Download citation
Download citation
link to html
The title compound, [Co(C10H8N2)(H2O)4]2(C10H2O8)·2H2O, consists of two crystallographically independent CoII atoms linked by 4,4'-bi­pyridine ligands into one-dimensional chains, which are further connected into a three-dimensional framework linked by [C6H2(COO)4]4- anions and water mol­ecules, achieved through complex hydrogen bonding.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102001579/vj1159sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102001579/vj1159Isup2.hkl
Contains datablock I

CCDC reference: 182990

Comment top

Polymetallic materials, which are normally constructed by linking transition metal atoms through multidentate bridging ligands, have attracted much attention because of their intriguing topological structures and their potential for interesting applications (Yaghi et al., 1998; Hagrman et al., 1999; Philp & Stoddart, 1996). Complexes with the bridging bis(monodentate) ligand 4,4'-bipyridine (4,4'-bpy) are particularly interesting because of their interesting topological structures, as well as their potential application in areas such as ion exchange, catalysis, separation and magnetism (Kondo et al., 1997; Yaghi & Li, 1995; Fujita et al., 1994; Julve et al., 1987). Various preparative methods have been employed to obtain such materials. As part of our investigations on the hydrothermal synthesis of new polymeric complexes containing 4,4'-bpy and benzene-1,2,4,5-tetracarboxylic acid (H4btc), red single crystals of the title compound, (I), were obtained. \sch

As shown in Fig. 1, the crystal structure of (I) comprises two 4,4'-bpy-bridged crystallographically symmetry-independent CoII centres, water molecules and btc(4-) anions. Bond distances and angles are in good agreement with the values reported for related one-dimensional CoII-4,4'-bpy complexes (Tong et al., 1998; Lu et al., 1998; Dong et al., 2000).

One CoII atom is located at an inversion centre and the other is on a crystallographic twofold axis. Each crystallographically independent CoII centre displays six-coordinate octahedral geometry, coordinated by two N atoms from 4,4'-bpy at the axial positions [Co—N 2.136 (4)–2.207 (3) Å], and four water molecules at the equatorial positions [Co—O 2.043 (3)–2.145 (3) Å], with bond angles involving neighbouring atoms ranging from 87.2 (1) to 92.8 (1)°. These slightly distorted octahedral CoII centres are extended into one-dimensional chains through intervening 4,4'-bpy ligands and are separated by about 11.44 Å.

It is interesting to note that these two one-dimensional polymeric cation arrays, which have a fold of about 60°, are packed into a beautiful three-dimensional architecture through hydrogen bonding (Fig. 2). The btc(4-) anions link the chains through hydrogen bonds involving the non-metalate O atoms of the carboxylate groups and the aqua ligands, with O···O distances in the range 2.650 (4)–2.890 (4) Å.

Finally, it should be noted that the average distance between the O atoms of the solvent water molecules and those of the aqua ligands is about 2.745 (5) Å, while the distances between the solvent O atoms and the O atoms of the carboxylate groups of the btc ligands range from 2.797 (5) to 2.893 (5) Å. Obviously, there is a complex hydrogen-bonding scheme in the packing of (I).

Experimental top

A mixture of CoSO4·7H2O (0.10 g, 0.36 mmol), 4,4'-bipyridine·2H2O (0.05 g, 0.26 mmol) and benzene-1,2,4,5-tetracarboxylic acid anhydride (0.10 g, 0.46 mmol) in H2O (18 ml) was sealed in a 30 ml Teflon-lined stainless steel vessel and heated at 443 K for 6 d under autogeneous pressure. After the reaction, the vessel was slowly cooled to room temperature and red crystals of (I) were produced.

Refinement top

All H atoms were clearly visible in different maps. All H atoms were positioned geometrically and included as riding atoms, with O—H = 0.78–1.03 Å and C—H = 0.93 Å, and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O). Are these the correct restraints? The highest residual peak (0.86 e Å-3) is at (0.2765, 0.1671, 0.1238), which is 1.03 Å from O1; the deepest hole (-0.47 e Å-3) is at (0.2849, 0.0641, 0.0377), which is 0.48 Å from H1A.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SMART and SAINT (Siemens, 1994); data reduction: SMART and SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A perspective view of the locally expanded unit for (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. Solvent water molecules have been omitted for clarity.
[Figure 2] Fig. 2. A ce l l packing diagram for (I) viewed down the c axis. For clarity, H atoms and hydrogen bonds have been omitted. Co atoms are indicated by cross hatched circles, O atoms by hatched circles, N atoms by open circles and C atoms by shaded circles.
catena-Poly[[bis[tetraaquacobalt(II)-µ-4,4'-bipyridine-κ2N:N']] benzene-1,2,4,5-tetracarboxylate(4-) dihydrate] top
Crystal data top
[Co2(C10H8N2)2(H2O)8](C10H2O8)·2H2OF(000) = 1776
Mr = 860.50Dx = 1.610 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 20.0909 (4) ÅCell parameters from 3537 reflections
b = 11.3466 (1) Åθ = 2.0–25.0°
c = 15.6407 (4) ŵ = 1.02 mm1
β = 95.476 (1)°T = 293 K
V = 3549.2 (1) Å3Prism, red
Z = 40.43 × 0.28 × 0.20 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
3129 independent reflections
Radiation source: fine-focus sealed tube2634 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
h = 1923
Tmin = 0.640, Tmax = 0.815k = 1113
5567 measured reflectionsl = 1118
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0344P)2 + 19.8931P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
3129 reflectionsΔρmax = 0.86 e Å3
258 parametersΔρmin = 0.47 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.000071 (1)
Crystal data top
[Co2(C10H8N2)2(H2O)8](C10H2O8)·2H2OV = 3549.2 (1) Å3
Mr = 860.50Z = 4
Monoclinic, C2/cMo Kα radiation
a = 20.0909 (4) ŵ = 1.02 mm1
b = 11.3466 (1) ÅT = 293 K
c = 15.6407 (4) Å0.43 × 0.28 × 0.20 mm
β = 95.476 (1)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
3129 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
2634 reflections with I > 2σ(I)
Tmin = 0.640, Tmax = 0.815Rint = 0.026
5567 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0344P)2 + 19.8931P]
where P = (Fo2 + 2Fc2)/3
3129 reflectionsΔρmax = 0.86 e Å3
258 parametersΔρmin = 0.47 e Å3
Special details top

Experimental. Spectroscopic analysis: IR (solid KBr pellet, v, cm-1): 1603 (s), 1581 (s), 1491 (m), 1414 (s), 1367 (s), 1325 (m), 1223 (m), 1140 (m), 1068 (m), 1051 (m), 1012 (m), 1003 (w), 928 (w), 862 (w), 816 (m), 731 (w), 636 (m), 629 (m), 523 (m).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.50000.00017 (6)0.25000.0243 (2)
Co20.25000.25000.50000.0262 (2)
O10.21289 (15)0.3873 (3)0.4256 (2)0.0467 (8)
H1A0.19150.43130.45430.070*
H1B0.23640.42900.38890.070*
O20.39327 (13)0.0092 (2)0.22512 (17)0.0343 (6)
H2A0.38290.00640.17320.051*
H2B0.36500.01040.25310.051*
O30.50956 (13)0.0050 (2)0.11931 (16)0.0353 (6)
H3B0.53180.05150.10600.053*
H3A0.47520.01570.08800.053*
O40.27910 (16)0.1715 (3)0.38541 (19)0.0495 (8)
H4B0.28450.10050.39290.074*
H4A0.25680.20190.33430.074*
O50.08718 (13)0.6592 (2)0.55844 (19)0.0383 (7)
O60.11521 (13)0.5317 (2)0.45967 (19)0.0381 (7)
O70.20436 (15)0.5620 (2)0.67514 (18)0.0389 (7)
O80.22173 (17)0.7441 (3)0.72660 (18)0.0484 (8)
O1010.28888 (18)0.5089 (3)0.3184 (2)0.0518 (8)
H10A0.26340.47710.26260.083 (19)*
H10B0.28370.59120.30980.09 (2)*
C10.5563 (2)0.2506 (4)0.2538 (3)0.0469 (12)
H1C0.59650.20970.25680.056*
C20.5498 (2)0.2493 (3)0.2202 (3)0.0422 (11)
H2C0.58480.20800.19910.051*
C30.0351 (2)0.1549 (4)0.4961 (3)0.0481 (12)
H3C0.00380.19880.49800.058*
C40.1499 (2)0.0396 (4)0.4841 (3)0.0498 (12)
H4C0.18910.00190.47800.060*
C50.21783 (19)0.6702 (4)0.6674 (2)0.0323 (9)
C60.0918 (2)0.0239 (4)0.4892 (4)0.0519 (13)
H6A0.09310.10580.48790.062*
C70.5585 (2)0.3720 (4)0.2536 (4)0.0499 (12)
H7A0.59940.41070.25580.060*
C80.0955 (2)0.2118 (4)0.4933 (3)0.0481 (12)
H8A0.09590.29370.49550.058*
C90.5517 (2)0.3699 (4)0.2194 (3)0.0414 (10)
H9A0.58750.40880.19850.050*
C100.12666 (18)0.6200 (3)0.5093 (2)0.0269 (8)
C110.23237 (18)0.7127 (3)0.5800 (2)0.0246 (8)
C120.19192 (17)0.6834 (3)0.5059 (2)0.0251 (8)
C130.03188 (19)0.0328 (4)0.4963 (3)0.0342 (9)
C140.21005 (18)0.7209 (3)0.4265 (2)0.0270 (8)
H14A0.18310.70120.37690.032*
C150.50000.4359 (5)0.25000.0366 (13)
C160.50000.4342 (5)0.25000.0347 (13)
N10.15326 (16)0.1565 (3)0.4876 (2)0.0345 (8)
N20.50000.1881 (4)0.25000.0341 (11)
N30.50000.1886 (4)0.25000.0333 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0276 (4)0.0175 (4)0.0288 (4)0.0000.0078 (3)0.000
Co20.0255 (4)0.0231 (4)0.0303 (4)0.0008 (3)0.0041 (3)0.0009 (3)
O10.0427 (17)0.0419 (18)0.0566 (19)0.0034 (14)0.0102 (14)0.0168 (15)
O20.0316 (14)0.0398 (16)0.0325 (14)0.0007 (12)0.0078 (11)0.0012 (12)
O30.0357 (15)0.0396 (16)0.0314 (14)0.0130 (12)0.0072 (11)0.0017 (12)
O40.065 (2)0.0431 (18)0.0407 (17)0.0040 (16)0.0067 (15)0.0037 (14)
O50.0334 (15)0.0342 (16)0.0498 (17)0.0071 (12)0.0168 (13)0.0059 (13)
O60.0293 (14)0.0365 (16)0.0493 (17)0.0117 (12)0.0078 (12)0.0102 (13)
O70.0512 (18)0.0283 (15)0.0390 (16)0.0033 (13)0.0130 (13)0.0086 (12)
O80.069 (2)0.0458 (18)0.0314 (16)0.0172 (16)0.0109 (14)0.0075 (14)
O1010.060 (2)0.043 (2)0.052 (2)0.0065 (17)0.0061 (16)0.0031 (16)
C10.035 (2)0.023 (2)0.084 (4)0.0018 (18)0.015 (2)0.006 (2)
C20.048 (3)0.023 (2)0.060 (3)0.0003 (19)0.026 (2)0.0016 (19)
C30.029 (2)0.033 (2)0.084 (4)0.0032 (18)0.009 (2)0.011 (2)
C40.026 (2)0.038 (3)0.086 (4)0.0045 (18)0.009 (2)0.017 (2)
C50.031 (2)0.035 (2)0.031 (2)0.0048 (17)0.0054 (16)0.0004 (17)
C60.034 (2)0.024 (2)0.098 (4)0.0036 (18)0.007 (2)0.013 (2)
C70.040 (3)0.022 (2)0.090 (4)0.0069 (19)0.015 (2)0.005 (2)
C80.034 (2)0.030 (2)0.081 (3)0.0034 (18)0.007 (2)0.013 (2)
C90.042 (2)0.025 (2)0.061 (3)0.0009 (18)0.024 (2)0.0060 (19)
C100.0274 (19)0.0209 (18)0.033 (2)0.0056 (15)0.0039 (16)0.0044 (15)
C110.0279 (19)0.0178 (17)0.0290 (19)0.0025 (14)0.0078 (15)0.0004 (14)
C120.0216 (17)0.0201 (18)0.0342 (19)0.0017 (14)0.0058 (15)0.0013 (15)
C130.027 (2)0.033 (2)0.043 (2)0.0011 (17)0.0029 (17)0.0002 (17)
C140.0276 (19)0.0259 (19)0.0269 (18)0.0056 (15)0.0009 (14)0.0036 (15)
C150.043 (3)0.025 (3)0.044 (3)0.0000.012 (3)0.000
C160.040 (3)0.026 (3)0.041 (3)0.0000.012 (3)0.000
N10.0282 (17)0.0315 (19)0.044 (2)0.0030 (14)0.0030 (14)0.0005 (15)
N20.044 (3)0.021 (2)0.040 (3)0.0000.016 (2)0.000
N30.040 (3)0.017 (2)0.044 (3)0.0000.011 (2)0.000
Geometric parameters (Å, º) top
Co1—O3i2.072 (3)C2—C91.369 (6)
Co1—O32.072 (3)C2—H2C0.9300
Co1—N22.136 (4)C3—C81.379 (6)
Co1—N32.138 (4)C3—C131.387 (6)
Co1—O22.145 (3)C3—H3C0.9300
Co1—O2i2.145 (3)C4—N11.329 (6)
Co2—O12.043 (3)C4—C61.381 (6)
Co2—O1ii2.043 (3)C4—H4C0.9300
Co2—O4ii2.133 (3)C5—C111.504 (5)
Co2—O42.133 (3)C6—C131.378 (6)
Co2—N12.207 (3)C6—H6A0.9300
Co2—N1ii2.207 (3)C7—C151.377 (5)
O1—H1A0.8200C7—H7A0.9300
O1—H1B0.9107C8—N11.329 (5)
O2—H2A0.8200C8—H8A0.9300
O2—H2B0.7822C9—C161.391 (5)
O3—H3B0.8200C9—H9A0.9300
O3—H3A0.8164C10—C121.501 (5)
O4—H4B0.8200C11—C121.391 (5)
O4—H4A0.9440C11—C14iii1.392 (5)
O5—C101.238 (4)C12—C141.394 (5)
O6—C101.275 (4)C13—C13iv1.495 (8)
O7—C51.265 (5)C14—C11iii1.392 (5)
O8—C51.247 (5)C14—H14A0.9300
O101—H10A1.033C15—C7i1.377 (5)
O101—H10B0.9482C15—C16v1.473 (8)
C1—N31.328 (5)C16—C9i1.391 (5)
C1—C71.379 (6)C16—C15vi1.473 (8)
C1—H1C0.9300N2—C2i1.338 (5)
C2—N21.338 (5)N3—C1i1.328 (5)
O3—Co1—O3i176.8 (2)C8—C3—H3C119.7
O3—Co1—N288.4 (1)C13—C3—H3C119.7
O3i—Co1—N288.4 (1)N1—C4—C6123.9 (4)
O3—Co1—N391.6 (1)N1—C4—H4C118.0
O3i—Co1—N391.6 (1)C6—C4—H4C118.0
N2—Co1—N3180.0 (1)O8—C5—O7125.5 (4)
O3—Co1—O290.3 (1)O8—C5—C11117.1 (3)
O3i—Co1—O289.6 (1)O7—C5—C11117.4 (3)
N2—Co1—O287.2 (1)C13—C6—C4120.7 (4)
N3—Co1—O292.8 (1)C13—C6—H6A119.6
O3—Co1—O2i89.6 (1)C4—C6—H6A119.6
O3i—Co1—O2i90.3 (1)C15—C7—C1119.9 (4)
N2—Co1—O2i87.2 (1)C15—C7—H7A120.0
N3—Co1—O2i92.8 (1)C1—C7—H7A120.0
O2—Co1—O2i174.3 (1)N1—C8—C3123.9 (4)
O1—Co2—O1ii180.0N1—C8—H8A118.1
O1—Co2—O4ii92.6 (1)C3—C8—H8A118.1
O1ii—Co2—O4ii87.4 (1)C2—C9—C16120.0 (4)
O1—Co2—O487.4 (1)C2—C9—H9A120.0
O1ii—Co2—O492.6 (1)C16—C9—H9A120.0
O4ii—Co2—O4180.0O5—C10—O6124.8 (3)
O1—Co2—N192.6 (1)O5—C10—C12117.6 (3)
O1ii—Co2—N187.4 (1)O6—C10—C12117.5 (3)
O4ii—Co2—N188.0 (1)C12—C11—C14iii119.5 (3)
O4—Co2—N192.0 (1)C12—C11—C5122.1 (3)
O1—Co2—N1ii87.4 (1)C14iii—C11—C5118.4 (3)
O1ii—Co2—N1ii92.6 (1)C11—C12—C14119.2 (3)
O4ii—Co2—N1ii92.0 (1)C11—C12—C10121.9 (3)
O4—Co2—N1ii88.0 (1)C14—C12—C10118.8 (3)
N1—Co2—N1ii180.0C6—C13—C3115.1 (4)
Co2—O1—H1A109.5C6—C13—C13iv122.4 (5)
Co2—O1—H1B124.9C3—C13—C13iv122.5 (5)
H1A—O1—H1B111.1C11iii—C14—C12121.3 (3)
Co1—O2—H2A109.5C11iii—C14—H14A119.3
Co1—O2—H2B130.7C12—C14—H14A119.3
H2A—O2—H2B114.5C7i—C15—C7116.5 (5)
Co1—O3—H3B109.5C7i—C15—C16v121.8 (3)
Co1—O3—H3A116.4C7—C15—C16v121.8 (3)
H3B—O3—H3A114.4C9i—C16—C9116.7 (5)
Co2—O4—H4B109.5C9i—C16—C15vi121.7 (3)
Co2—O4—H4A114.4C9—C16—C15vi121.7 (3)
H4B—O4—H4A121.8C4—N1—C8115.7 (4)
H10A—O101—H10B100.7C4—N1—Co2121.6 (3)
N3—C1—C7123.8 (4)C8—N1—Co2122.3 (3)
N3—C1—H1C118.1C2i—N2—C2117.5 (5)
C7—C1—H1C118.1C2i—N2—Co1121.3 (2)
N2—C2—C9122.9 (4)C2—N2—Co1121.3 (2)
N2—C2—H2C118.5C1i—N3—C1116.0 (5)
C9—C2—H2C118.5C1i—N3—Co1122.0 (2)
C8—C3—C13120.6 (4)C1—N3—Co1122.0 (2)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1/2, y1/2, z+1; (iii) x+1/2, y3/2, z+1; (iv) x, y, z+1; (v) x, y+1, z; (vi) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O60.821.922.650 (4)148
O1—H1B···O1010.911.842.745 (5)176
O2—H2A···O6vii0.822.102.890 (4)161
O2—H2B···O7ii0.781.962.742 (4)179
O3—H3B···O5viii0.821.862.663 (4)168
O3—H3A···O6vii0.821.912.704 (4)166
O4—H4B···O7ii0.822.152.843 (4)142
O4—H4A···O8ix0.941.872.805 (4)173
O101—H10A···O7ix1.031.782.797 (5)168
O101—H10B···O8iii0.951.952.893 (5)170
Symmetry codes: (ii) x+1/2, y1/2, z+1; (iii) x+1/2, y3/2, z+1; (vii) x+1/2, y+1/2, z+1/2; (viii) x+1/2, y1/2, z1/2; (ix) x, y1, z1/2.

Experimental details

Crystal data
Chemical formula[Co2(C10H8N2)2(H2O)8](C10H2O8)·2H2O
Mr860.50
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)20.0909 (4), 11.3466 (1), 15.6407 (4)
β (°) 95.476 (1)
V3)3549.2 (1)
Z4
Radiation typeMo Kα
µ (mm1)1.02
Crystal size (mm)0.43 × 0.28 × 0.20
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.640, 0.815
No. of measured, independent and
observed [I > 2σ(I)] reflections
5567, 3129, 2634
Rint0.026
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.117, 1.09
No. of reflections3129
No. of parameters258
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.0344P)2 + 19.8931P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.86, 0.47

Computer programs: SMART (Siemens, 1996), SMART and SAINT (Siemens, 1994), SMART and SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXL97.

Selected geometric parameters (Å, º) top
Co1—O32.072 (3)Co2—O12.043 (3)
Co1—N22.136 (4)Co2—O42.133 (3)
Co1—N32.138 (4)Co2—N12.207 (3)
Co1—O22.145 (3)
O3—Co1—O3i176.8 (2)O1—Co2—O4ii92.6 (1)
O3—Co1—N288.4 (1)O1—Co2—O487.4 (1)
O3—Co1—N391.6 (1)O4ii—Co2—O4180.0
O3—Co1—O290.3 (1)O1—Co2—N192.6 (1)
N2—Co1—O287.2 (1)O4—Co2—N192.0 (1)
N3—Co1—O292.8 (1)O1—Co2—N1ii87.4 (1)
O3—Co1—O2i89.6 (1)O4—Co2—N1ii88.0 (1)
O2—Co1—O2i174.3 (1)N1—Co2—N1ii180.0
O1—Co2—O1ii180.0
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1/2, y1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O60.821.922.650 (4)148
O1—H1B···O1010.911.842.745 (5)176
O2—H2A···O6iii0.822.102.890 (4)161
O2—H2B···O7ii0.781.962.742 (4)179
O3—H3B···O5iv0.821.862.663 (4)168
O3—H3A···O6iii0.821.912.704 (4)166
O4—H4B···O7ii0.822.152.843 (4)142
O4—H4A···O8v0.941.872.805 (4)173
O101—H10A···O7v1.031.782.797 (5)168
O101—H10B···O8vi0.951.952.893 (5)170
Symmetry codes: (ii) x+1/2, y1/2, z+1; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1/2, y1/2, z1/2; (v) x, y1, z1/2; (vi) x+1/2, y3/2, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds