0217 (5)0.0614 (15)
H16A0.23800.81810.05170.074*
C170.9133 (4)0.7927 (3)0.2813 (4)0.0402 (10)
C181.0409 (5)0.8338 (3)0.3219 (4)0.0461 (12)
C191.0361 (6)0.9163 (3)0.3109 (5)0.0586 (15)
H19A1.11780.94600.33800.070*
C200.9121 (5)0.9531 (3)0.2606 (5)0.0600 (15)
H20A0.90891.00770.25080.072*
C210.7899 (5)0.9078 (3)0.2238 (5)0.0500 (13)
H21A0.70540.93360.19040.060*
C221.1681 (5)0.7899 (3)0.3668 (4)0.0546 (14)
H22A1.25220.81690.39660.066*
C230.3996 (6)0.8988 (3)0.1003 (5)0.0666 (16)
H23A0.32570.92250.07580.100*
H23B0.36510.88710.17780.100*
H23C0.47740.93490.08770.100*
C240.4475 (5)0.8234 (3)0.0367 (4)0.0461 (12)
C250.4112 (8)0.75000.0880 (6)0.0535 (19)
H25A0.35880.75000.16210.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Er10.02919 (14)0.02436 (13)0.04208 (18)0.0000.00285 (11)0.000
O10.0430 (17)0.0388 (17)0.045 (2)0.0011 (14)0.0052 (15)0.0044 (15)
N10.042 (3)0.026 (2)0.047 (3)0.0000.002 (2)0.000
N20.054 (2)0.0318 (19)0.047 (2)0.0002 (18)0.0009 (19)0.0036 (17)
N30.0399 (19)0.0301 (18)0.041 (2)0.0003 (16)0.0077 (16)0.0020 (16)
N40.0355 (19)0.0347 (19)0.050 (2)0.0057 (16)0.0099 (17)0.0045 (17)
N50.027 (2)0.034 (3)0.050 (3)0.0000.009 (2)0.000
N60.0366 (19)0.0291 (18)0.057 (3)0.0018 (16)0.0049 (17)0.0027 (17)
C10.078 (4)0.075 (4)0.097 (5)0.003 (3)0.042 (4)0.008 (4)
C20.074 (4)0.052 (3)0.089 (5)0.002 (3)0.028 (4)0.013 (3)
C30.050 (3)0.041 (3)0.056 (3)0.001 (2)0.009 (2)0.004 (2)
C40.042 (2)0.034 (2)0.047 (3)0.002 (2)0.003 (2)0.003 (2)
C50.049 (3)0.030 (2)0.043 (3)0.000 (2)0.006 (2)0.002 (2)
C60.063 (3)0.029 (2)0.047 (3)0.005 (2)0.007 (2)0.000 (2)
C70.099 (5)0.034 (3)0.056 (4)0.003 (3)0.005 (3)0.009 (2)
C80.131 (6)0.031 (3)0.075 (5)0.009 (3)0.002 (4)0.011 (3)
C90.103 (5)0.032 (3)0.084 (5)0.023 (3)0.012 (4)0.000 (3)
C100.072 (4)0.035 (3)0.064 (4)0.013 (3)0.013 (3)0.006 (2)
C110.051 (3)0.031 (2)0.048 (3)0.006 (2)0.016 (2)0.003 (2)
C120.040 (2)0.027 (2)0.054 (3)0.0056 (19)0.013 (2)0.003 (2)
C130.032 (2)0.037 (2)0.045 (3)0.0018 (18)0.0104 (19)0.003 (2)
C140.034 (2)0.049 (3)0.046 (3)0.002 (2)0.004 (2)0.002 (2)
C150.040 (3)0.060 (3)0.054 (3)0.010 (2)0.004 (2)0.006 (3)
C160.034 (2)0.082 (4)0.059 (3)0.007 (2)0.001 (2)0.001 (3)
C170.035 (2)0.039 (2)0.043 (3)0.0030 (19)0.0060 (19)0.001 (2)
C180.035 (2)0.052 (3)0.049 (3)0.008 (2)0.008 (2)0.003 (2)
C190.047 (3)0.049 (3)0.073 (4)0.019 (2)0.007 (3)0.007 (3)
C200.053 (3)0.034 (2)0.088 (5)0.012 (2)0.012 (3)0.000 (3)
C210.041 (2)0.035 (2)0.071 (4)0.000 (2)0.010 (2)0.003 (2)
C220.037 (2)0.063 (3)0.055 (3)0.010 (2)0.001 (2)0.003 (3)
C230.077 (4)0.061 (4)0.055 (4)0.003 (3)0.008 (3)0.021 (3)
C240.037 (2)0.048 (3)0.050 (3)0.001 (2)0.008 (2)0.007 (2)
C250.052 (4)0.058 (5)0.042 (4)0.0000.000 (3)0.000
Geometric parameters (Å, º) top
Er1—O1i2.272 (3)C8—C91.386 (9)
Er1—O12.272 (3)C8—H8A0.9300
Er1—N52.376 (5)C9—C101.379 (8)
Er1—N3i2.388 (4)C9—H9A0.9300
Er1—N32.388 (4)C10—C111.388 (6)
Er1—N12.400 (6)C10—H10A0.9300
Er1—N62.529 (4)C11—C121.454 (6)
Er1—N6i2.529 (4)C13—C141.472 (6)
O1—C241.264 (6)C14—C151.389 (6)
N1—C41.371 (5)C14—C14i1.393 (10)
N1—C4i1.371 (5)C15—C161.382 (7)
N2—C51.331 (6)C15—H15A0.9300
N2—C41.332 (6)C16—C16i1.388 (12)
N3—C51.366 (6)C16—H16A0.9300
N3—C121.377 (5)C17—C181.404 (6)
N4—C131.330 (6)C17—C17i1.443 (9)
N4—C121.335 (6)C18—C191.400 (7)
N5—C13i1.369 (5)C18—C221.432 (7)
N5—C131.369 (5)C19—C201.361 (7)
N6—C211.323 (6)C19—H19A0.9300
N6—C171.359 (5)C20—C211.394 (7)
C1—C1i1.383 (13)C20—H20A0.9300
C1—C21.387 (8)C21—H21A0.9300
C1—H1A0.9300C22—C22i1.346 (11)
C2—C31.384 (7)C22—H22A0.9300
C2—H2A0.9300C23—C241.508 (7)
C3—C3i1.394 (10)C23—H23A0.9600
C3—C41.456 (6)C23—H23B0.9600
C5—C61.461 (6)C23—H23C0.9600
C6—C71.381 (7)C24—C251.397 (6)
C6—C111.391 (7)C25—C24i1.397 (6)
C7—C81.380 (8)C25—H25A0.9300
C7—H7A0.9300
O1i—Er1—O175.28 (16)C8—C7—C6117.5 (5)
O1i—Er1—N580.57 (14)C8—C7—H7A121.3
O1—Er1—N580.57 (14)C6—C7—H7A121.3
O1i—Er1—N3i79.71 (13)C7—C8—C9121.7 (5)
O1—Er1—N3i145.58 (12)C7—C8—H8A119.1
N5—Er1—N3i72.25 (11)C9—C8—H8A119.1
O1i—Er1—N3145.58 (12)C10—C9—C8121.0 (5)
O1—Er1—N379.71 (12)C10—C9—H9A119.5
N5—Er1—N372.25 (11)C8—C9—H9A119.5
N3i—Er1—N3110.52 (18)C9—C10—C11117.6 (5)
O1i—Er1—N1141.10 (9)C9—C10—H10A121.2
O1—Er1—N1141.10 (9)C11—C10—H10A121.2
N5—Er1—N1112.6 (2)C10—C11—C6121.1 (5)
N3i—Er1—N170.88 (11)C10—C11—C12132.5 (5)
N3—Er1—N170.88 (11)C6—C11—C12106.4 (4)
O1i—Er1—N6112.75 (13)N4—C12—N3128.2 (4)
O1—Er1—N674.62 (12)N4—C12—C11121.9 (4)
N5—Er1—N6147.12 (8)N3—C12—C11109.8 (4)
N3i—Er1—N6137.93 (12)N4—C13—N5128.4 (4)
N3—Er1—N682.25 (12)N4—C13—C14121.8 (4)
N1—Er1—N676.65 (15)N5—C13—C14109.6 (4)
O1i—Er1—N6i74.62 (12)C15—C14—C14i121.1 (3)
O1—Er1—N6i112.75 (13)C15—C14—C13132.3 (5)
N5—Er1—N6i147.12 (8)C14i—C14—C13106.3 (3)
N3i—Er1—N6i82.25 (12)C16—C15—C14117.6 (5)
N3—Er1—N6i137.93 (12)C16—C15—H15A121.2
N1—Er1—N6i76.65 (15)C14—C15—H15A121.2
N6—Er1—N6i64.52 (16)C15—C16—C16i121.4 (3)
C24—O1—Er1132.6 (3)C15—C16—H16A119.3
C4—N1—C4i107.2 (5)C16i—C16—H16A119.3
C4—N1—Er1123.2 (3)N6—C17—C18122.7 (4)
C4i—N1—Er1123.2 (3)N6—C17—C17i117.5 (2)
C5—N2—C4122.7 (4)C18—C17—C17i119.6 (3)
C5—N3—C12107.5 (4)C19—C18—C17117.0 (4)
C5—N3—Er1123.8 (3)C19—C18—C22123.8 (4)
C12—N3—Er1123.0 (3)C17—C18—C22119.1 (5)
C13—N4—C12122.8 (4)C20—C19—C18120.1 (5)
C13i—N5—C13108.2 (5)C20—C19—H19A119.9
C13i—N5—Er1124.3 (2)C18—C19—H19A119.9
C13—N5—Er1124.3 (2)C19—C20—C21119.1 (5)
C21—N6—C17118.1 (4)C19—C20—H20A120.4
C21—N6—Er1123.5 (3)C21—C20—H20A120.4
C17—N6—Er1117.0 (3)N6—C21—C20122.9 (5)
C1i—C1—C2121.0 (4)N6—C21—H21A118.6
C1i—C1—H1A119.5C20—C21—H21A118.6
C2—C1—H1A119.5C22i—C22—C18121.2 (3)
C3—C2—C1118.3 (6)C22i—C22—H22A119.4
C3—C2—H2A120.9C18—C22—H22A119.4
C1—C2—H2A120.9C24—C23—H23A109.5
C2—C3—C3i120.8 (3)C24—C23—H23B109.5
C2—C3—C4132.9 (5)H23A—C23—H23B109.5
C3i—C3—C4106.2 (3)C24—C23—H23C109.5
N2—C4—N1127.5 (4)H23A—C23—H23C109.5
N2—C4—C3122.2 (4)H23B—C23—H23C109.5
N1—C4—C3110.2 (4)O1—C24—C25124.2 (5)
N2—C5—N3128.0 (4)O1—C24—C23115.6 (5)
N2—C5—C6122.0 (4)C25—C24—C23120.2 (5)
N3—C5—C6109.9 (4)C24—C25—C24i125.1 (7)
C7—C6—C11121.1 (5)C24—C25—H25A117.5
C7—C6—C5132.6 (5)C24i—C25—H25A117.5
C11—C6—C5106.3 (4)
O1i—Er1—O1—C2424.4 (5)C4i—N1—C4—C32.5 (8)
N5—Er1—O1—C2458.2 (4)Er1—N1—C4—C3149.8 (4)
N3i—Er1—O1—C2420.3 (5)C2—C3—C4—N20.7 (11)
N3—Er1—O1—C24131.7 (4)C3i—C3—C4—N2174.2 (4)
N1—Er1—O1—C24172.7 (4)C2—C3—C4—N1176.5 (7)
N6—Er1—O1—C24143.6 (4)C3i—C3—C4—N11.6 (5)
N6i—Er1—O1—C2490.4 (4)C4—N2—C5—N35.7 (9)
O1i—Er1—N1—C4150.6 (3)C4—N2—C5—C6171.1 (5)
O1—Er1—N1—C42.5 (6)C12—N3—C5—N2174.0 (5)
N5—Er1—N1—C4106.0 (4)Er1—N3—C5—N232.0 (7)
N3i—Er1—N1—C4166.4 (5)C12—N3—C5—C63.1 (6)
N3—Er1—N1—C445.6 (4)Er1—N3—C5—C6150.8 (3)
N6—Er1—N1—C440.8 (4)N2—C5—C6—C74.0 (10)
N6i—Er1—N1—C4107.3 (5)N3—C5—C6—C7178.7 (6)
O1i—Er1—N1—C4i2.5 (6)N2—C5—C6—C11175.2 (5)
O1—Er1—N1—C4i150.6 (3)N3—C5—C6—C112.1 (6)
N5—Er1—N1—C4i106.0 (4)C11—C6—C7—C80.2 (10)
N3i—Er1—N1—C4i45.6 (4)C5—C6—C7—C8178.8 (7)
N3—Er1—N1—C4i166.4 (5)C6—C7—C8—C90.6 (11)
N6—Er1—N1—C4i107.3 (5)C7—C8—C9—C100.0 (12)
N6i—Er1—N1—C4i40.8 (4)C8—C9—C10—C111.3 (10)
O1i—Er1—N3—C5153.5 (3)C9—C10—C11—C62.1 (9)
O1—Er1—N3—C5109.7 (4)C9—C10—C11—C12179.5 (6)
N5—Er1—N3—C5167.0 (4)C7—C6—C11—C101.6 (9)
N3i—Er1—N3—C5104.5 (4)C5—C6—C11—C10177.7 (5)
N1—Er1—N3—C544.5 (4)C7—C6—C11—C12179.6 (6)
N6—Er1—N3—C534.0 (4)C5—C6—C11—C120.3 (6)
N6i—Er1—N3—C53.0 (5)C13—N4—C12—N35.4 (8)
O1i—Er1—N3—C123.4 (5)C13—N4—C12—C11170.7 (5)
O1—Er1—N3—C1240.4 (3)C5—N3—C12—N4173.5 (5)
N5—Er1—N3—C1242.9 (3)Er1—N3—C12—N432.2 (7)
N3i—Er1—N3—C12105.4 (3)C5—N3—C12—C112.9 (5)
N1—Er1—N3—C12165.4 (4)Er1—N3—C12—C11151.3 (3)
N6—Er1—N3—C12116.1 (4)C10—C11—C12—N42.5 (9)
N6i—Er1—N3—C12153.0 (3)C6—C11—C12—N4175.1 (5)
O1i—Er1—N5—C13i40.5 (4)C10—C11—C12—N3179.3 (5)
O1—Er1—N5—C13i117.0 (5)C6—C11—C12—N31.6 (6)
N3i—Er1—N5—C13i41.6 (4)C12—N4—C13—N57.9 (8)
N3—Er1—N5—C13i160.9 (5)C12—N4—C13—C14166.2 (5)
N1—Er1—N5—C13i101.2 (4)C13i—N5—C13—N4171.1 (3)
N6—Er1—N5—C13i158.2 (3)Er1—N5—C13—N428.3 (8)
N6i—Er1—N5—C13i0.7 (7)C13i—N5—C13—C143.5 (7)
O1i—Er1—N5—C13117.0 (5)Er1—N5—C13—C14157.1 (4)
O1—Er1—N5—C1340.5 (4)N4—C13—C14—C150.1 (9)
N3i—Er1—N5—C13160.9 (5)N5—C13—C14—C15175.0 (6)
N3—Er1—N5—C1341.6 (4)N4—C13—C14—C14i172.9 (4)
N1—Er1—N5—C13101.2 (4)N5—C13—C14—C14i2.2 (4)
N6—Er1—N5—C130.7 (7)C14i—C14—C15—C160.6 (6)
N6i—Er1—N5—C13158.2 (3)C13—C14—C15—C16171.4 (5)
O1i—Er1—N6—C21114.3 (4)C14—C15—C16—C16i0.6 (6)
O1—Er1—N6—C2148.0 (4)C21—N6—C17—C182.2 (8)
N5—Er1—N6—C215.6 (6)Er1—N6—C17—C18164.8 (4)
N3i—Er1—N6—C21145.6 (4)C21—N6—C17—C17i173.3 (4)
N3—Er1—N6—C2133.4 (4)Er1—N6—C17—C17i19.7 (4)
N1—Er1—N6—C21105.5 (4)N6—C17—C18—C190.9 (8)
N6i—Er1—N6—C21173.1 (4)C17i—C17—C18—C19174.5 (4)
O1i—Er1—N6—C1779.5 (4)N6—C17—C18—C22178.0 (5)
O1—Er1—N6—C17145.8 (4)C17i—C17—C18—C222.6 (6)
N5—Er1—N6—C17171.8 (4)C17—C18—C19—C201.4 (9)
N3i—Er1—N6—C1720.6 (4)C22—C18—C19—C20175.6 (6)
N3—Er1—N6—C17132.8 (4)C18—C19—C20—C212.2 (9)
N1—Er1—N6—C1760.7 (3)C17—N6—C21—C201.3 (8)
N6i—Er1—N6—C1720.7 (4)Er1—N6—C21—C20164.8 (4)
C1i—C1—C2—C30.4 (9)C19—C20—C21—N60.9 (9)
C1—C2—C3—C3i0.4 (9)C19—C18—C22—C22i174.3 (4)
C1—C2—C3—C4173.9 (7)C17—C18—C22—C22i2.6 (6)
C5—N2—C4—N14.0 (9)Er1—O1—C24—C2519.4 (8)
C5—N2—C4—C3171.0 (5)Er1—O1—C24—C23159.7 (4)
C4i—N1—C4—N2172.9 (3)O1—C24—C25—C24i0.2 (12)
Er1—N1—C4—N234.7 (8)C23—C24—C25—C24i178.8 (5)
Symmetry code: (i) x, y+3/2, z.

Experimental details

Crystal data
Chemical formula[Er(C32H16N8)(C5H7O2)(C12H8N2)]
Mr959.10
Crystal system, space groupMonoclinic, P21/m
Temperature (K)293
a, b, c (Å)9.913 (2), 16.887 (3), 12.622 (3)
β (°) 106.72 (3)
V3)2023.7 (7)
Z2
Radiation typeMo Kα
µ (mm1)2.13
Crystal size (mm)0.28 × 0.22 × 0.17
Data collection
DiffractometerBruker SMART1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.576, 0.696
No. of measured, independent and
observed [I > 2σ(I)] reflections
19901, 4769, 3876
Rint0.050
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.092, 1.13
No. of reflections4769
No. of parameters287
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.01, 2.24

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008).

 

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (grant Nos. 20872030 and 20972043), Heilongjiang Province (grant Nos. 2009RFXXG201, GC09A402 and 2010td03) and Heilongjiang University.

References

First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA  Google Scholar
First citationBruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA  Google Scholar
First citationKalashnikova, I. P., Nefedov, S. E., Tomilova, L. G. & Zefirov, N. S. (2007). Russ. Chem. Bull. 56, 2426–2432.  CrossRef CAS Google Scholar
First citationKuznetsova, N. A., Gretsova, N. S., Derkacheva, V. M., Mikhalenko, S. A., Solov'eva, L. I., Yuzhakova, O. A., Kaliya, O. L. & Luk'yanets, E. A. (2002). Russ. J. Gen. Chem. 72, 300–306.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZugle, R., Litwinski, C. & Nyokong, T. (2011). Polyhedron, 30, 1612–1619.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds