metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(N′-benzoyl­pyridine-4-carbohydrazide)(1,10-phenanthroline)copper(II) dinitrate

aCollege of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China, and bKey Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry & Chemical Engineering of Guangxi Normal University, Guilin 541004, People's Republic of China
*Correspondence e-mail: gxnuchem312@yahoo.com.cn

(Received 16 September 2010; accepted 29 September 2010; online 2 October 2010)

In the title complex, [Cu(C13H11N3O2)2(C12H8N2)](NO3)2, the CuII atom (site symmetry 2) is coordinated by four N atoms from one 1,10-phenanthroline and two hydrazine ligands, respectively. The hydrazine ligands coordinate to the CuIIatom by a pyridine N atom. These four atoms form a slightly distorted square-planar N4 donor set. In the packing, two additional Cu⋯O inter­actions occur [Cu⋯O = 2.462 (2) Å], resulting in a typical Jahn–Teller-distorted octahedral environment around the Cu atom. N—H⋯O hydrogen bonds result in a three-dimensional network. The O atoms of the anion are disordered over two positions in a 0.68 (2):0.32 (2) ratio.

Related literature

For general background to Schiff base complexes, see: Hursthouse et al. (1979[Hursthouse, M. B., Jayaweera, S. A. A. & Quick, A. (1979). J. Chem. Soc. Dalton Trans. pp. 279-282.]); Gallego et al. (1979[Gallego, M., Gareia-Varges, M. & Valcaral, M. (1979). Analyst, 104, 613-619.]); Haran et al. (1980[Haran, R., Gairin, J. & Commenges, G. (1980). Inorg. Chim. Acta, 46, 63-67.]); Bian et al. (2005[Bian, H.-D., Guo, G.-Q., Yu, Q., Liang, H., Yang, X.-E., Zhu, L.-G. & Wang, D.-Q. (2005). Chin. J. Chem. 23, 1400-1402.]); Yu et al. (2006[Yu, Q., Guo, G.-Q., Bian, H.-D., Liang, H. & Li, C.-Y. (2006). Acta Cryst. E62, m1221-m1222.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C13H11N3O2)2(C12H8N2)](NO3)2

  • Mr = 850.26

  • Monoclinic, C 2/c

  • a = 25.126 (4) Å

  • b = 12.5304 (18) Å

  • c = 16.442 (2) Å

  • β = 130.827 (2)°

  • V = 3917.0 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.63 mm−1

  • T = 294 K

  • 0.20 × 0.16 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.701, Tmax = 1.000

  • 10551 measured reflections

  • 3939 independent reflections

  • 2826 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.108

  • S = 1.03

  • 3939 reflections

  • 303 parameters

  • 48 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O4i 0.81 (4) 2.15 (4) 2.873 (8) 149 (3)
N3—H3A⋯O4′i 0.81 (4) 2.43 (4) 3.20 (2) 161 (3)
N4—H4A⋯O3ii 0.83 (3) 1.99 (3) 2.814 (9) 171 (4)
N4—H4A⋯O3′ii 0.83 (3) 2.30 (4) 2.945 (18) 135 (3)
N4—H4A⋯O4′ii 0.83 (3) 2.43 (4) 3.25 (2) 172 (3)
Symmetry codes: (i) [-x+1, y, -z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The chemistry of hydrazine derivatives has been investigated intensively in the last decade owing to their coordinative and pharmacological activity as well as their use in analytical chemistry as metal-extracting agents (Hursthouse et al., 1979; Gallego et al., 1979; Haran et al., 1980). As part of a continuing study (Bian et al., 2005; Yu et al., 2006), we have synthesized the title CuII complex, (I), and present its structure here. The molecular structure of the title compound is shown in Fig. 1. The CuII atom lying on an inversion center is coordinated by two N atoms from one phen and two pyridine N atoms of two ligands with Cu—N mean distance of 2.013 (2) Å. Therefore, the local coordination geometry of copper center is square-planar with N4 donor set. The mean deviation from the best plane through these N atoms is 0.072 (2) Å. In addition, a weak interaction exists between every CuII atom and two adjacent oxygen atoms (O2) (Cu—O2 = 2.462 (2) Å) of the ligands in the packing diagram (Fig. 2). So, four N atoms and two O atoms form an octahedral environment around the CuII atom. Four N atoms and the CuII atom form the equatorial plane, the axial position is occupied by two O2 atoms. In the compound, oxygen atoms of nitrate exhibit disorder. Three oxygen atoms are split between two sites with occupancies of 50% (O3 to O5 and O3' to O5'). The crystal packing of (I) (Fig. 2) involves N—H···O hydrogen bonds (Table 1). The nitrate O3 and O3' atoms accept intermolecular hydrogen bonds from the N4 atom of hydrazine, while O4 accepts an intermolecular hydrogen bond from the N3 atom of hydrazine and O4' interacts with both N3 and N4. These interactions and the weak interactions of CuII atoms and adjacent oxygen atoms result in a three-dimensional network of hydrogen bonds.

Related literature top

For general background to Schiff base complexes, see: Hursthouse et al. (1979); Gallego et al. (1979); Haran et al. (1980); Bian et al. (2005); Yu et al. (2006).

Experimental top

The synthesis of the ligand has been reported by Bian et al. (2005). N'-Benzoylpyridine-4-hydrazide (0.5 mmol) and Cu(NO3)2.3H2O (0.5 mmol) were added to the mixed solution of methanol (20 ml) and DMF (2.5 ml), meanwhile, phen (0.5 mmol) was added to the above solution. The mixture was heated and refluxed for 1.5 h, and then filtered. The filtrate was kept at room temperature for two weeks and blue crystals were obtained.

Refinement top

The oxygen atoms of the nitrate group exhibit disorder. Two sets of oxygen atoms, O3 to O5 and O3' to O5', with site-occupation factors 0.5 were refined with restraints on distances and displacement parameters. H atoms on C atoms were positoned geometrically and refined using a riding model with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). H atoms on N atoms were located in a difference Fourier map.

Structure description top

The chemistry of hydrazine derivatives has been investigated intensively in the last decade owing to their coordinative and pharmacological activity as well as their use in analytical chemistry as metal-extracting agents (Hursthouse et al., 1979; Gallego et al., 1979; Haran et al., 1980). As part of a continuing study (Bian et al., 2005; Yu et al., 2006), we have synthesized the title CuII complex, (I), and present its structure here. The molecular structure of the title compound is shown in Fig. 1. The CuII atom lying on an inversion center is coordinated by two N atoms from one phen and two pyridine N atoms of two ligands with Cu—N mean distance of 2.013 (2) Å. Therefore, the local coordination geometry of copper center is square-planar with N4 donor set. The mean deviation from the best plane through these N atoms is 0.072 (2) Å. In addition, a weak interaction exists between every CuII atom and two adjacent oxygen atoms (O2) (Cu—O2 = 2.462 (2) Å) of the ligands in the packing diagram (Fig. 2). So, four N atoms and two O atoms form an octahedral environment around the CuII atom. Four N atoms and the CuII atom form the equatorial plane, the axial position is occupied by two O2 atoms. In the compound, oxygen atoms of nitrate exhibit disorder. Three oxygen atoms are split between two sites with occupancies of 50% (O3 to O5 and O3' to O5'). The crystal packing of (I) (Fig. 2) involves N—H···O hydrogen bonds (Table 1). The nitrate O3 and O3' atoms accept intermolecular hydrogen bonds from the N4 atom of hydrazine, while O4 accepts an intermolecular hydrogen bond from the N3 atom of hydrazine and O4' interacts with both N3 and N4. These interactions and the weak interactions of CuII atoms and adjacent oxygen atoms result in a three-dimensional network of hydrogen bonds.

For general background to Schiff base complexes, see: Hursthouse et al. (1979); Gallego et al. (1979); Haran et al. (1980); Bian et al. (2005); Yu et al. (2006).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I) with the atom-numbering scheme and 30% displacement ellipsoids (H atoms are omitted for clarity).
[Figure 2] Fig. 2. A packing diagram of the title compound. Hydrogen bonds are shown as dotted lines.
Bis(N'-benzoylpyridine-4-carbohydrazide)(1,10-phenanthroline)copper(II) dinitrate top
Crystal data top
[Cu(C13H11N3O2)2(C12H8N2)](NO3)2F(000) = 1748
Mr = 850.26Dx = 1.442 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3397 reflections
a = 25.126 (4) Åθ = 2.5–26.0°
b = 12.5304 (18) ŵ = 0.63 mm1
c = 16.442 (2) ÅT = 294 K
β = 130.827 (2)°Block, blue
V = 3917.0 (10) Å30.20 × 0.16 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3939 independent reflections
Radiation source: fine-focus sealed tube2826 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
φ and ω scansθmax = 26.2°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 3126
Tmin = 0.701, Tmax = 1.000k = 1415
10551 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0397P)2 + 5.1547P]
where P = (Fo2 + 2Fc2)/3
3939 reflections(Δ/σ)max = 0.001
303 parametersΔρmax = 0.45 e Å3
48 restraintsΔρmin = 0.41 e Å3
Crystal data top
[Cu(C13H11N3O2)2(C12H8N2)](NO3)2V = 3917.0 (10) Å3
Mr = 850.26Z = 4
Monoclinic, C2/cMo Kα radiation
a = 25.126 (4) ŵ = 0.63 mm1
b = 12.5304 (18) ÅT = 294 K
c = 16.442 (2) Å0.20 × 0.16 × 0.10 mm
β = 130.827 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3939 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2826 reflections with I > 2σ(I)
Tmin = 0.701, Tmax = 1.000Rint = 0.035
10551 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04148 restraints
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.45 e Å3
3939 reflectionsΔρmin = 0.41 e Å3
303 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu11.00000.30488 (4)0.25000.03672 (16)
N11.02696 (12)0.18443 (17)0.20254 (17)0.0388 (5)
N20.96446 (12)0.42041 (17)0.28935 (17)0.0348 (5)
N30.84202 (14)0.6582 (2)0.3689 (2)0.0453 (6)
H3A0.8269 (17)0.599 (3)0.363 (2)0.048 (10)*
N40.81824 (14)0.7421 (2)0.3927 (2)0.0486 (7)
H4A0.7939 (16)0.786 (2)0.343 (2)0.047 (9)*
O10.93009 (13)0.75915 (17)0.4076 (2)0.0644 (7)
O20.88447 (10)0.69721 (15)0.56691 (15)0.0447 (5)
C11.05326 (17)0.1867 (3)0.1541 (2)0.0505 (8)
H11.06130.25260.13780.061*
C21.0692 (2)0.0950 (3)0.1270 (3)0.0669 (10)
H21.08820.09980.09400.080*
C31.0571 (2)0.0020 (3)0.1487 (3)0.0688 (10)
H31.06750.06380.13010.083*
C41.02878 (17)0.0089 (2)0.1992 (3)0.0534 (8)
C51.01434 (14)0.0876 (2)0.2241 (2)0.0405 (7)
C61.0133 (2)0.1064 (2)0.2252 (3)0.0715 (11)
H61.02170.17110.20770.086*
C71.01034 (14)0.4875 (2)0.3693 (2)0.0386 (6)
H71.05800.47780.40690.046*
C80.98990 (14)0.5703 (2)0.3983 (2)0.0388 (6)
H81.02320.61660.45330.047*
C90.91927 (14)0.5841 (2)0.3449 (2)0.0346 (6)
C100.87170 (15)0.5150 (2)0.2623 (2)0.0434 (7)
H100.82380.52220.22480.052*
C110.89591 (15)0.4351 (2)0.2359 (2)0.0434 (7)
H110.86350.38980.17900.052*
C120.89816 (15)0.6754 (2)0.3769 (2)0.0404 (7)
C130.84659 (14)0.7618 (2)0.4943 (2)0.0365 (6)
C140.82644 (14)0.8668 (2)0.5096 (2)0.0395 (6)
C150.80475 (16)0.8715 (3)0.5682 (3)0.0528 (8)
H150.80220.80950.59650.063*
C160.78694 (19)0.9682 (4)0.5844 (3)0.0766 (12)
H160.77090.97120.62180.092*
C170.7928 (2)1.0596 (4)0.5457 (4)0.0848 (13)
H170.78151.12480.55790.102*
C180.8153 (2)1.0565 (3)0.4891 (3)0.0752 (11)
H180.81931.11930.46320.090*
C190.83197 (17)0.9595 (3)0.4703 (3)0.0563 (8)
H190.84690.95690.43140.068*
N50.19121 (16)0.3709 (2)0.1463 (2)0.0580 (7)
O30.2494 (3)0.3972 (8)0.2291 (5)0.089 (2)0.68 (2)
O40.1545 (3)0.4388 (6)0.0770 (5)0.0651 (19)0.68 (2)
O50.1665 (5)0.2852 (5)0.1420 (7)0.114 (3)0.68 (2)
O3'0.2005 (15)0.2750 (7)0.1614 (14)0.133 (7)0.32 (2)
O4'0.2368 (9)0.4324 (14)0.2155 (13)0.084 (5)0.32 (2)
O5'0.1514 (9)0.4001 (18)0.0525 (10)0.118 (7)0.32 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0520 (3)0.0285 (2)0.0455 (3)0.0000.0388 (3)0.000
N10.0464 (14)0.0346 (12)0.0365 (12)0.0023 (11)0.0276 (12)0.0009 (10)
N20.0414 (13)0.0328 (12)0.0377 (12)0.0014 (10)0.0292 (12)0.0010 (10)
N30.0562 (17)0.0413 (15)0.0530 (16)0.0076 (13)0.0421 (15)0.0007 (12)
N40.0585 (17)0.0520 (16)0.0421 (15)0.0255 (14)0.0359 (15)0.0108 (13)
O10.0787 (16)0.0349 (12)0.0978 (19)0.0026 (12)0.0657 (16)0.0104 (12)
O20.0471 (11)0.0433 (11)0.0404 (11)0.0094 (10)0.0273 (10)0.0083 (10)
C10.066 (2)0.0460 (17)0.0539 (18)0.0050 (16)0.0456 (18)0.0009 (15)
C20.091 (3)0.058 (2)0.079 (3)0.008 (2)0.067 (2)0.0078 (19)
C30.080 (3)0.053 (2)0.077 (2)0.0088 (19)0.052 (2)0.0165 (19)
C40.0536 (19)0.0376 (16)0.061 (2)0.0016 (15)0.0338 (18)0.0098 (15)
C50.0367 (16)0.0333 (15)0.0383 (16)0.0012 (12)0.0187 (14)0.0023 (12)
C60.072 (3)0.0304 (17)0.101 (3)0.0016 (16)0.052 (2)0.0078 (18)
C70.0341 (14)0.0411 (15)0.0372 (15)0.0008 (12)0.0218 (13)0.0031 (13)
C80.0388 (16)0.0377 (15)0.0394 (15)0.0028 (12)0.0254 (14)0.0074 (12)
C90.0452 (16)0.0307 (13)0.0356 (14)0.0026 (12)0.0298 (14)0.0013 (11)
C100.0362 (15)0.0533 (18)0.0455 (17)0.0013 (13)0.0288 (15)0.0051 (14)
C110.0426 (17)0.0481 (17)0.0448 (17)0.0108 (14)0.0309 (15)0.0154 (14)
C120.0471 (17)0.0359 (16)0.0411 (16)0.0083 (13)0.0301 (15)0.0056 (12)
C130.0349 (15)0.0401 (15)0.0408 (16)0.0044 (12)0.0275 (14)0.0033 (13)
C140.0321 (15)0.0456 (16)0.0376 (15)0.0059 (13)0.0213 (14)0.0023 (13)
C150.0445 (18)0.061 (2)0.058 (2)0.0027 (16)0.0360 (17)0.0129 (17)
C160.063 (2)0.087 (3)0.092 (3)0.003 (2)0.056 (2)0.029 (3)
C170.075 (3)0.066 (3)0.093 (3)0.015 (2)0.046 (3)0.022 (2)
C180.078 (3)0.047 (2)0.078 (3)0.0080 (19)0.041 (2)0.0009 (19)
C190.057 (2)0.0515 (19)0.056 (2)0.0067 (16)0.0354 (18)0.0048 (16)
N50.058 (2)0.0559 (19)0.0602 (19)0.0132 (16)0.0388 (18)0.0162 (16)
O30.060 (3)0.097 (4)0.061 (3)0.001 (3)0.019 (3)0.029 (3)
O40.054 (3)0.067 (3)0.051 (3)0.021 (2)0.024 (2)0.016 (2)
O50.115 (5)0.061 (3)0.173 (6)0.008 (3)0.098 (4)0.018 (3)
O3'0.126 (11)0.081 (8)0.132 (9)0.025 (6)0.058 (7)0.017 (6)
O4'0.095 (8)0.104 (9)0.077 (8)0.007 (6)0.067 (7)0.020 (6)
O5'0.097 (8)0.127 (10)0.088 (8)0.014 (7)0.042 (6)0.027 (7)
Geometric parameters (Å, º) top
Cu1—N1i2.009 (2)C7—H70.9300
Cu1—N12.009 (2)C8—C91.383 (4)
Cu1—N22.017 (2)C8—H80.9300
Cu1—N2i2.017 (2)C9—C101.378 (4)
N1—C11.326 (4)C9—C121.494 (4)
N1—C51.358 (3)C10—C111.381 (4)
N2—C71.335 (3)C10—H100.9300
N2—C111.339 (4)C11—H110.9300
N3—C121.346 (4)C13—C141.489 (4)
N3—N41.387 (3)C14—C191.380 (4)
N3—H3A0.81 (3)C14—C151.384 (4)
N4—C131.342 (4)C15—C161.377 (5)
N4—H4A0.83 (3)C15—H150.9300
O1—C121.212 (3)C16—C171.365 (6)
O2—C131.225 (3)C16—H160.9300
C1—C21.384 (4)C17—C181.368 (6)
C1—H10.9300C17—H170.9300
C2—C31.355 (5)C18—C191.384 (5)
C2—H20.9300C18—H180.9300
C3—C41.407 (5)C19—H190.9300
C3—H30.9300N5—O3'1.218 (8)
C4—C51.397 (4)N5—O51.220 (5)
C4—C61.430 (5)N5—O4'1.223 (8)
C5—C5i1.432 (6)N5—O5'1.223 (8)
C6—C6i1.350 (7)N5—O31.224 (5)
C6—H60.9300N5—O41.224 (4)
C7—C81.375 (4)
N1i—Cu1—N182.61 (13)C8—C9—C12118.4 (2)
N1i—Cu1—N294.72 (9)C9—C10—C11119.3 (3)
N1—Cu1—N2175.04 (9)C9—C10—H10120.4
N1i—Cu1—N2i175.03 (9)C11—C10—H10120.4
N1—Cu1—N2i94.71 (9)N2—C11—C10122.3 (3)
N2—Cu1—N2i88.24 (12)N2—C11—H11118.8
C1—N1—C5117.9 (2)C10—C11—H11118.8
C1—N1—Cu1130.1 (2)O1—C12—N3123.0 (3)
C5—N1—Cu1111.99 (18)O1—C12—C9121.3 (3)
C7—N2—C11118.2 (2)N3—C12—C9115.7 (2)
C7—N2—Cu1119.31 (18)O2—C13—N4122.3 (3)
C11—N2—Cu1122.49 (19)O2—C13—C14123.5 (2)
C12—N3—N4117.9 (3)N4—C13—C14114.2 (2)
C12—N3—H3A123 (2)C19—C14—C15119.7 (3)
N4—N3—H3A118 (2)C19—C14—C13121.1 (3)
C13—N4—N3121.0 (3)C15—C14—C13119.2 (3)
C13—N4—H4A124 (2)C16—C15—C14119.9 (4)
N3—N4—H4A114 (2)C16—C15—H15120.0
N1—C1—C2122.6 (3)C14—C15—H15120.0
N1—C1—H1118.7C17—C16—C15119.9 (4)
C2—C1—H1118.7C17—C16—H16120.0
C3—C2—C1119.8 (3)C15—C16—H16120.0
C3—C2—H2120.1C16—C17—C18120.8 (4)
C1—C2—H2120.1C16—C17—H17119.6
C2—C3—C4119.9 (3)C18—C17—H17119.6
C2—C3—H3120.1C17—C18—C19119.7 (4)
C4—C3—H3120.1C17—C18—H18120.1
C5—C4—C3116.6 (3)C19—C18—H18120.1
C5—C4—C6118.6 (3)C14—C19—C18119.9 (3)
C3—C4—C6124.8 (3)C14—C19—H19120.1
N1—C5—C4123.2 (3)C18—C19—H19120.1
N1—C5—C5i116.70 (15)O3'—N5—O4'119.6 (8)
C4—C5—C5i120.13 (19)O5—N5—O4'137.8 (10)
C6i—C6—C4121.26 (19)O3'—N5—O5'116.2 (10)
C6i—C6—H6119.4O5—N5—O5'103.0 (10)
C4—C6—H6119.4O4'—N5—O5'118.7 (8)
N2—C7—C8122.6 (3)O3'—N5—O396.3 (10)
N2—C7—H7118.7O5—N5—O3119.7 (5)
C8—C7—H7118.7O5'—N5—O3136.0 (10)
C7—C8—C9119.3 (3)O3'—N5—O4143.3 (8)
C7—C8—H8120.4O5—N5—O4120.8 (5)
C9—C8—H8120.4O4'—N5—O496.1 (10)
C10—C9—C8118.3 (2)O3—N5—O4118.3 (5)
C10—C9—C12123.3 (3)
N1i—Cu1—N1—C1179.2 (3)C7—C8—C9—C101.5 (4)
N2i—Cu1—N1—C15.0 (3)C7—C8—C9—C12179.3 (2)
N1i—Cu1—N1—C50.20 (14)C8—C9—C10—C110.0 (4)
N2i—Cu1—N1—C5176.00 (19)C12—C9—C10—C11177.7 (3)
N1i—Cu1—N2—C7113.3 (2)C7—N2—C11—C101.5 (4)
N2i—Cu1—N2—C762.73 (18)Cu1—N2—C11—C10179.3 (2)
N1i—Cu1—N2—C1169.0 (2)C9—C10—C11—N21.5 (4)
N2i—Cu1—N2—C11115.0 (2)N4—N3—C12—O12.8 (4)
C12—N3—N4—C1385.3 (4)N4—N3—C12—C9177.0 (2)
C5—N1—C1—C21.2 (5)C10—C9—C12—O1144.4 (3)
Cu1—N1—C1—C2179.8 (3)C8—C9—C12—O133.4 (4)
N1—C1—C2—C30.9 (6)C10—C9—C12—N335.5 (4)
C1—C2—C3—C40.4 (6)C8—C9—C12—N3146.8 (3)
C2—C3—C4—C50.3 (5)N3—N4—C13—O213.9 (4)
C2—C3—C4—C6179.5 (4)N3—N4—C13—C14167.6 (3)
C1—N1—C5—C41.1 (4)O2—C13—C14—C19131.8 (3)
Cu1—N1—C5—C4179.8 (2)N4—C13—C14—C1949.8 (4)
C1—N1—C5—C5i179.7 (3)O2—C13—C14—C1545.4 (4)
Cu1—N1—C5—C5i0.6 (4)N4—C13—C14—C15133.1 (3)
C3—C4—C5—N10.6 (5)C19—C14—C15—C161.8 (5)
C6—C4—C5—N1179.9 (3)C13—C14—C15—C16179.0 (3)
C3—C4—C5—C5i179.8 (3)C14—C15—C16—C172.1 (5)
C6—C4—C5—C5i0.9 (5)C15—C16—C17—C181.0 (6)
C5—C4—C6—C6i1.4 (7)C16—C17—C18—C190.2 (6)
C3—C4—C6—C6i179.4 (5)C15—C14—C19—C180.5 (5)
C11—N2—C7—C80.1 (4)C13—C14—C19—C18177.7 (3)
Cu1—N2—C7—C8177.8 (2)C17—C18—C19—C140.5 (5)
N2—C7—C8—C91.6 (4)
Symmetry code: (i) x+2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O4ii0.81 (4)2.15 (4)2.873 (8)149 (3)
N3—H3A···O4ii0.81 (4)2.43 (4)3.20 (2)161 (3)
N4—H4A···O3iii0.83 (3)1.99 (3)2.814 (9)171 (4)
N4—H4A···O3iii0.83 (3)2.30 (4)2.945 (18)135 (3)
N4—H4A···O4iii0.83 (3)2.43 (4)3.25 (2)172 (3)
Symmetry codes: (ii) x+1, y, z+1/2; (iii) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Cu(C13H11N3O2)2(C12H8N2)](NO3)2
Mr850.26
Crystal system, space groupMonoclinic, C2/c
Temperature (K)294
a, b, c (Å)25.126 (4), 12.5304 (18), 16.442 (2)
β (°) 130.827 (2)
V3)3917.0 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.63
Crystal size (mm)0.20 × 0.16 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.701, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
10551, 3939, 2826
Rint0.035
(sin θ/λ)max1)0.621
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.108, 1.03
No. of reflections3939
No. of parameters303
No. of restraints48
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.45, 0.41

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O4i0.81 (4)2.15 (4)2.873 (8)149 (3)
N3—H3A···O4'i0.81 (4)2.43 (4)3.20 (2)161 (3)
N4—H4A···O3ii0.83 (3)1.99 (3)2.814 (9)171 (4)
N4—H4A···O3'ii0.83 (3)2.30 (4)2.945 (18)135 (3)
N4—H4A···O4'ii0.83 (3)2.43 (4)3.25 (2)172 (3)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1/2, y+1/2, z.
 

Acknowledgements

This research was supported by the Initial Scientific Research Foundation of Guilin University of Technology, Guangxi Natural Science Foundation of China (2010GXNSFF013001) and the Science Foundation of Guangxi (No. 0832098, 0731052).

References

First citationBian, H.-D., Guo, G.-Q., Yu, Q., Liang, H., Yang, X.-E., Zhu, L.-G. & Wang, D.-Q. (2005). Chin. J. Chem. 23, 1400–1402.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGallego, M., Gareia-Varges, M. & Valcaral, M. (1979). Analyst, 104, 613–619.  CrossRef CAS Web of Science Google Scholar
First citationHaran, R., Gairin, J. & Commenges, G. (1980). Inorg. Chim. Acta, 46, 63–67.  CrossRef CAS Web of Science Google Scholar
First citationHursthouse, M. B., Jayaweera, S. A. A. & Quick, A. (1979). J. Chem. Soc. Dalton Trans. pp. 279–282.  CSD CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, Q., Guo, G.-Q., Bian, H.-D., Liang, H. & Li, C.-Y. (2006). Acta Cryst. E62, m1221–m1222.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds