Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the crystal structure of 1,1'-(1,3-propane­diyl)­bis(5-benzyl-6-methyl­sulfanyl-4,5-di­hydro-1H-pyrazolo­[3,4-d]­pyrimidin-4-one), C29H28N8O2S2, the pairs of pyrazolo­[3,4-d]­pyrimidine rings stack as a result of intramolecular [pi]-[pi] interactions between the heterocyclic rings. The folded mol­ecules are further stacked in pairs, due to intermolecular aromatic [pi]-[pi] interactions and C-H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102012039/vj1169sup1.cif
Contains datablocks global, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102012039/vj1169IIIsup2.hkl
Contains datablock III

CCDC reference: 193435

Comment top

Interactions between aromatic units play a significant role in chemistry (Hunter et al., 2001; Tsuzuki et al., 2002), crystal engineering (Desiraju, 1995) and biology. In recent years, we have reported the convenient syntheses (Avasthi et al., 1995, 1998; Avasthi, Rawat et al., 2001) and the X-ray structures (Biswas et al., 1995; Maulik et al., 1998, 2000; Avasthi, Rawat et al., 2001; Avasthi, Aswal & Maulik, 2001) of several novel `propylene linker' compounds based on the pyrazolo[3,4-d]pyrimidine core, which is isomeric with biologically important purine, as flexible new models for studying aromatic ππ interactions (APPI). Two of these compounds, 1,1'-(1,3-propanediyl)bis(5-methyl-6-methylthio-4,5-dihydro-1H- pyrazolo[3,4-d]pyrimidin-4-one), (I), and 1,1'-(1,3-propanediyl)bis(5-ethyl-6-methylthio-dihydro-1H- pyrazolo[3,4-d]pyrimidin-4-one), (II), show inter- and intramolecular stacking due to APPI (Maulik et al., 1998; Avasthi, Aswal & Maulik, 2001) when studied using X-ray crystallography. Since the X-ray structures of (I) and (II) are quite similar, in having a U-motif for the demonstration of inter- and intramolecular stacking, it was considered worthwhile to replace the N-methyl/ethyl group of (I) and (II) with a bulky N-benzyl group, to determine the robustness of the U-motif and its consequence for the intermolecular stacking from a crystal engineering point of view. In this communication, we report the X-ray structure of 1,1'-(1,3-propanediyl)bis(5-benzyl-6-methylthio-4,5-dihydro-1H-pyrazolo [3,4-d]pyrimidin-4-one), (III), the synthesis of which has been described earlier by Avasthi et al. (1998). \sch

The molecular structure and conformation of (III) are shown in Fig. 1. The structure is folded at the centre of the bridge [C10—C11—C12 114.0 (2)°] due to intramolecular APPI between the pyrazolo[3,4-d]pyrimidine rings. For comparison, the folding angles in (I) and (II) are 115.2 (2) and 114.9 (2)°, respectively. In compound (III), as in (I) and (II), the folded pyrazolo[3,4-d]pyrimidine rings are positioned in such a way that only part of the pyrimidinyl rings overlap. The overlapping six-membered rings are separated by an average distance of 3.428 (3) Å [3.37 (1) Å in (I) and 3.415 (3) Å in (II)], thus confirming the presence of intramolecular APPI.

The pyrazolo[3,4-d]pyrimidine rings in (III) are nearly planar [maximum deviation -0.048 (2) Å] and the angle between the least-squares planes is 14.5 (1)° [12.4 (5)° in (I) and 12.5 (1)° in (II)]. The crystal packing (Fig. 2) shows further independent intermolecular stacking between the pyrazolo[3,4-d]pyrimidine systems due to ππ interactions. Pairs of pyrazolo[3,4-d]pyrimidine rings (related by symmetry code 1 - x, 1 - y, -z) overlap, with an interplanar separation of 3.370 (2) Å in a `parallel displaced' orientation [the dihedral angle of a stacking pair is 1.0 (1)°].

Interestingly, these stacked pyrazolo[3,4-d]pyrimidine rings are also connected by intermolecular C—H···O hydrogen bonding (Table 1; Desiraju & Steiner, 1999). Thus, the combination of intra- and intermolecular APPI and intermolecular hydrogen bonding results in the formation of a stacked-dimeric unit of (III). The continuous intermolecular stacking present in (I) and (II) is absent in (III). The crystal structure of (III) is stabilized mainly by C—H···O bonding, ππ interactions and van der Waals forces.

Experimental top

Compound (III) was synthesized using the method described by Avasthi et al. (1998). Diffraction quality crystals of (III) were obtained by slow evaporation of an ethyl acetate solution at room temperature.

Computing details top

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXTL (Bruker, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A displacement ellipsoid plot (30% probability) showing the molecular structure of (III) with the atom-labelling scheme.
[Figure 2] Fig. 2. A crystal-packing diagram for (III) showing the intra- and intermolecular ππ stacking between the pyrazolo[3,4-d]pyrimidine rings, and the intermolecular C—H···O hydrogen bonding (dashed lines).
1,1'-(1,3-propanediyl)bis(5-benzyl-6-methylthio-4,5-dihydro-1H-pyrazolo [3,4-d]pyrimidine-4-one) top
Crystal data top
C29H28N8O2S2Z = 2
Mr = 584.71F(000) = 612
Triclinic, P1Dx = 1.379 Mg m3
Hall symbol: -P 1Melting point: 433 K
a = 9.150 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.491 (1) ÅCell parameters from 38 reflections
c = 16.839 (2) Åθ = 4.8–12.5°
α = 83.01 (1)°µ = 0.23 mm1
β = 85.26 (1)°T = 293 K
γ = 76.39 (1)°Rectangular, colourless
V = 1408.5 (3) Å30.35 × 0.28 × 0.25 mm
Data collection top
Bruker P4
diffractometer
Rint = 0.021
Radiation source: fine-focus sealed tubeθmax = 26.0°, θmin = 2.2°
Graphite monochromatorh = 111
θ/2θ scansk = 1111
6623 measured reflectionsl = 2020
5527 independent reflections3 standard reflections every 97 reflections
3716 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.047P)2 + 0.5548P]
where P = (Fo2 + 2Fc2)/3
5527 reflections(Δ/σ)max < 0.001
372 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C29H28N8O2S2γ = 76.39 (1)°
Mr = 584.71V = 1408.5 (3) Å3
Triclinic, P1Z = 2
a = 9.150 (1) ÅMo Kα radiation
b = 9.491 (1) ŵ = 0.23 mm1
c = 16.839 (2) ÅT = 293 K
α = 83.01 (1)°0.35 × 0.28 × 0.25 mm
β = 85.26 (1)°
Data collection top
Bruker P4
diffractometer
Rint = 0.021
6623 measured reflections3 standard reflections every 97 reflections
5527 independent reflections intensity decay: none
3716 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.01Δρmax = 0.18 e Å3
5527 reflectionsΔρmin = 0.28 e Å3
372 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S20.67773 (9)0.46166 (7)0.33325 (4)0.0603 (2)
S10.38237 (8)0.11449 (7)0.20404 (4)0.0616 (2)
N10.7371 (2)0.3705 (2)0.03235 (11)0.0444 (5)
N20.7509 (2)0.5115 (2)0.01271 (12)0.0532 (5)
C30.6415 (3)0.5910 (3)0.05519 (15)0.0520 (6)
H30.62410.69180.05410.062*
C40.5545 (3)0.5049 (2)0.10221 (13)0.0429 (5)
C50.4223 (3)0.5301 (3)0.15497 (14)0.0453 (6)
N60.3744 (2)0.3985 (2)0.18224 (11)0.0431 (5)
C70.4543 (3)0.2640 (2)0.16165 (13)0.0420 (5)
N80.5757 (2)0.2405 (2)0.11473 (11)0.0431 (5)
C90.6195 (3)0.3648 (2)0.08509 (13)0.0397 (5)
C100.8353 (3)0.2499 (3)0.00598 (14)0.0478 (6)
H10A0.80810.25550.06090.057*
H10B0.81900.15860.02160.057*
C111.0006 (3)0.2504 (3)0.00567 (13)0.0476 (6)
H11A1.05980.16280.02680.057*
H11B1.01980.33330.04120.057*
C121.0529 (3)0.2580 (3)0.07640 (13)0.0471 (6)
H12A1.16170.24330.07320.056*
H12B1.01040.35440.09280.056*
N131.0095 (2)0.1497 (2)0.13662 (11)0.0446 (5)
N141.0544 (3)0.0044 (2)0.12774 (12)0.0563 (6)
C150.9861 (3)0.0610 (3)0.18839 (15)0.0560 (7)
H150.99660.16140.19780.067*
C160.8954 (3)0.0396 (2)0.23711 (13)0.0435 (6)
C170.7914 (3)0.0338 (3)0.30458 (14)0.0465 (6)
N180.7237 (2)0.1749 (2)0.32790 (10)0.0425 (5)
C190.7621 (3)0.3004 (2)0.29037 (13)0.0408 (5)
N200.8541 (2)0.3057 (2)0.22766 (11)0.0409 (4)
C210.9151 (3)0.1734 (2)0.20196 (13)0.0397 (5)
O220.3506 (2)0.64677 (19)0.17553 (10)0.0596 (5)
C230.2242 (3)0.4163 (3)0.22530 (14)0.0505 (6)
H23A0.17400.34650.20850.061*
H23B0.16520.51300.20870.061*
C240.2233 (3)0.3970 (3)0.31561 (14)0.0465 (6)
C250.1778 (3)0.2807 (3)0.35928 (16)0.0597 (7)
H250.15070.21140.33250.072*
C260.1719 (3)0.2650 (4)0.44179 (17)0.0695 (8)
H260.14290.18480.47030.083*
C270.2089 (3)0.3685 (4)0.48160 (17)0.0711 (8)
H270.20140.36060.53730.085*
C280.2567 (4)0.4832 (3)0.43936 (18)0.0757 (9)
H280.28470.55160.46650.091*
C290.2637 (3)0.4982 (3)0.35668 (16)0.0613 (7)
H290.29600.57680.32840.074*
C300.4974 (4)0.0284 (3)0.1524 (2)0.0816 (10)
H30A0.49130.00230.09570.122*
H30B0.46290.11650.16730.122*
H30C0.59990.04330.16640.122*
O310.7568 (2)0.07369 (19)0.34170 (11)0.0630 (5)
C320.6071 (3)0.1810 (3)0.39392 (13)0.0475 (6)
H32A0.55210.10660.38990.057*
H32B0.53630.27490.38720.057*
C330.6653 (3)0.1599 (2)0.47692 (13)0.0420 (5)
C340.5623 (3)0.1525 (3)0.54158 (14)0.0527 (6)
H340.46200.15800.53280.063*
C350.6076 (3)0.1371 (3)0.61875 (15)0.0593 (7)
H350.53730.13310.66160.071*
C360.7550 (3)0.1277 (3)0.63308 (15)0.0564 (7)
H360.78480.11760.68540.068*
C370.8583 (3)0.1333 (3)0.56950 (16)0.0567 (7)
H370.95880.12600.57860.068*
C380.8128 (3)0.1499 (3)0.49152 (15)0.0514 (6)
H380.88330.15430.44870.062*
C390.7735 (4)0.5868 (3)0.27542 (18)0.0750 (9)
H39A0.88010.55230.28010.112*
H39B0.74110.68080.29490.112*
H39C0.75060.59450.22020.112*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S20.0736 (5)0.0494 (4)0.0572 (4)0.0115 (3)0.0108 (4)0.0176 (3)
S10.0661 (5)0.0512 (4)0.0691 (5)0.0244 (3)0.0048 (4)0.0034 (3)
N10.0502 (12)0.0412 (11)0.0441 (11)0.0156 (9)0.0007 (10)0.0040 (9)
N20.0625 (14)0.0466 (12)0.0538 (12)0.0224 (11)0.0039 (11)0.0035 (10)
C30.0659 (17)0.0395 (13)0.0533 (15)0.0187 (13)0.0043 (13)0.0019 (11)
C40.0492 (14)0.0403 (13)0.0409 (12)0.0132 (11)0.0051 (11)0.0034 (10)
C50.0536 (15)0.0414 (14)0.0405 (13)0.0101 (12)0.0083 (11)0.0007 (10)
N60.0451 (12)0.0463 (11)0.0391 (10)0.0131 (9)0.0027 (9)0.0033 (8)
C70.0477 (14)0.0392 (13)0.0396 (12)0.0111 (11)0.0102 (11)0.0006 (10)
N80.0490 (12)0.0371 (10)0.0431 (11)0.0117 (9)0.0010 (10)0.0018 (8)
C90.0446 (13)0.0395 (13)0.0369 (12)0.0134 (11)0.0066 (10)0.0012 (9)
C100.0532 (15)0.0517 (14)0.0405 (13)0.0134 (12)0.0013 (11)0.0104 (11)
C110.0518 (15)0.0568 (15)0.0353 (12)0.0158 (12)0.0055 (11)0.0077 (11)
C120.0505 (15)0.0552 (15)0.0387 (12)0.0192 (12)0.0002 (11)0.0053 (11)
N130.0544 (12)0.0450 (11)0.0362 (10)0.0132 (9)0.0012 (9)0.0106 (8)
N140.0733 (15)0.0474 (12)0.0461 (12)0.0058 (11)0.0008 (11)0.0152 (10)
C150.081 (2)0.0435 (14)0.0432 (14)0.0125 (14)0.0006 (14)0.0088 (11)
C160.0544 (15)0.0392 (13)0.0383 (12)0.0112 (11)0.0057 (11)0.0071 (10)
C170.0603 (16)0.0424 (13)0.0405 (13)0.0173 (12)0.0085 (12)0.0037 (11)
N180.0496 (12)0.0435 (11)0.0365 (10)0.0156 (9)0.0013 (9)0.0055 (8)
C190.0481 (14)0.0406 (12)0.0362 (12)0.0122 (11)0.0080 (11)0.0060 (10)
N200.0504 (12)0.0392 (10)0.0355 (10)0.0136 (9)0.0022 (9)0.0069 (8)
C210.0467 (14)0.0426 (13)0.0329 (11)0.0139 (11)0.0041 (10)0.0077 (9)
O220.0723 (13)0.0427 (10)0.0591 (11)0.0042 (9)0.0022 (9)0.0080 (8)
C230.0429 (14)0.0603 (16)0.0485 (14)0.0124 (12)0.0037 (11)0.0044 (12)
C240.0386 (13)0.0513 (15)0.0479 (14)0.0066 (11)0.0010 (11)0.0082 (11)
C250.0583 (17)0.0747 (19)0.0548 (16)0.0324 (15)0.0010 (13)0.0079 (14)
C260.0681 (19)0.088 (2)0.0554 (17)0.0338 (17)0.0072 (15)0.0047 (16)
C270.077 (2)0.087 (2)0.0445 (15)0.0102 (18)0.0067 (15)0.0111 (15)
C280.110 (3)0.0599 (18)0.0581 (18)0.0128 (18)0.0041 (18)0.0234 (15)
C290.083 (2)0.0482 (15)0.0524 (16)0.0137 (14)0.0005 (14)0.0104 (12)
C300.108 (3)0.0469 (17)0.094 (2)0.0310 (17)0.011 (2)0.0091 (16)
O310.0846 (14)0.0471 (10)0.0605 (11)0.0279 (10)0.0071 (10)0.0005 (9)
C320.0462 (14)0.0553 (15)0.0432 (13)0.0175 (12)0.0038 (11)0.0056 (11)
C330.0492 (15)0.0363 (12)0.0413 (12)0.0131 (11)0.0018 (11)0.0029 (9)
C340.0468 (15)0.0636 (16)0.0467 (14)0.0158 (13)0.0027 (12)0.0011 (12)
C350.0630 (18)0.0670 (18)0.0443 (15)0.0161 (14)0.0101 (13)0.0022 (12)
C360.075 (2)0.0559 (16)0.0397 (14)0.0177 (14)0.0088 (14)0.0012 (11)
C370.0527 (16)0.0631 (17)0.0558 (16)0.0147 (13)0.0097 (13)0.0038 (13)
C380.0495 (16)0.0608 (16)0.0440 (14)0.0143 (13)0.0035 (12)0.0063 (12)
C390.107 (3)0.0441 (16)0.076 (2)0.0199 (16)0.0072 (18)0.0157 (14)
Geometric parameters (Å, º) top
S2—C191.755 (2)N18—C321.473 (3)
S2—C391.787 (3)C19—N201.299 (3)
S1—C71.752 (2)N20—C211.356 (3)
S1—C301.779 (3)C23—C241.509 (3)
N1—C91.344 (3)C23—H23A0.9700
N1—N21.371 (3)C23—H23B0.9700
N1—C101.461 (3)C24—C251.379 (4)
N2—C31.319 (3)C24—C291.381 (4)
C3—C41.405 (3)C25—C261.377 (4)
C3—H30.9300C25—H250.9300
C4—C91.378 (3)C26—C271.372 (4)
C4—C51.431 (3)C26—H260.9300
C5—O221.221 (3)C27—C281.366 (4)
C5—N61.431 (3)C27—H270.9300
N6—C71.383 (3)C28—C291.380 (4)
N6—C231.483 (3)C28—H280.9300
C7—N81.300 (3)C29—H290.9300
N8—C91.360 (3)C30—H30A0.9600
C10—C111.515 (3)C30—H30B0.9600
C10—H10A0.9700C30—H30C0.9600
C10—H10B0.9700C32—C331.511 (3)
C11—C121.514 (3)C32—H32A0.9700
C11—H11A0.9700C32—H32B0.9700
C11—H11B0.9700C33—C381.372 (3)
C12—N131.454 (3)C33—C341.386 (3)
C12—H12A0.9700C34—C351.377 (4)
C12—H12B0.9700C34—H340.9300
N13—C211.349 (3)C35—C361.370 (4)
N13—N141.366 (3)C35—H350.9300
N14—C151.320 (3)C36—C371.373 (4)
C15—C161.407 (3)C36—H360.9300
C15—H150.9300C37—C381.390 (3)
C16—C211.379 (3)C37—H370.9300
C16—C171.425 (3)C38—H380.9300
C17—O311.223 (3)C39—H39A0.9600
C17—N181.424 (3)C39—H39B0.9600
N18—C191.385 (3)C39—H39C0.9600
C19—S2—C39100.58 (12)N13—C21—N20125.2 (2)
C7—S1—C30101.29 (13)N13—C21—C16107.4 (2)
C9—N1—N2110.91 (19)N20—C21—C16127.4 (2)
C9—N1—C10127.47 (19)N6—C23—C24116.1 (2)
N2—N1—C10121.48 (19)N6—C23—H23A108.3
C3—N2—N1105.21 (19)C24—C23—H23A108.3
N2—C3—C4111.7 (2)N6—C23—H23B108.3
N2—C3—H3124.1C24—C23—H23B108.3
C4—C3—H3124.1H23A—C23—H23B107.4
C9—C4—C3104.3 (2)C25—C24—C29118.3 (2)
C9—C4—C5119.2 (2)C25—C24—C23121.0 (2)
C3—C4—C5136.4 (2)C29—C24—C23120.7 (2)
O22—C5—N6120.5 (2)C26—C25—C24121.3 (3)
O22—C5—C4127.4 (2)C26—C25—H25119.4
N6—C5—C4112.1 (2)C24—C25—H25119.4
C7—N6—C5122.22 (19)C27—C26—C25119.6 (3)
C7—N6—C23121.31 (19)C27—C26—H26120.2
C5—N6—C23116.03 (19)C25—C26—H26120.2
N8—C7—N6125.8 (2)C28—C27—C26120.0 (3)
N8—C7—S1118.57 (17)C28—C27—H27120.0
N6—C7—S1115.64 (17)C26—C27—H27120.0
C7—N8—C9113.07 (19)C27—C28—C29120.4 (3)
N1—C9—N8124.6 (2)C27—C28—H28119.8
N1—C9—C4107.81 (19)C29—C28—H28119.8
N8—C9—C4127.5 (2)C28—C29—C24120.4 (3)
N1—C10—C11112.93 (19)C28—C29—H29119.8
N1—C10—H10A109.0C24—C29—H29119.8
C11—C10—H10A109.0S1—C30—H30A109.5
N1—C10—H10B109.0S1—C30—H30B109.5
C11—C10—H10B109.0H30A—C30—H30B109.5
H10A—C10—H10B107.8S1—C30—H30C109.5
C12—C11—C10113.96 (19)H30A—C30—H30C109.5
C12—C11—H11A108.8H30B—C30—H30C109.5
C10—C11—H11A108.8N18—C32—C33115.0 (2)
C12—C11—H11B108.8N18—C32—H32A108.5
C10—C11—H11B108.8C33—C32—H32A108.5
H11A—C11—H11B107.7N18—C32—H32B108.5
N13—C12—C11112.60 (19)C33—C32—H32B108.5
N13—C12—H12A109.1H32A—C32—H32B107.5
C11—C12—H12A109.1C38—C33—C34118.7 (2)
N13—C12—H12B109.1C38—C33—C32123.7 (2)
C11—C12—H12B109.1C34—C33—C32117.6 (2)
H12A—C12—H12B107.8C35—C34—C33120.4 (2)
C21—N13—N14111.28 (19)C35—C34—H34119.8
C21—N13—C12127.6 (2)C33—C34—H34119.8
N14—N13—C12120.88 (19)C36—C35—C34120.8 (2)
C15—N14—N13105.16 (19)C36—C35—H35119.6
N14—C15—C16111.8 (2)C34—C35—H35119.6
N14—C15—H15124.1C35—C36—C37119.3 (2)
C16—C15—H15124.1C35—C36—H36120.3
C21—C16—C15104.3 (2)C37—C36—H36120.3
C21—C16—C17119.1 (2)C36—C37—C38120.1 (3)
C15—C16—C17136.4 (2)C36—C37—H37120.0
O31—C17—N18119.8 (2)C38—C37—H37120.0
O31—C17—C16128.1 (2)C33—C38—C37120.8 (2)
N18—C17—C16112.1 (2)C33—C38—H38119.6
C19—N18—C17122.64 (19)C37—C38—H38119.6
C19—N18—C32121.25 (19)S2—C39—H39A109.5
C17—N18—C32116.11 (19)S2—C39—H39B109.5
N20—C19—N18125.0 (2)H39A—C39—H39B109.5
N20—C19—S2119.29 (17)S2—C39—H39C109.5
N18—C19—S2115.69 (17)H39A—C39—H39C109.5
C19—N20—C21113.46 (19)H39B—C39—H39C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···O22i0.972.473.367 (3)154
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC29H28N8O2S2
Mr584.71
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.150 (1), 9.491 (1), 16.839 (2)
α, β, γ (°)83.01 (1), 85.26 (1), 76.39 (1)
V3)1408.5 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.35 × 0.28 × 0.25
Data collection
DiffractometerBruker P4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6623, 5527, 3716
Rint0.021
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.121, 1.01
No. of reflections5527
No. of parameters372
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.28

Computer programs: XSCANS (Siemens, 1996), XSCANS, SHELXTL (Bruker, 1997), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···O22i0.972.473.367 (3)154
Symmetry code: (i) x+1, y+1, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds