Download citation
Download citation
link to html
In the title compound, C31H40N2O·H2O, the outer two six-membered rings are in chair conformations, while the central ring is in an 8[beta],9[alpha]-half-chair conformation. The five-membered ring adopts a 13[beta]-envelope conformation and the cyano­benzyl­idene moiety has an E configuration with respect to the hydroxyl group at position 17. The steroid nuclei are linked by intermolecular O-H...O and O-H...N hydrogen bonds to form a molecular network. The molecular packing has an interesting feature, with the steroids aligned parallel to the b axis, forming a closed loop through hydrogen bonds linked via water mol­ecules.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102009319/vj1164sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102009319/vj1164Isup2.hkl
Contains datablock I

CCDC reference: 192988

Comment top

The X-ray investigation of the title compound, (I), was undertaken as part of our study of the structure and conformation of new synthetic steroid derivatives. We are particularly interested in the conformational flexibilities of steroids due to various possible substitutions at the C3, C16 and C17 positions, as it is well known that steroid receptors are able to modify the mode of binding at ring D to accommodate several different types of C17 substitution (Duax & Norton, 1975). The absolute configuration of (I) was not determined from the X-ray data, but is based on the known chirality of the starting material used in the synthesis of (I), namely, 16-(4-cyanobenzylidene)androst-4-ene-3,17-dione. \sch

The C5—C6 distance of 1.332 (4) Å confirms the localization of a double bond at this position (Kálmán et al., 1992; Vasuki et al., 2001). The puckering parameters [ring A: Q = 0.542 (3) Å, θ = 2.7 (3)° and Φ = 42.8 (7)°; ring C: Q = 0.562 (3) Å, θ = 8.6 (3)° and Φ = 235.0 (2)°; Cremer & Pople, 1975] show that rings A and C adopt chair conformations. The presence of the pyrrolidine group bonded to C3 does not disturb the usual chair conformation of ring A of the steroidal nucleus. Due to the C5—C6 double bond, the environment of atom C5 is planar, and hence ring B adopts the half-chair conformation generally found in steroids with a C5—C6 double bond (Caira et al., 1995; Andrade et al., 2001), with puckering parameters Q = 0.490 (3) Å, θ = 49.4 (4)° and Φ = 202.5 (5)°.

The conformation of ring D can be expressed by two parameters, a pseudo rotation angle, Δ, and a maximum torsion angle, ϕm (Altona et al., 1968). In compound (I), ring D exhibits a 13β-envelope conformation, with Δ = 28.5° and ϕm = 48.2 (2)°.

Atoms C8 and C9 are displaced to opposite sides by 0.2631 (3) and 0.2155 (3) Å, respectively, from the mean C10/C5/C6/C7 plane. The C17—C16—C20—C21 torsion angle of -177.7 (3)° indicates that the cyanobenzylidene moiety has an E configuration with respect to the hydroxyl group at position 17. The C15—C16—C20 exocyclic angle of 131.0 (3)° is significantly larger than the normal value, and this may be due to the steric repulsion between atoms H15A and H26 [2.293 Å] and H15B and H26 [2.354 Å].

The pseudotorsion angle of C19—C10···C13—C18 is 12.41 (3)°. The 4-cyanobenzylidene group is oriented at an angle of 11.14 (10)° with respect to the central steroid nucleus. The equatorially substituted pyrrolidine group at C3 is oriented at an angle of 22.64 (12)° with respect to the central steroid nucleus. The geometry of the rings is trans at ring junctions B/C and C/D. In (I), the valency angles C8—C14—C15 [119.5 (2)°] and C14—C13—C17 [98.8 (2)°] are close to the expected values of 121.2° and 101.4°, respectively (Duax & Norton, 1975).

The 17β-OH is equatorially attached at C17 and the pyrrolidine is equatorially substituted at C3. The structure of (I) is stabilized by a network of O—H···O and O—H···N intermolecular hydrogen bonds (Table 1). The hydroxyl O atoms take part in the intermolecular hydrogen bonds as donors, with the O atoms of the water molecules as acceptors. The water molecule links three different steroid molecules, acting as a hydrogen-bond acceptor from O17 of one steroid molecule and as a donor to the N atoms of the pyrrolidine and 4-cyanobenzylidene of two other steroid molecules. In Fig. 2, we see that the steroid molecules are aligned parallel to the b axis, forming a closed loop through hydrogen bonds linked via water molecules.

Experimental top

Freshly distilled pyrrolidine was added to a refluxing solution of 16-(4-cyanobenzylidene)androst-4-ene-3,17-dione (0.5 g, 1.25 mmol) in methanol (50 ml). After refluxing for 15 min, the precipitate obtained was cooled in ice, filtered and washed with methanol to obtain 16-(4-cyanobenzylidene)-3-pyrrolidinoandrosta-3,5-dien-17-one (0.4 g). This was immediately suspended in methanol (50 ml) and reduced with sodium borohydride (1.0 g), while stirring at room temperature. The stirring was continued for 4 h, excess methanol was removed under reduced pressure and ice-cold water was added. The precipitate obtained was filtered, washed with water, dried and crystallized from acetone to obtain (I) (0.23 g, 56.99%; m.p. 501–507 K). Spectroscopic analysis: UVmax (MeOH): 282.2 nm (log ε = 4.47); IRνmax (KBr, cm-1): 3350, 2980, 2200, 1595; 1H NMR (CDCl3 + DMSO, δ, p.p.m.): 0.69 (s, 3H, 18-CH3), 1.02 (s, 3H, 19-CH3), 2.61 (s, 4H, N-methylene of pyrrolidine function), 4.02 (m, 1H, 3α-H), 5.36 (s, 2H, 6-CH), 6.55 [s, 1H, vinyl H of 16-(4-cyanobenzylidene)], 7.47 (d, 2H, Jo = 8.3 Hz, 2-CH and 6-CH aromatic H), 7.67 (d, 2H, Jo = 8.3 Hz, 3-CH and 5-CH aromatic H); MS: m/z (mass/relative intensity): 456 [M+].

Refinement top

All H atoms were fixed with geometrical considerations (C—H = 0.93–0.98 Å and O—H = 0.82 Å Are these the correct constraints?), except water H atoms, for which the overall displacement parameters were refined.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: MolEN (Fair, 1990); program(s) used to solve structure: DIRDIF99 (Beurskens et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: WinGX (Farrugia, 1999); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 50% probability displacement ellipsoids and the atom-numbering scheme. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. A stereoview of the molecular packing of (I) viewed down the b axis.
16-(4-Cyanobenzylidene)-3β-pyrrolidinoandrost-5-en-17β-ol monohydrate top
Crystal data top
C31H40N2O·H2ODx = 1.168 Mg m3
Mr = 474.67Cu Kα radiation, λ = 1.54180 Å
Orthorhombic, P212121Cell parameters from 25 reflections
a = 7.2171 (6) Åθ = 20–30°
b = 18.541 (3) ŵ = 0.56 mm1
c = 20.176 (6) ÅT = 293 K
V = 2699.8 (9) Å3Plate, colourless
Z = 40.30 × 0.25 × 0.10 mm
F(000) = 1032
Data collection top
Enraf-Nonius CAD-4
diffractometer
2580 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.016
Graphite monochromatorθmax = 68.0°, θmin = 3.2°
ω/2θ scansh = 82
Absorption correction: ψ scan
(North et al., 1968)
k = 229
Tmin = 0.850, Tmax = 0.946l = 2410
2916 measured reflections2 standard reflections every 100 reflections
2898 independent reflections intensity decay: none
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.043 w = 1/[σ2(Fo2) + (0.0626P)2 + 0.6312P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.123(Δ/σ)max < 0.001
S = 1.09Δρmax = 0.19 e Å3
2898 reflectionsΔρmin = 0.19 e Å3
318 parametersExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0021 (3)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 83 Friedel pairs Query
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 1.4 (5)
Crystal data top
C31H40N2O·H2OV = 2699.8 (9) Å3
Mr = 474.67Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 7.2171 (6) ŵ = 0.56 mm1
b = 18.541 (3) ÅT = 293 K
c = 20.176 (6) Å0.30 × 0.25 × 0.10 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
2580 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.016
Tmin = 0.850, Tmax = 0.9462 standard reflections every 100 reflections
2916 measured reflections intensity decay: none
2898 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.123Δρmax = 0.19 e Å3
S = 1.09Δρmin = 0.19 e Å3
2898 reflectionsAbsolute structure: Flack (1983), 83 Friedel pairs Query
318 parametersAbsolute structure parameter: 1.4 (5)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4606 (4)0.18329 (15)0.65575 (18)0.0628 (8)
H1A0.57500.19400.67900.075*
H1B0.49240.17070.61050.075*
C20.3693 (4)0.11851 (15)0.68839 (17)0.0634 (8)
H2A0.45210.07740.68560.076*
H2B0.34860.12890.73490.076*
C30.1842 (5)0.09927 (15)0.65563 (15)0.0582 (7)
H30.20830.08400.60990.070*
C40.0594 (4)0.16564 (16)0.65401 (18)0.0665 (8)
H4A0.02030.17710.69880.080*
H4B0.05050.15490.62820.080*
C50.1561 (4)0.23056 (15)0.62438 (13)0.0497 (6)
C60.0748 (4)0.26771 (15)0.57590 (16)0.0613 (8)
H60.03890.25130.56040.074*
C70.1540 (4)0.33385 (14)0.54483 (14)0.0544 (7)
H7A0.20890.32130.50250.065*
H7B0.05520.36820.53660.065*
C80.3006 (4)0.36886 (13)0.58871 (13)0.0458 (6)
H80.23950.39050.62730.055*
C90.4363 (4)0.31064 (14)0.61280 (13)0.0482 (6)
H90.48090.28630.57280.058*
C100.3398 (4)0.25153 (14)0.65485 (13)0.0477 (6)
C110.6106 (4)0.34276 (17)0.64664 (17)0.0643 (8)
H11A0.70000.30450.65390.077*
H11B0.57590.36200.68960.077*
C120.7016 (4)0.40240 (17)0.60600 (18)0.0655 (8)
H12A0.74960.38230.56510.079*
H12B0.80480.42240.63070.079*
C130.5640 (4)0.46195 (15)0.58998 (13)0.0527 (6)
C140.4037 (4)0.42741 (14)0.55113 (12)0.0471 (6)
H140.46040.40360.51280.057*
C150.2960 (4)0.49195 (14)0.52334 (14)0.0522 (7)
H15A0.20330.50860.55460.063*
H15B0.23570.47970.48190.063*
C160.4454 (4)0.54836 (15)0.51294 (13)0.0523 (7)
C170.6276 (4)0.51696 (17)0.53783 (15)0.0592 (7)
H170.68320.48990.50110.071*
O170.7552 (4)0.57058 (14)0.55695 (14)0.0925 (9)
H17A0.80970.55760.59060.139*
C180.4999 (5)0.50178 (17)0.65225 (14)0.0676 (9)
H18A0.60520.52250.67420.101*
H18B0.41490.53930.64010.101*
H18C0.43940.46850.68160.101*
C190.3067 (5)0.27759 (17)0.72614 (14)0.0668 (9)
H19A0.42280.29090.74590.100*
H19B0.22550.31860.72560.100*
H19C0.25100.23950.75150.100*
C200.4363 (5)0.61512 (16)0.48837 (13)0.0569 (7)
H200.54710.64070.48940.068*
C210.2794 (4)0.65442 (14)0.46009 (13)0.0528 (7)
C220.3158 (5)0.72049 (15)0.42936 (14)0.0598 (8)
H220.43600.73860.42960.072*
C230.1783 (5)0.75925 (16)0.39890 (16)0.0634 (8)
H230.20670.80240.37780.076*
C240.0020 (5)0.73452 (16)0.39943 (15)0.0611 (8)
C2410.1473 (6)0.77506 (19)0.36784 (18)0.0750 (10)
N2410.2620 (5)0.80736 (19)0.3434 (2)0.1058 (12)
C250.0428 (5)0.66972 (17)0.43081 (16)0.0676 (9)
H250.16390.65250.43130.081*
C260.0958 (4)0.63103 (16)0.46109 (17)0.0654 (8)
H260.06650.58820.48280.078*
N310.0956 (4)0.03955 (12)0.69112 (11)0.0545 (6)
C320.0939 (5)0.02205 (17)0.66792 (18)0.0701 (9)
H32A0.18270.05740.68370.084*
H32B0.09910.02030.61990.084*
C330.1315 (6)0.05102 (18)0.69748 (19)0.0772 (10)
H33A0.21270.07890.66900.093*
H33B0.18880.04640.74080.093*
C340.0552 (6)0.08622 (18)0.7030 (2)0.0827 (11)
H34A0.07680.10270.74800.099*
H34B0.06340.12730.67330.099*
C350.1954 (5)0.02902 (15)0.68384 (18)0.0682 (9)
H35A0.23650.03570.63850.082*
H35B0.30220.03060.71290.082*
O1W0.0352 (4)0.57104 (17)0.67018 (12)0.1064 (10)
H1W0.03460.60510.66710.085*
H2W0.03720.56100.71750.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0479 (16)0.0547 (16)0.086 (2)0.0035 (14)0.0014 (16)0.0110 (16)
C20.0559 (17)0.0501 (15)0.084 (2)0.0012 (14)0.0042 (17)0.0120 (15)
C30.0675 (18)0.0512 (15)0.0559 (15)0.0091 (15)0.0007 (15)0.0048 (13)
C40.0570 (18)0.0569 (17)0.086 (2)0.0087 (16)0.0111 (18)0.0163 (16)
C50.0468 (14)0.0495 (14)0.0528 (14)0.0007 (13)0.0010 (13)0.0011 (12)
C60.0504 (15)0.0558 (15)0.0778 (19)0.0105 (15)0.0162 (15)0.0103 (15)
C70.0502 (15)0.0527 (14)0.0602 (16)0.0014 (13)0.0078 (14)0.0064 (13)
C80.0441 (13)0.0466 (13)0.0467 (13)0.0023 (12)0.0006 (12)0.0017 (11)
C90.0429 (13)0.0518 (14)0.0498 (14)0.0019 (12)0.0016 (12)0.0006 (12)
C100.0474 (14)0.0464 (13)0.0493 (13)0.0020 (12)0.0009 (12)0.0024 (11)
C110.0473 (16)0.0638 (17)0.082 (2)0.0076 (15)0.0159 (15)0.0191 (16)
C120.0458 (16)0.0712 (19)0.080 (2)0.0097 (15)0.0128 (16)0.0149 (17)
C130.0519 (15)0.0563 (15)0.0500 (14)0.0069 (14)0.0034 (13)0.0113 (12)
C140.0463 (14)0.0507 (14)0.0443 (13)0.0018 (12)0.0022 (12)0.0028 (11)
C150.0503 (16)0.0543 (15)0.0519 (14)0.0008 (13)0.0019 (13)0.0078 (12)
C160.0549 (16)0.0573 (15)0.0445 (13)0.0045 (14)0.0032 (13)0.0047 (12)
C170.0517 (16)0.0663 (17)0.0597 (16)0.0104 (14)0.0011 (14)0.0135 (15)
O170.0824 (17)0.0945 (17)0.1007 (19)0.0428 (15)0.0277 (15)0.0444 (15)
C180.085 (2)0.0681 (19)0.0492 (15)0.0183 (18)0.0041 (17)0.0040 (14)
C190.084 (2)0.0638 (17)0.0528 (15)0.0094 (18)0.0033 (17)0.0033 (14)
C200.0590 (17)0.0598 (16)0.0517 (14)0.0082 (15)0.0025 (14)0.0039 (13)
C210.0680 (18)0.0485 (14)0.0421 (13)0.0022 (14)0.0054 (13)0.0033 (12)
C220.073 (2)0.0488 (15)0.0581 (16)0.0101 (16)0.0020 (16)0.0020 (13)
C230.083 (2)0.0481 (15)0.0588 (17)0.0005 (16)0.0033 (17)0.0078 (13)
C240.072 (2)0.0526 (16)0.0585 (16)0.0085 (16)0.0051 (16)0.0011 (14)
C2410.082 (2)0.0639 (19)0.079 (2)0.013 (2)0.004 (2)0.0117 (17)
N2410.102 (3)0.093 (2)0.122 (3)0.027 (2)0.012 (2)0.024 (2)
C250.0620 (19)0.0616 (17)0.079 (2)0.0029 (17)0.0050 (18)0.0144 (16)
C260.0650 (19)0.0549 (16)0.0761 (19)0.0010 (15)0.0116 (17)0.0177 (16)
N310.0630 (15)0.0452 (11)0.0553 (13)0.0029 (12)0.0031 (12)0.0001 (10)
C320.071 (2)0.0632 (18)0.076 (2)0.0159 (17)0.0082 (18)0.0068 (16)
C330.093 (3)0.0611 (18)0.077 (2)0.019 (2)0.002 (2)0.0012 (17)
C340.100 (3)0.0546 (17)0.094 (2)0.012 (2)0.008 (2)0.0097 (18)
C350.085 (2)0.0445 (14)0.075 (2)0.0007 (16)0.0017 (19)0.0044 (14)
O1W0.119 (2)0.136 (2)0.0643 (13)0.069 (2)0.0188 (15)0.0232 (15)
Geometric parameters (Å, º) top
C1—C21.520 (4)C16—C201.335 (4)
C1—C101.536 (4)C16—C171.523 (4)
C1—H1A0.9700C17—O171.409 (4)
C1—H1B0.9700C17—H170.9800
C2—C31.533 (4)O17—H17A0.8200
C2—H2A0.9700C18—H18A0.9600
C2—H2B0.9700C18—H18B0.9600
C3—N311.466 (3)C18—H18C0.9600
C3—C41.525 (4)C19—H19A0.9600
C3—H30.9800C19—H19B0.9600
C4—C51.514 (4)C19—H19C0.9600
C4—H4A0.9700C20—C211.462 (4)
C4—H4B0.9700C20—H200.9300
C5—C61.332 (4)C21—C261.394 (4)
C5—C101.513 (4)C21—C221.398 (4)
C6—C71.491 (4)C22—C231.371 (4)
C6—H60.9300C22—H220.9300
C7—C81.525 (4)C23—C241.380 (5)
C7—H7A0.9700C23—H230.9300
C7—H7B0.9700C24—C251.390 (4)
C8—C141.519 (3)C24—C2411.439 (5)
C8—C91.536 (4)C241—N2411.135 (5)
C8—H80.9800C25—C261.374 (4)
C9—C111.551 (4)C25—H250.9300
C9—C101.551 (4)C26—H260.9300
C9—H90.9800N31—C351.469 (4)
C10—C191.536 (4)N31—C321.481 (4)
C11—C121.525 (4)C32—C331.505 (4)
C11—H11A0.9700C32—H32A0.97
C11—H11B0.9700C32—H32B0.97
C12—C131.519 (4)C33—C341.501 (5)
C12—H12A0.9700C33—H33A0.97
C12—H12B0.9700C33—H33B0.97
C13—C181.529 (4)C34—C351.516 (5)
C13—C171.536 (4)C34—H34A0.97
C13—C141.538 (4)C34—H34B0.97
C14—C151.533 (4)C35—H35A0.97
C14—H140.9800C35—H35B0.97
C15—C161.517 (4)O1W—H1W0.81
C15—H15A0.9700O1W—H2W0.97
C15—H15B0.9700
C2—C1—C10114.2 (2)C16—C15—C14103.2 (2)
C2—C1—H1A108.7C16—C15—H15A111.1
C10—C1—H1A108.7C14—C15—H15A111.1
C2—C1—H1B108.7C16—C15—H15B111.1
C10—C1—H1B108.7C14—C15—H15B111.1
H1A—C1—H1B107.6H15A—C15—H15B109.1
C1—C2—C3112.0 (3)C20—C16—C15131.0 (3)
C1—C2—H2A109.2C20—C16—C17121.3 (3)
C3—C2—H2A109.2C15—C16—C17107.7 (2)
C1—C2—H2B109.2O17—C17—C16112.6 (2)
C3—C2—H2B109.2O17—C17—C13118.4 (3)
H2A—C2—H2B107.9C16—C17—C13102.8 (2)
N31—C3—C4111.3 (3)O17—C17—H17107.5
N31—C3—C2110.2 (2)C16—C17—H17107.5
C4—C3—C2109.6 (2)C13—C17—H17107.5
N31—C3—H3108.6C17—O17—H17A109.5
C4—C3—H3108.6C13—C18—H18A109.5
C2—C3—H3108.6C13—C18—H18B109.5
C5—C4—C3112.2 (3)H18A—C18—H18B109.5
C5—C4—H4A109.2C13—C18—H18C109.5
C3—C4—H4A109.2H18A—C18—H18C109.5
C5—C4—H4B109.2H18B—C18—H18C109.5
C3—C4—H4B109.2C10—C19—H19A109.5
H4A—C4—H4B107.9C10—C19—H19B109.5
C6—C5—C10123.5 (3)H19A—C19—H19B109.5
C6—C5—C4119.9 (3)C10—C19—H19C109.5
C10—C5—C4116.6 (2)H19A—C19—H19C109.5
C5—C6—C7124.4 (3)H19B—C19—H19C109.5
C5—C6—H6117.8C16—C20—C21130.2 (3)
C7—C6—H6117.8C16—C20—H20114.9
C6—C7—C8111.8 (2)C21—C20—H20114.9
C6—C7—H7A109.2C26—C21—C22117.2 (3)
C8—C7—H7A109.2C26—C21—C20125.1 (3)
C6—C7—H7B109.2C22—C21—C20117.7 (3)
C8—C7—H7B109.2C23—C22—C21121.5 (3)
H7A—C7—H7B107.9C23—C22—H22119.3
C14—C8—C7110.8 (2)C21—C22—H22119.3
C14—C8—C9110.4 (2)C22—C23—C24120.3 (3)
C7—C8—C9109.1 (2)C22—C23—H23119.8
C14—C8—H8108.9C24—C23—H23119.8
C7—C8—H8108.9C23—C24—C25119.4 (3)
C9—C8—H8108.9C23—C24—C241120.7 (3)
C8—C9—C11112.7 (2)C25—C24—C241120.0 (3)
C8—C9—C10112.6 (2)N241—C241—C24179.4 (5)
C11—C9—C10113.2 (2)C26—C25—C24120.0 (3)
C8—C9—H9105.8C26—C25—H25120.0
C11—C9—H9105.8C24—C25—H25120.0
C10—C9—H9105.8C25—C26—C21121.5 (3)
C5—C10—C19108.9 (2)C25—C26—H26119.2
C5—C10—C1106.9 (2)C21—C26—H26119.2
C19—C10—C1109.7 (2)C3—N31—C35113.0 (2)
C5—C10—C9110.7 (2)C3—N31—C32114.4 (2)
C19—C10—C9111.1 (2)C35—N31—C32103.4 (2)
C1—C10—C9109.5 (2)N31—C32—C33103.8 (3)
C12—C11—C9113.0 (2)N31—C32—H32A111.0
C12—C11—H11A109.0C33—C32—H32A111.0
C9—C11—H11A109.0N31—C32—H32B111.0
C12—C11—H11B109.0C33—C32—H32B111.0
C9—C11—H11B109.0H32A—C32—H32B109.0
H11A—C11—H11B107.8C34—C33—C32105.0 (3)
C13—C12—C11111.1 (2)C34—C33—H33A110.7
C13—C12—H12A109.4C32—C33—H33A110.7
C11—C12—H12A109.4C34—C33—H33B110.7
C13—C12—H12B109.4C32—C33—H33B110.7
C11—C12—H12B109.4H33A—C33—H33B108.8
H12A—C12—H12B108.0C33—C34—C35106.0 (3)
C12—C13—C18112.0 (2)C33—C34—H34A110.5
C12—C13—C17115.7 (2)C35—C34—H34A110.5
C18—C13—C17109.4 (2)C33—C34—H34B110.5
C12—C13—C14107.3 (2)C35—C34—H34B110.5
C18—C13—C14113.1 (2)H34A—C34—H34B108.7
C17—C13—C1498.8 (2)N31—C35—C34104.6 (3)
C8—C14—C15119.5 (2)N31—C35—H35A110.8
C8—C14—C13114.3 (2)C34—C35—H35A110.8
C15—C14—C13104.1 (2)N31—C35—H35B110.8
C8—C14—H14106.0C34—C35—H35B110.8
C15—C14—H14106.0H35A—C35—H35B108.9
C13—C14—H14106.0H1W—O1W—H2W104
C10—C1—C2—C356.9 (4)C18—C13—C14—C1568.6 (3)
C1—C2—C3—N31176.5 (3)C17—C13—C14—C1546.9 (3)
C1—C2—C3—C453.7 (4)C8—C14—C15—C16160.3 (2)
N31—C3—C4—C5173.6 (2)C13—C14—C15—C1631.3 (3)
C2—C3—C4—C551.5 (4)C14—C15—C16—C20178.2 (3)
C3—C4—C5—C6128.9 (3)C14—C15—C16—C172.9 (3)
C3—C4—C5—C1053.9 (4)C20—C16—C17—O1724.1 (4)
C10—C5—C6—C70.7 (5)C15—C16—C17—O17154.9 (3)
C4—C5—C6—C7177.7 (3)C20—C16—C17—C13152.7 (3)
C5—C6—C7—C819.5 (4)C15—C16—C17—C1326.3 (3)
C6—C7—C8—C14169.5 (2)C12—C13—C17—O1776.9 (4)
C6—C7—C8—C947.9 (3)C18—C13—C17—O1750.6 (4)
C14—C8—C9—C1147.3 (3)C14—C13—C17—O17169.0 (3)
C7—C8—C9—C11169.2 (2)C12—C13—C17—C16158.1 (3)
C14—C8—C9—C10176.9 (2)C18—C13—C17—C1674.3 (3)
C7—C8—C9—C1061.2 (3)C14—C13—C17—C1644.1 (3)
C6—C5—C10—C19110.6 (3)C15—C16—C20—C213.6 (5)
C4—C5—C10—C1966.5 (3)C17—C16—C20—C21177.7 (3)
C6—C5—C10—C1131.0 (3)C16—C20—C21—C268.7 (5)
C4—C5—C10—C151.9 (3)C16—C20—C21—C22171.0 (3)
C6—C5—C10—C911.9 (4)C26—C21—C22—C232.8 (4)
C4—C5—C10—C9171.1 (2)C20—C21—C22—C23176.9 (3)
C2—C1—C10—C552.9 (3)C21—C22—C23—C241.7 (5)
C2—C1—C10—C1965.0 (4)C22—C23—C24—C250.4 (5)
C2—C1—C10—C9172.8 (3)C22—C23—C24—C241179.7 (3)
C8—C9—C10—C542.0 (3)C23—C24—C241—N24187 (52)
C11—C9—C10—C5171.4 (2)C25—C24—C241—N24193 (52)
C8—C9—C10—C1979.2 (3)C23—C24—C25—C260.2 (5)
C11—C9—C10—C1950.2 (3)C241—C24—C25—C26179.9 (3)
C8—C9—C10—C1159.6 (2)C24—C25—C26—C211.3 (5)
C11—C9—C10—C171.1 (3)C22—C21—C26—C252.6 (5)
C8—C9—C11—C1249.0 (3)C20—C21—C26—C25177.1 (3)
C10—C9—C11—C12178.3 (3)C4—C3—N31—C35169.8 (3)
C9—C11—C12—C1355.6 (4)C2—C3—N31—C3568.4 (3)
C11—C12—C13—C1865.7 (3)C4—C3—N31—C3251.8 (3)
C11—C12—C13—C17168.1 (3)C2—C3—N31—C32173.6 (3)
C11—C12—C13—C1459.0 (3)C3—N31—C32—C33165.0 (3)
C7—C8—C14—C1560.1 (3)C35—N31—C32—C3341.6 (3)
C9—C8—C14—C15179.0 (2)N31—C32—C33—C3429.3 (4)
C7—C8—C14—C13175.8 (2)C32—C33—C34—C356.4 (4)
C9—C8—C14—C1354.9 (3)C3—N31—C35—C34161.7 (3)
C12—C13—C14—C860.5 (3)C32—N31—C35—C3437.4 (3)
C18—C13—C14—C863.4 (3)C33—C34—C35—N3119.1 (4)
C17—C13—C14—C8179.0 (2)C19—C10—C13—C1812.4 (3)
C12—C13—C14—C15167.4 (2)H8—C8—C9—H9172.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···N241i0.812.203.008 (5)176
O1W—H2W···N31ii0.971.932.892 (3)168
O17—H17A···O1Wiii0.821.972.740 (4)155
Symmetry codes: (i) x1/2, y3/2, z1; (ii) x, y1/2, z3/2; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC31H40N2O·H2O
Mr474.67
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)7.2171 (6), 18.541 (3), 20.176 (6)
V3)2699.8 (9)
Z4
Radiation typeCu Kα
µ (mm1)0.56
Crystal size (mm)0.30 × 0.25 × 0.10
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.850, 0.946
No. of measured, independent and
observed [I > 2σ(I)] reflections
2916, 2898, 2580
Rint0.016
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.123, 1.09
No. of reflections2898
No. of parameters318
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.19
Absolute structureFlack (1983), 83 Friedel pairs Query
Absolute structure parameter1.4 (5)

Computer programs: CAD-4 EXPRESS (Enraf-Nonius, 1994), CAD-4 EXPRESS, MolEN (Fair, 1990), DIRDIF99 (Beurskens et al., 1999), SHELXL97 (Sheldrick, 1997), WinGX (Farrugia, 1999), SHELXL97.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···N241i0.812.203.008 (5)176
O1W—H2W···N31ii0.971.932.892 (3)168
O17—H17A···O1Wiii0.821.972.740 (4)155
Symmetry codes: (i) x1/2, y3/2, z1; (ii) x, y1/2, z3/2; (iii) x1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds