metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages m816-m817

Iodido{4-phenyl-1-[1-(1,3-thia­zol-2-yl-κN)ethyl­­idene]thio­semicarbazidato-κ2N′,S}{4-phenyl-1-[1-(1,3-thia­zol-2-yl)ethyl­­idene]thio­semicarbazide-κS}mercury(II)

aDepartment of Chemistry and Biochemistry, Jackson State University, Jackson, MS 39217, USA, and bDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
*Correspondence e-mail: ffroncz@lsu.edu

(Received 23 April 2011; accepted 24 May 2011; online 28 May 2011)

In the title compound, [Hg(C12H11N4S2)I(C12H12N4S2)], the Hg atom is in a distorted square-pyramidal coordination, defined by the iodide ligand, by the S atom of the neutral ligand in the apical position, and by the N atom of the thia­zole ring, the thio­ureido N and the S atom of the deprotonated ligand. The deprotonated ligand intra­molecularly hydrogen bonds to the thia­zole ring N atom, while the deprotonated ligand forms an inter­molecular hydrogen bond to the thiol­ate S atom. The deprotonation of the tridentate ligand and its coordination to Hg via the S atom strikingly affects the C—S bond lengths. In the free ligand, the C—S bond distance is 1.685 (7) Å, whereas it is 1.749 (7) Å in the deprotonated ligand. Similarly, the Hg—S bond distance is slightly longer to the neutral ligand [2.6682 (18) Å] than to the deprotonated ligand [2.5202 (19) Å]. The Hg—I distance is 2.7505 (8) Å.

Related literature

For general background to thio­semicarbazones and their Hg complexes, see: Akinchan et al. (2002[Akinchan, N. T., Drozdzewski, P. M. & Holzer, W. J. (2002). J. Mol. Struct. 641, 17-22.]); Ali & Livingstone (1974[Ali, A. M. & Livingstone, S. E. (1974). Coord. Chem. Rev. 13, 101-132.]); Bermejo et al. (1999[Bermejo, E., Carballo, R., Castineiras, A., Dominguez, R., Mossmer, M., Strahle, J. & West, D. X. (1999). Polyhedron, 18, 3695-3702.], 2003[Bermejo, E., Castineiras, A., Garcia, I. & West, D. X. (2003). Polyhedron, 22, 1147-1154.]); Lobana et al. (1998[Lobana, T. S., Sanchez, A., Casas, J. S., Castineiras, A., Sordo, J. & Garcia- Tasende, M. S. (1998). Polyhedron, 21, 3701-3709.]); Venkatraman et al. (2009[Venkatraman, R., Ameera, H., Sitole, L., Ellis, E., Fronczek, F. R. & Valente, E. J. (2009). J. Chem. Crystallogr. 30, 711-718.]); Blanz & French (1968[Blanz, E. J. Jr & French, F. A. (1968). Cancer Res. 28, 2419-2422.]); Campbell (1975[Campbell, M. J. M. (1975). Coord. Chem. Rev. 15, 279-319.]); Casas et al. (2000[Casas, J. S., Garcia-Tasende, M. S. & Sordo, J. (2000). Coord. Chem. Rev. 209, 197-261.]); Grecu & Neamtu (1967[Grecu, I. & Neamtu, M. (1967). Rev. Chim. (Euchavest), 12, 1115-1121.]); Pellerito & Negy (2002[Pellerito, L. & Negy, L. (2002). Coord. Chem. Rev. 224, 111-150.]); Raper (1985[Raper, E. S. (1985). Coord. Chem. Rev. 61, 115-184.]).

[Scheme 1]

Experimental

Crystal data
  • [Hg(C12H11N4S2)I(C12H12N4S2)]

  • Mr = 879.23

  • Triclinic, [P \overline 1]

  • a = 8.694 (2) Å

  • b = 10.119 (2) Å

  • c = 16.801 (4) Å

  • α = 76.670 (13)°

  • β = 79.448 (12)°

  • γ = 77.190 (13)°

  • V = 1388.8 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 6.99 mm−1

  • T = 90 K

  • 0.10 × 0.10 × 0.03 mm

Data collection
  • Nonius KappaCCD diffractometer with an Oxford Cryosystems Cryostream cooler

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol.276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.542, Tmax = 0.818

  • 21861 measured reflections

  • 5837 independent reflections

  • 4289 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.085

  • S = 1.02

  • 5837 reflections

  • 346 parameters

  • H-atom parameters constrained

  • Δρmax = 1.36 e Å−3

  • Δρmin = −1.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N7—H7N⋯N5 0.88 1.97 2.667 (8) 135
N4—H4N⋯S2i 0.88 2.69 3.553 (6) 167
Symmetry code: (i) -x, -y+2, -z+1.

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol.276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol.276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Studies on thiosemicarbazones and their metal complexes has remained a fertile field of research for more than three decades due to their significant impacts in biology and chemistry (Ali & Livingstone, 1974; Campbell, 1975; Pellerito & Negy, 2002). Thiosemicarbazones are known to coordinate to many metals, potentially as tridentate ligands. The ligation can occur with the metals as a neutral molecule or, after deprotonation, as an anionic ligand (Campbell, 1975; Raper, 1985; Casas et al., 2000). Further, the metal-chelating ability is attributed to the thione-thiol tautomerism exhibited by these molecules. Some of the metal complexes are found to exhibit enhanced biological activity compared to their basic ligand (Blanz & French, 1968). Among the metals studied with thiosemicarbazones, mercury and organomercury compounds are scarce (Grecu & Neamtu, 1967; Lobana et al.,1998; Bermejo et al., 1999; Akinchan et al., 2002; Bermejo et al., 2003). Removal and remediation of many mercury species from environmental samples are very important. We report here the synthesis and structure of a mercury(II) iodide complex of the phenyl derivative of 2-acetylthiazole-3-thiosemicarbazone. The title complex is a result of interaction between two neutral ligand molecules and mercury(II) iodide in methanol. In this complex, Hg(II) is chelated by two 2-acetylthiazole-3-phenylthiosemicarbazone ligands, forming a distorted square pyramidal geometry (Fig 1). One of the two ligands is deprotonated at N3, and tridentate through its N, N, S atoms. Along with the iodide atom, it forms the square planar base. The other ligand is neutral and apical to the Hg atom, binding through its S atom. The proton NMR also provides the evidence of ligand deprotonation during metal chelation. The sharp resonance signal due to N—NH proton at 11.12 p.p.m. disappears in the spectrum of the complex. The N4 signal (at ~8.64 p.p.m.) in the ligand undergoes a downfield shift that is marked in the mercury (II) complexes, indicating coordination via the S atom. The protonated and deprotonated ligands have different conformations, differing primarily by the N–N–C–N torsion angle, which is antiperiplanar in the deprotonated ligand (torsion angle N2—N3—C6—N4 179.6 (5)°) and synperiplanar in the neutral ligand (torsion angle N6—N7—C18—N8 9.3 (9)°). Hydrogen bonding details are given in Table 1.

Related literature top

For general background to thiosemicarbazones and their Hg complexes, see: Akinchan et al. (2002); Ali et al. (1974); Bermejo et al. (1999, 2003); Lobana et al. (1998); Venkatraman et al. (2009); Blanz & French (1968); Campbell (1975); Casas et al. (2000); Grecu & Neamtu (1967); Pellerito & Negy (2002); Raper (1985).

Experimental top

To a solution of 2-acetyl thiazole thiosemicarbazone (Venkatraman et al. 2009) (1.38 g, 5 mmol) in warm methanol (50 ml) was added an equimolar methanol solution (50 ml) of mercury(II) iodide (1.36 g. 5 mmol). The mixture was stirred for about 24 h, after which time the yellow solid obtained was filtered and vacuum dried (yield ~75%). Crystals suitable for diffraction studies were obtained from the mother liquor at room temperature after a week.

Refinement top

All H atoms were placed in calculated positions, guided by difference maps, with C—H bond distances 0.95–0.98 Å, N—H 0.88 Å, and thereafter refined as riding with Uiso= xUeq, where x = 1.5 for methyl H and 1.2 for all other H atoms. The highest peak in the final difference map was 1.29 Å from the Hg position.

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
Iodido{4-phenyl-1-[1-(1,3-thiazol-2-yl- κN)ethylidene]thiosemicarbazidato-κ2N',S}{4- phenyl-1-[1-(1,3-thiazol-2-yl)ethylidene]thiosemicarbazide- κS}mercury(II) top
Crystal data top
[Hg(C12H11N4S2)I(C12H12N4S2)]Z = 2
Mr = 879.23F(000) = 840
Triclinic, P1Dx = 2.103 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.694 (2) ÅCell parameters from 5532 reflections
b = 10.119 (2) Åθ = 2.5–26.7°
c = 16.801 (4) ŵ = 6.99 mm1
α = 76.670 (13)°T = 90 K
β = 79.448 (12)°Parallelepiped, yellow
γ = 77.190 (13)°0.10 × 0.10 × 0.03 mm
V = 1388.8 (5) Å3
Data collection top
Nonius KappaCCD
diffractometer with an Oxford Cryosystems Cryostream cooler
5837 independent reflections
Radiation source: fine-focus sealed tube4289 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
ω and ϕ scansθmax = 26.7°, θmin = 2.8°
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
h = 1010
Tmin = 0.542, Tmax = 0.818k = 1112
21861 measured reflectionsl = 2121
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0336P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
5837 reflectionsΔρmax = 1.36 e Å3
346 parametersΔρmin = 1.27 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00093 (17)
Crystal data top
[Hg(C12H11N4S2)I(C12H12N4S2)]γ = 77.190 (13)°
Mr = 879.23V = 1388.8 (5) Å3
Triclinic, P1Z = 2
a = 8.694 (2) ÅMo Kα radiation
b = 10.119 (2) ŵ = 6.99 mm1
c = 16.801 (4) ÅT = 90 K
α = 76.670 (13)°0.10 × 0.10 × 0.03 mm
β = 79.448 (12)°
Data collection top
Nonius KappaCCD
diffractometer with an Oxford Cryosystems Cryostream cooler
5837 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
4289 reflections with I > 2σ(I)
Tmin = 0.542, Tmax = 0.818Rint = 0.059
21861 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 1.02Δρmax = 1.36 e Å3
5837 reflectionsΔρmin = 1.27 e Å3
346 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.31186 (3)0.89942 (3)0.265558 (18)0.01642 (10)
I10.21508 (5)1.07878 (4)0.12625 (3)0.01901 (13)
S10.8957 (2)0.80421 (19)0.20242 (13)0.0233 (4)
S20.1598 (2)0.96404 (18)0.39821 (11)0.0190 (4)
S30.9843 (2)0.36980 (18)0.41473 (12)0.0203 (4)
S40.2697 (2)0.64537 (17)0.26747 (11)0.0160 (4)
N10.5975 (7)0.8585 (6)0.1973 (4)0.0172 (13)
N20.5053 (6)0.8499 (5)0.3621 (4)0.0140 (13)
N30.4585 (6)0.8448 (6)0.4445 (4)0.0167 (13)
N40.2463 (7)0.8923 (5)0.5448 (4)0.0167 (13)
H4N0.14220.91870.55360.020*
N50.6878 (7)0.4722 (5)0.4101 (4)0.0165 (13)
N60.7246 (6)0.4946 (5)0.2273 (4)0.0148 (13)
N70.5745 (6)0.5393 (5)0.2660 (4)0.0153 (13)
H7N0.55990.54370.31860.018*
N80.4802 (7)0.5470 (5)0.1473 (4)0.0193 (14)
H8N0.57610.50220.13210.023*
C10.6692 (9)0.8629 (7)0.1192 (5)0.0246 (18)
H10.61080.88330.07390.029*
C20.8316 (9)0.8360 (7)0.1094 (5)0.0263 (19)
H20.89880.83520.05800.032*
C30.6998 (8)0.8271 (6)0.2493 (5)0.0176 (16)
C40.6563 (8)0.8224 (7)0.3384 (4)0.0162 (16)
C50.7824 (8)0.7881 (7)0.3942 (5)0.0220 (17)
H5A0.76410.85870.42800.033*
H5B0.88750.78580.36080.033*
H5C0.77780.69750.43030.033*
C60.3053 (9)0.8937 (7)0.4635 (4)0.0174 (16)
C70.3180 (8)0.8573 (6)0.6171 (4)0.0159 (16)
C80.4837 (8)0.8114 (7)0.6195 (5)0.0199 (17)
H80.55440.79760.57060.024*
C90.5407 (9)0.7870 (7)0.6942 (5)0.0216 (17)
H90.65180.75630.69570.026*
C100.4416 (9)0.8057 (7)0.7667 (5)0.0222 (17)
H100.48380.78990.81710.027*
C110.2783 (9)0.8484 (7)0.7643 (5)0.0194 (16)
H110.20790.86060.81350.023*
C120.2183 (9)0.8730 (7)0.6898 (4)0.0198 (17)
H120.10680.90120.68890.024*
C130.7128 (8)0.4433 (6)0.4910 (4)0.0153 (15)
H130.62880.46010.53450.018*
C140.8635 (8)0.3898 (7)0.5051 (5)0.0206 (17)
H140.89800.36630.55790.025*
C150.8228 (8)0.4387 (6)0.3616 (4)0.0159 (16)
C160.8390 (8)0.4512 (6)0.2728 (5)0.0165 (16)
C171.0026 (8)0.4099 (7)0.2277 (5)0.0194 (17)
H17A0.99900.43410.16800.029*
H17B1.03880.30990.24410.029*
H17C1.07660.45870.24150.029*
C180.4504 (8)0.5761 (7)0.2232 (4)0.0164 (16)
C190.3674 (8)0.5833 (7)0.0882 (4)0.0151 (15)
C200.3171 (8)0.7201 (7)0.0526 (5)0.0209 (17)
H200.35190.79190.06820.025*
C210.2147 (8)0.7508 (8)0.0067 (4)0.0213 (17)
H210.17630.84440.03050.026*
C220.1693 (8)0.6466 (7)0.0307 (4)0.0195 (17)
H220.10290.66800.07280.023*
C230.2196 (8)0.5104 (7)0.0058 (4)0.0176 (16)
H230.18450.43860.00960.021*
C240.3209 (8)0.4785 (7)0.0647 (4)0.0151 (15)
H240.35810.38480.08890.018*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.01578 (16)0.01912 (16)0.01491 (17)0.00140 (11)0.00418 (11)0.00464 (11)
I10.0239 (3)0.0162 (2)0.0163 (3)0.0001 (2)0.0067 (2)0.0026 (2)
S10.0140 (10)0.0241 (10)0.0307 (12)0.0032 (8)0.0002 (8)0.0058 (9)
S20.0186 (10)0.0227 (9)0.0150 (10)0.0023 (8)0.0049 (8)0.0061 (8)
S30.0177 (10)0.0235 (9)0.0218 (11)0.0023 (8)0.0075 (8)0.0061 (8)
S40.0152 (9)0.0190 (9)0.0153 (10)0.0037 (8)0.0029 (7)0.0049 (7)
N10.020 (3)0.019 (3)0.014 (4)0.003 (3)0.001 (3)0.006 (3)
N20.015 (3)0.013 (3)0.015 (3)0.002 (2)0.001 (3)0.007 (2)
N30.013 (3)0.020 (3)0.015 (3)0.001 (3)0.001 (3)0.003 (3)
N40.016 (3)0.020 (3)0.013 (3)0.000 (3)0.002 (3)0.003 (3)
N50.020 (3)0.012 (3)0.018 (4)0.004 (3)0.000 (3)0.003 (3)
N60.012 (3)0.011 (3)0.021 (4)0.004 (2)0.005 (3)0.007 (3)
N70.019 (3)0.020 (3)0.007 (3)0.003 (3)0.004 (3)0.003 (2)
N80.020 (3)0.015 (3)0.024 (4)0.003 (3)0.008 (3)0.009 (3)
C10.029 (5)0.024 (4)0.021 (5)0.007 (4)0.007 (4)0.002 (3)
C20.026 (4)0.023 (4)0.028 (5)0.003 (4)0.005 (4)0.002 (4)
C30.020 (4)0.009 (3)0.020 (4)0.001 (3)0.004 (3)0.001 (3)
C40.016 (4)0.015 (3)0.020 (4)0.002 (3)0.010 (3)0.002 (3)
C50.024 (4)0.020 (4)0.023 (4)0.003 (3)0.011 (3)0.002 (3)
C60.028 (4)0.014 (3)0.015 (4)0.007 (3)0.005 (3)0.008 (3)
C70.024 (4)0.011 (3)0.014 (4)0.004 (3)0.007 (3)0.003 (3)
C80.016 (4)0.018 (4)0.027 (5)0.001 (3)0.007 (3)0.006 (3)
C90.019 (4)0.019 (4)0.027 (5)0.002 (3)0.008 (3)0.005 (3)
C100.041 (5)0.016 (4)0.013 (4)0.014 (4)0.012 (4)0.006 (3)
C110.030 (4)0.015 (3)0.017 (4)0.010 (3)0.006 (3)0.004 (3)
C120.027 (4)0.022 (4)0.014 (4)0.005 (3)0.011 (3)0.002 (3)
C130.019 (4)0.013 (3)0.012 (4)0.005 (3)0.000 (3)0.001 (3)
C140.023 (4)0.019 (4)0.020 (4)0.005 (3)0.004 (3)0.001 (3)
C150.021 (4)0.010 (3)0.020 (4)0.004 (3)0.008 (3)0.003 (3)
C160.021 (4)0.010 (3)0.023 (4)0.003 (3)0.006 (3)0.008 (3)
C170.018 (4)0.017 (4)0.025 (5)0.004 (3)0.004 (3)0.006 (3)
C180.025 (4)0.011 (3)0.016 (4)0.007 (3)0.010 (3)0.001 (3)
C190.014 (4)0.020 (4)0.007 (4)0.001 (3)0.001 (3)0.000 (3)
C200.023 (4)0.019 (4)0.025 (5)0.000 (3)0.006 (3)0.014 (3)
C210.022 (4)0.029 (4)0.011 (4)0.000 (3)0.007 (3)0.002 (3)
C220.022 (4)0.023 (4)0.015 (4)0.006 (3)0.005 (3)0.003 (3)
C230.015 (4)0.025 (4)0.020 (4)0.010 (3)0.005 (3)0.011 (3)
C240.014 (4)0.012 (3)0.015 (4)0.002 (3)0.001 (3)0.003 (3)
Geometric parameters (Å, º) top
Hg1—N22.441 (6)C5—H5A0.9800
Hg1—S22.5202 (19)C5—H5B0.9800
Hg1—N12.525 (6)C5—H5C0.9800
Hg1—S42.6682 (18)C7—C121.382 (10)
Hg1—I12.7505 (8)C7—C81.417 (9)
S1—C21.693 (8)C8—C91.383 (10)
S1—C31.730 (7)C8—H80.9500
S2—C61.749 (7)C9—C101.383 (10)
S3—C141.706 (8)C9—H90.9500
S3—C151.730 (7)C10—C111.394 (10)
S4—C181.685 (7)C10—H100.9500
N1—C31.299 (9)C11—C121.392 (9)
N1—C11.341 (9)C11—H110.9500
N2—C41.287 (8)C12—H120.9500
N2—N31.361 (8)C13—C141.344 (9)
N3—C61.321 (9)C13—H130.9500
N4—C61.366 (9)C14—H140.9500
N4—C71.403 (8)C15—C161.450 (10)
N4—H4N0.8800C16—C171.503 (9)
N5—C151.326 (9)C17—H17A0.9800
N5—C131.370 (9)C17—H17B0.9800
N6—C161.304 (8)C17—H17C0.9800
N6—N71.376 (7)C19—C241.372 (9)
N7—C181.342 (8)C19—C201.382 (9)
N7—H7N0.8800C20—C211.393 (9)
N8—C181.340 (9)C20—H200.9500
N8—C191.454 (8)C21—C221.367 (10)
N8—H8N0.8800C21—H210.9500
C1—C21.364 (10)C22—C231.382 (9)
C1—H10.9500C22—H220.9500
C2—H20.9500C23—C241.380 (9)
C3—C41.468 (10)C23—H230.9500
C4—C51.503 (9)C24—H240.9500
N2—Hg1—S273.61 (13)N4—C7—C8124.5 (6)
N2—Hg1—N166.52 (19)C9—C8—C7118.9 (7)
S2—Hg1—N1137.91 (14)C9—C8—H8120.5
N2—Hg1—S4101.14 (13)C7—C8—H8120.5
S2—Hg1—S4106.40 (6)C8—C9—C10122.3 (7)
N1—Hg1—S494.22 (13)C8—C9—H9118.8
N2—Hg1—I1143.13 (13)C10—C9—H9118.8
S2—Hg1—I1113.54 (4)C9—C10—C11118.6 (7)
N1—Hg1—I191.86 (13)C9—C10—H10120.7
S4—Hg1—I1110.31 (4)C11—C10—H10120.7
C2—S1—C389.6 (4)C12—C11—C10120.1 (7)
C6—S2—Hg199.8 (2)C12—C11—H11120.0
C14—S3—C1589.6 (4)C10—C11—H11120.0
C18—S4—Hg1101.0 (2)C7—C12—C11121.3 (7)
C3—N1—C1112.0 (6)C7—C12—H12119.4
C3—N1—Hg1113.2 (5)C11—C12—H12119.4
C1—N1—Hg1134.8 (5)C14—C13—N5115.8 (6)
C4—N2—N3116.5 (6)C14—C13—H13122.1
C4—N2—Hg1121.9 (5)N5—C13—H13122.1
N3—N2—Hg1121.5 (4)C13—C14—S3110.5 (6)
C6—N3—N2113.7 (6)C13—C14—H14124.7
C6—N4—C7133.0 (6)S3—C14—H14124.7
C6—N4—H4N113.5N5—C15—C16125.3 (6)
C7—N4—H4N113.5N5—C15—S3113.5 (5)
C15—N5—C13110.6 (6)C16—C15—S3121.1 (5)
C16—N6—N7117.3 (6)N6—C16—C15126.4 (6)
C18—N7—N6119.7 (6)N6—C16—C17115.7 (6)
C18—N7—H7N120.1C15—C16—C17117.9 (6)
N6—N7—H7N120.1C16—C17—H17A109.5
C18—N8—C19125.5 (6)C16—C17—H17B109.5
C18—N8—H8N117.2H17A—C17—H17B109.5
C19—N8—H8N117.2C16—C17—H17C109.5
N1—C1—C2115.3 (7)H17A—C17—H17C109.5
N1—C1—H1122.3H17B—C17—H17C109.5
C2—C1—H1122.3N8—C18—N7115.6 (6)
C1—C2—S1109.8 (6)N8—C18—S4124.3 (5)
C1—C2—H2125.1N7—C18—S4120.0 (5)
S1—C2—H2125.1C24—C19—C20121.1 (6)
N1—C3—C4124.1 (6)C24—C19—N8118.4 (6)
N1—C3—S1113.3 (5)C20—C19—N8120.3 (6)
C4—C3—S1122.5 (6)C19—C20—C21118.8 (7)
N2—C4—C3114.2 (6)C19—C20—H20120.6
N2—C4—C5125.1 (7)C21—C20—H20120.6
C3—C4—C5120.7 (6)C22—C21—C20120.2 (7)
C4—C5—H5A109.5C22—C21—H21119.9
C4—C5—H5B109.5C20—C21—H21119.9
H5A—C5—H5B109.5C21—C22—C23120.3 (7)
C4—C5—H5C109.5C21—C22—H22119.8
H5A—C5—H5C109.5C23—C22—H22119.8
H5B—C5—H5C109.5C24—C23—C22120.1 (6)
N3—C6—N4118.2 (6)C24—C23—H23120.0
N3—C6—S2129.1 (6)C22—C23—H23120.0
N4—C6—S2112.7 (5)C19—C24—C23119.4 (6)
C12—C7—N4116.6 (6)C19—C24—H24120.3
C12—C7—C8118.9 (7)C23—C24—H24120.3
N2—Hg1—S2—C610.2 (3)N2—N3—C6—N4179.6 (5)
N1—Hg1—S2—C629.3 (3)N2—N3—C6—S20.8 (9)
S4—Hg1—S2—C686.9 (2)C7—N4—C6—N35.6 (11)
I1—Hg1—S2—C6151.6 (2)C7—N4—C6—S2174.0 (6)
N2—Hg1—S4—C1866.7 (3)Hg1—S2—C6—N311.2 (7)
S2—Hg1—S4—C18142.7 (3)Hg1—S2—C6—N4169.2 (4)
N1—Hg1—S4—C180.1 (3)C6—N4—C7—C12178.0 (7)
I1—Hg1—S4—C1893.7 (3)C6—N4—C7—C80.1 (11)
N2—Hg1—N1—C32.4 (4)C12—C7—C8—C91.5 (10)
S2—Hg1—N1—C322.4 (6)N4—C7—C8—C9176.6 (6)
S4—Hg1—N1—C397.9 (5)C7—C8—C9—C100.0 (10)
I1—Hg1—N1—C3151.6 (4)C8—C9—C10—C111.2 (10)
N2—Hg1—N1—C1176.8 (7)C9—C10—C11—C120.9 (10)
S2—Hg1—N1—C1156.8 (5)N4—C7—C12—C11176.5 (6)
S4—Hg1—N1—C182.9 (6)C8—C7—C12—C111.8 (10)
I1—Hg1—N1—C127.6 (6)C10—C11—C12—C70.6 (10)
S2—Hg1—N2—C4168.3 (5)C15—N5—C13—C140.5 (8)
N1—Hg1—N2—C42.1 (5)N5—C13—C14—S31.0 (8)
S4—Hg1—N2—C487.7 (5)C15—S3—C14—C131.0 (5)
I1—Hg1—N2—C460.8 (6)C13—N5—C15—C16177.9 (6)
S2—Hg1—N2—N314.3 (4)C13—N5—C15—S30.3 (7)
N1—Hg1—N2—N3179.5 (5)C14—S3—C15—N50.7 (5)
S4—Hg1—N2—N389.7 (4)C14—S3—C15—C16178.4 (6)
I1—Hg1—N2—N3121.8 (4)N7—N6—C16—C153.3 (10)
C4—N2—N3—C6170.4 (6)N7—N6—C16—C17177.1 (5)
Hg1—N2—N3—C612.1 (7)N5—C15—C16—N61.2 (11)
C16—N6—N7—C18175.4 (6)S3—C15—C16—N6176.2 (5)
C3—N1—C1—C20.8 (9)N5—C15—C16—C17179.2 (6)
Hg1—N1—C1—C2178.4 (5)S3—C15—C16—C173.4 (8)
N1—C1—C2—S10.1 (8)C19—N8—C18—N7176.6 (6)
C3—S1—C2—C10.6 (6)C19—N8—C18—S46.9 (10)
C1—N1—C3—C4176.5 (6)N6—N7—C18—N89.3 (9)
Hg1—N1—C3—C42.9 (8)N6—N7—C18—S4174.1 (4)
C1—N1—C3—S11.2 (7)Hg1—S4—C18—N8109.2 (6)
Hg1—N1—C3—S1178.1 (3)Hg1—S4—C18—N774.5 (5)
C2—S1—C3—N11.1 (5)C18—N8—C19—C24116.1 (7)
C2—S1—C3—C4176.4 (6)C18—N8—C19—C2068.1 (9)
N3—N2—C4—C3179.0 (5)C24—C19—C20—C211.5 (11)
Hg1—N2—C4—C31.5 (8)N8—C19—C20—C21177.1 (6)
N3—N2—C4—C51.2 (9)C19—C20—C21—C222.1 (11)
Hg1—N2—C4—C5178.7 (5)C20—C21—C22—C232.5 (11)
N1—C3—C4—N21.2 (10)C21—C22—C23—C242.4 (11)
S1—C3—C4—N2175.9 (5)C20—C19—C24—C231.3 (10)
N1—C3—C4—C5178.7 (6)N8—C19—C24—C23177.0 (6)
S1—C3—C4—C53.9 (9)C22—C23—C24—C191.8 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7N···N50.881.972.667 (8)135
N4—H4N···S2i0.882.693.553 (6)167
Symmetry code: (i) x, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Hg(C12H11N4S2)I(C12H12N4S2)]
Mr879.23
Crystal system, space groupTriclinic, P1
Temperature (K)90
a, b, c (Å)8.694 (2), 10.119 (2), 16.801 (4)
α, β, γ (°)76.670 (13), 79.448 (12), 77.190 (13)
V3)1388.8 (5)
Z2
Radiation typeMo Kα
µ (mm1)6.99
Crystal size (mm)0.10 × 0.10 × 0.03
Data collection
DiffractometerNonius KappaCCD
diffractometer with an Oxford Cryosystems Cryostream cooler
Absorption correctionMulti-scan
(SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.542, 0.818
No. of measured, independent and
observed [I > 2σ(I)] reflections
21861, 5837, 4289
Rint0.059
(sin θ/λ)max1)0.632
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.085, 1.02
No. of reflections5837
No. of parameters346
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.36, 1.27

Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7N···N50.881.972.667 (8)135
N4—H4N···S2i0.882.693.553 (6)167
Symmetry code: (i) x, y+2, z+1.
 

Acknowledgements

Purchase of the diffractometer was made possible by grant No. LEQSF (1999–2000)-ENH-TR-13, administered by the Louisiana Board of Regents. RV acknowledges the JSU Department of Chemistry and Biochemistry for the supplies and utilization of lab facilities.

References

First citationAkinchan, N. T., Drozdzewski, P. M. & Holzer, W. J. (2002). J. Mol. Struct. 641, 17–22.  Web of Science CrossRef CAS Google Scholar
First citationAli, A. M. & Livingstone, S. E. (1974). Coord. Chem. Rev. 13, 101–132.  CAS Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBermejo, E., Carballo, R., Castineiras, A., Dominguez, R., Mossmer, M., Strahle, J. & West, D. X. (1999). Polyhedron, 18, 3695–3702.  CrossRef CAS Google Scholar
First citationBermejo, E., Castineiras, A., Garcia, I. & West, D. X. (2003). Polyhedron, 22, 1147–1154.  Web of Science CSD CrossRef CAS Google Scholar
First citationBlanz, E. J. Jr & French, F. A. (1968). Cancer Res. 28, 2419–2422.  CAS PubMed Web of Science Google Scholar
First citationCampbell, M. J. M. (1975). Coord. Chem. Rev. 15, 279–319.  CrossRef CAS Web of Science Google Scholar
First citationCasas, J. S., Garcia-Tasende, M. S. & Sordo, J. (2000). Coord. Chem. Rev. 209, 197–261.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGrecu, I. & Neamtu, M. (1967). Rev. Chim. (Euchavest), 12, 1115–1121.  CAS Google Scholar
First citationLobana, T. S., Sanchez, A., Casas, J. S., Castineiras, A., Sordo, J. & Garcia- Tasende, M. S. (1998). Polyhedron, 21, 3701–3709.  CrossRef Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol.276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPellerito, L. & Negy, L. (2002). Coord. Chem. Rev. 224, 111–150.  Web of Science CrossRef CAS Google Scholar
First citationRaper, E. S. (1985). Coord. Chem. Rev. 61, 115–184.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVenkatraman, R., Ameera, H., Sitole, L., Ellis, E., Fronczek, F. R. & Valente, E. J. (2009). J. Chem. Crystallogr. 30, 711–718.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages m816-m817
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds