Download citation
Download citation
link to html
The title compound, C25H31NO2·H2O, has the outer two six-membered rings in chair conformations, while the central ring is in an 8[beta],9[alpha]-half-chair conformation. The five-membered ring adopts a 13,14-half-chair conformation. The pyridyl­methyl­ene moiety has an E configuration with respect to the carbonyl group at position 17. The structure is stabilized by intermolecular O-H...N and O-H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010100912X/vj1136sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010100912X/vj1136Isup2.hkl
Contains datablock I

CCDC reference: 173363

Comment top

The structure determination of the title compound, (I), was undertaken to investigate the conformation of the fused-ring system and the configuration of the 16-(2-pyridylmethylene) functionaly with respect to the carbonyl group at position 17.

Compound (I), an epiandrostene derivative, is a steroid in which rings A, B and C are essentially rigid, whereas ring D has a flexible conformation with respect to the side chain. The absolute configuration of (I) is based on the known configuration of the starting material, namely epiandrosterone (Weeks et al., 1971). The torsion angles show that rings A and C adopt chair conformations. The short C2—C3 bond distance of 1.507 (4) Å in (I) is in agreement with other related steroids (Paixao et al., 1998). Ring B has an 8β,9α-half-chair conformation. The C5—C6 distance of 1.338 (4) Å confirms the localization of a double bond at this position. Atoms C8 and C9 are displaced to opposite sides by 0.359 (5) and 0.389 (5) Å, respectively, from the mean C10/C5/C6/C7 plane (Cox et al., 1981). Ring D has a 13,14-half-chair conformation. The five torsion angles of ring D [C13–C14–C15–C16 - 32.4 (3), C14–C15–C16–C17 12.0 (3), C15–C16–C17–C13 12.8 (3), C16–C17–C13–C14 - 32.3 (3) and C17–C13–C14–C15 40.1 (3)°] are comparable with the reported values of -37.6 (2), 16.3 (2), 11.3 (2), -33.7 (2) and 43.7 (2)°, respectively (Paixao et al., 1998). The C17–C16–C20–C21 torsion angle of 173.2 (3)° indicates that the 2-pyridyl ring has an E configuration with respect to the carbonyl group at position 17; the C20 H atom is Z with respect to this carbonyl group. The O17 atom is equatorially substituted at C17, and O3 is equatorially substituted at C3. The dihedral angle between the pyridine ring and the androstene moiety is 8.71 (12)°. The geometry of the rings is trans at the B/C and C/D ring junctions.

The structure of (I) is stabilized by a network of hydrogen bonds involving the hydroxyl O, carbonyl O and pyridyl N atoms of the steroid moiety, and the O atom of the water molecule (Table 2). The hydroxyl O3 atom at C3 takes part in two intermolecular hydrogen bonds, one as a donor towards the pyridyl nitrogen (N26) and the other as an acceptor from the water molecule (O27). In addition to this, the water molecule also has another intermolecular hydrogen bond involving the carbonyl oxygen (O17). In this way an infinite one-dimensional chain of molecules is assembled (Fig. 2).

Experimental top

The title compound was prepared by condensing dehydroepiandrosterone (1 g, 3.47 mM) with 2-pyridine carboxaldehyde (1.75 g, 16.34 mM) in the presence of sodium hydroxide (1.75 g, 43.75 mM) in methanol (20 ml). The absolute configuration of the epiandrosterone is already known (Weeks et al., 1971). The reaction mixture was shaken at room temperature for 1 h, and then poured into ice-cold water and allowed to stand overnight. The precipitate was filtered, washed with distilled water and dried under vacuum. The solid residue was crystallized from methanol to afford crystals of (I)·H2O (1.0 g, 72.9%, m.p.: 478–483 K).

Refinement top

All H atoms of the steroid were located from difference Fourier maps and were then included in the structure-factor calculations as riding atoms with C—H distances in the range 0.93–0.98 Å. The H atoms of the water molecule were also obtained from a difference map and were initially refined subject to a free-variable DFIX O—H restraint with a common Uiso free variable. In the final cycles, the water H atoms were then not adjusted (AFIX 1) from the O—H distance (1.01 Å) so obtained. The analysis does not allow the absolute configuration of (I) to be determined, but this was known from the synthesis.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. A view showing part of the infinite molecular hydrogen-bonded chain in (I). All H atoms except those involved in hydrogen bonding have been discarded. The hash (#) and asterisk (*) labels denote equivalent positions (1 + x, y, 1 + z) and (-1 + x, y, -1 + z), respectively.
17-Oxo-16-(2-pyridylmethylene)-androst-5-en-3β-ol monohydrate top
Crystal data top
C25H31NO2·H2OF(000) = 428
Mr = 395.52Dx = 1.251 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.5418 Å
a = 6.5376 (3) ÅCell parameters from 25 reflections
b = 11.8766 (10) Åθ = 20–30°
c = 13.5312 (15) ŵ = 0.64 mm1
β = 91.197 (12)°T = 293 K
V = 1050.39 (15) Å3Rectangular, colourless
Z = 20.3 × 0.2 × 0.1 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
1888 reflections with I > 2s(I)
Radiation source: fine-focus sealed tubeRint = 0.023
Graphite monochromatorθmax = 67.9°, θmin = 3.3°
ω–2θ scansh = 07
Absorption correction: ψ scan
(North et al., 1968)
k = 014
Tmin = 0.800, Tmax = 0.988l = 1616
2187 measured reflections2 standard reflections every 120 min
2003 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0724P)2 + 0.1862P]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max < 0.001
2003 reflectionsΔρmax = 0.27 e Å3
267 parametersΔρmin = 0.22 e Å3
3 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0044 (10)
Crystal data top
C25H31NO2·H2OV = 1050.39 (15) Å3
Mr = 395.52Z = 2
Monoclinic, P21Cu Kα radiation
a = 6.5376 (3) ŵ = 0.64 mm1
b = 11.8766 (10) ÅT = 293 K
c = 13.5312 (15) Å0.3 × 0.2 × 0.1 mm
β = 91.197 (12)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
1888 reflections with I > 2s(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.023
Tmin = 0.800, Tmax = 0.9882 standard reflections every 120 min
2187 measured reflections intensity decay: none
2003 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0393 restraints
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.14Δρmax = 0.27 e Å3
2003 reflectionsΔρmin = 0.22 e Å3
267 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.2397 (4)0.7248 (3)0.28994 (15)0.0603 (7)
H30.15640.75380.32650.090*
O170.3275 (3)0.6155 (2)0.46889 (15)0.0523 (6)
N260.9804 (4)0.8130 (2)0.54939 (17)0.0432 (6)
C10.1706 (4)0.6331 (3)0.02775 (19)0.0351 (6)
H1A0.21760.56530.00470.042*
H1B0.23490.69680.00400.042*
C20.2407 (4)0.6297 (3)0.1358 (2)0.0411 (7)
H2A0.18760.56240.16680.049*
H2B0.38890.62650.13970.049*
C30.1671 (4)0.7322 (3)0.19021 (19)0.0387 (6)
H3A0.22730.79910.16000.046*
C40.0656 (4)0.7417 (3)0.18152 (19)0.0380 (6)
H4A0.12720.68050.21780.046*
H4B0.10860.81190.21130.046*
C50.1415 (4)0.7380 (2)0.07507 (18)0.0299 (5)
C60.2728 (4)0.8155 (2)0.04007 (19)0.0331 (6)
H60.31350.87180.08320.040*
C70.3592 (4)0.8183 (2)0.06345 (19)0.0349 (6)
H7A0.29490.87900.09930.042*
H7B0.50450.83420.06120.042*
C80.3279 (4)0.7087 (2)0.11905 (18)0.0276 (5)
H80.42490.65240.09530.033*
C90.1071 (4)0.6658 (2)0.09947 (18)0.0279 (5)
H90.01650.72800.11730.033*
C100.0638 (4)0.6425 (2)0.01221 (18)0.0286 (5)
C110.0480 (4)0.5661 (3)0.16598 (19)0.0357 (6)
H11A0.09780.55260.15800.043*
H11B0.11840.49920.14340.043*
C120.0980 (4)0.5828 (3)0.27624 (19)0.0367 (6)
H12A0.01160.64130.30280.044*
H12B0.07230.51360.31200.044*
C130.3226 (4)0.6160 (2)0.28874 (18)0.0309 (6)
C140.3600 (4)0.7239 (2)0.23019 (18)0.0289 (5)
H140.25470.77720.25080.035*
C150.5654 (4)0.7707 (3)0.27197 (18)0.0346 (6)
H15A0.68080.73800.23840.042*
H15B0.57120.85210.26600.042*
C160.5625 (4)0.7348 (3)0.37945 (19)0.0354 (6)
C170.3912 (4)0.6510 (3)0.39193 (19)0.0363 (6)
C180.4657 (4)0.5173 (3)0.2622 (2)0.0411 (7)
H18A0.60520.53850.27580.062*
H18B0.44890.49960.19330.062*
H18C0.43200.45250.30100.062*
C190.1667 (5)0.5319 (3)0.0459 (2)0.0409 (7)
H19A0.15630.52590.11660.061*
H19B0.09940.46880.01640.061*
H19C0.30830.53230.02560.061*
C200.6861 (4)0.7582 (3)0.4573 (2)0.0370 (6)
H200.64680.72620.51670.044*
C210.8725 (4)0.8259 (3)0.46345 (19)0.0361 (6)
C220.9409 (5)0.8958 (3)0.3895 (2)0.0481 (8)
H220.86450.90420.33120.058*
C231.1231 (5)0.9531 (3)0.4025 (3)0.0550 (9)
H231.16851.00240.35430.066*
C241.2368 (5)0.9358 (3)0.4881 (3)0.0520 (8)
H241.36320.97040.49770.062*
C251.1584 (5)0.8666 (3)0.5585 (2)0.0514 (9)
H251.23450.85620.61660.062*
O270.5891 (4)0.5797 (3)0.32162 (17)0.0683 (8)
H27A0.52060.65600.32150.097*
H27B0.62540.59330.39370.097*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0610 (14)0.0865 (18)0.0325 (11)0.0300 (14)0.0179 (9)0.0169 (12)
O170.0450 (12)0.0773 (17)0.0343 (11)0.0175 (11)0.0037 (8)0.0114 (11)
N260.0373 (12)0.0582 (16)0.0338 (11)0.0091 (12)0.0068 (9)0.0016 (12)
C10.0306 (13)0.0449 (16)0.0295 (13)0.0093 (11)0.0031 (10)0.0048 (12)
C20.0380 (15)0.0509 (17)0.0339 (14)0.0121 (13)0.0075 (11)0.0051 (13)
C30.0421 (15)0.0436 (15)0.0301 (13)0.0036 (13)0.0094 (11)0.0033 (12)
C40.0423 (14)0.0438 (15)0.0277 (12)0.0097 (13)0.0014 (10)0.0040 (12)
C50.0288 (11)0.0312 (13)0.0296 (12)0.0009 (10)0.0003 (9)0.0006 (11)
C60.0360 (13)0.0306 (13)0.0327 (13)0.0028 (11)0.0012 (10)0.0054 (11)
C70.0347 (13)0.0334 (13)0.0365 (13)0.0046 (11)0.0048 (10)0.0032 (12)
C80.0224 (11)0.0298 (12)0.0307 (12)0.0007 (10)0.0013 (9)0.0007 (10)
C90.0262 (12)0.0303 (13)0.0270 (12)0.0017 (10)0.0023 (9)0.0005 (10)
C100.0278 (13)0.0311 (13)0.0268 (12)0.0006 (10)0.0011 (9)0.0011 (10)
C110.0309 (13)0.0430 (16)0.0330 (13)0.0092 (11)0.0037 (10)0.0058 (12)
C120.0303 (13)0.0495 (16)0.0303 (12)0.0083 (12)0.0024 (10)0.0077 (12)
C130.0251 (13)0.0373 (15)0.0301 (12)0.0008 (10)0.0018 (9)0.0040 (11)
C140.0238 (11)0.0316 (13)0.0311 (12)0.0000 (10)0.0029 (9)0.0004 (11)
C150.0293 (13)0.0413 (14)0.0329 (13)0.0065 (11)0.0084 (10)0.0037 (11)
C160.0294 (12)0.0426 (15)0.0339 (13)0.0015 (12)0.0048 (10)0.0015 (12)
C170.0298 (13)0.0454 (16)0.0333 (14)0.0004 (12)0.0048 (10)0.0041 (12)
C180.0385 (15)0.0373 (15)0.0474 (16)0.0039 (12)0.0041 (12)0.0063 (12)
C190.0481 (16)0.0347 (15)0.0400 (15)0.0058 (13)0.0011 (12)0.0051 (12)
C200.0324 (13)0.0474 (16)0.0311 (12)0.0031 (12)0.0034 (10)0.0003 (12)
C210.0331 (13)0.0438 (15)0.0312 (13)0.0005 (12)0.0058 (10)0.0053 (12)
C220.0483 (17)0.0561 (19)0.0393 (15)0.0109 (15)0.0101 (13)0.0037 (14)
C230.056 (2)0.056 (2)0.0530 (18)0.0196 (17)0.0007 (15)0.0053 (16)
C240.0416 (17)0.063 (2)0.0511 (18)0.0140 (15)0.0045 (14)0.0101 (16)
C250.0421 (16)0.071 (2)0.0408 (16)0.0119 (16)0.0121 (12)0.0073 (17)
O270.0637 (16)0.095 (2)0.0463 (13)0.0181 (16)0.0069 (11)0.0013 (14)
Geometric parameters (Å, º) top
O3—C31.424 (3)C11—H11B0.97
O3—H30.82C12—C131.526 (3)
O17—C171.206 (3)C12—H12A0.97
N26—C251.330 (4)C12—H12B0.97
N26—C211.356 (3)C13—C171.516 (3)
C1—C21.523 (3)C13—C141.529 (4)
C1—C101.546 (3)C13—C181.547 (4)
C1—H1A0.97C14—C151.550 (3)
C1—H1B0.97C14—H140.98
C2—C31.507 (4)C15—C161.516 (4)
C2—H2A0.97C15—H15A0.97
C2—H2B0.97C15—H15B0.97
C3—C41.528 (4)C16—C201.343 (4)
C3—H3A0.98C16—C171.510 (4)
C4—C51.514 (3)C18—H18A0.96
C4—H4A0.97C18—H18B0.96
C4—H4B0.97C18—H18C0.96
C5—C61.338 (4)C19—H19A0.96
C5—C101.512 (4)C19—H19B0.96
C6—C71.500 (3)C19—H19C0.96
C6—H60.93C20—C211.461 (4)
C7—C81.519 (4)C20—H200.93
C7—H7A0.97C21—C221.382 (4)
C7—H7B0.97C22—C231.379 (5)
C8—C141.525 (3)C22—H220.93
C8—C91.549 (3)C23—C241.379 (5)
C8—H80.98C23—H230.93
C9—C111.542 (4)C24—C251.366 (5)
C9—C101.556 (3)C24—H240.93
C9—H90.98C25—H250.93
C10—C191.549 (4)O27—H27A1.01
C11—C121.534 (3)O27—H27B1.01
C11—H11A0.97
C3—O3—H3109.5C13—C12—C11109.0 (2)
C25—N26—C21117.6 (3)C13—C12—H12A109.9
C2—C1—C10114.2 (2)C11—C12—H12A109.9
C2—C1—H1A108.7C13—C12—H12B109.9
C10—C1—H1A108.7C11—C12—H12B109.9
C2—C1—H1B108.7H12A—C12—H12B108.3
C10—C1—H1B108.7C17—C13—C12116.0 (2)
H1A—C1—H1B107.6C17—C13—C14101.5 (2)
C3—C2—C1110.8 (2)C12—C13—C14108.9 (2)
C3—C2—H2A109.5C17—C13—C18104.7 (2)
C1—C2—H2A109.5C12—C13—C18111.3 (2)
C3—C2—H2B109.5C14—C13—C18114.2 (2)
C1—C2—H2B109.5C8—C14—C13113.1 (2)
H2A—C2—H2B108.1C8—C14—C15120.2 (2)
O3—C3—C2108.1 (2)C13—C14—C15105.0 (2)
O3—C3—C4112.9 (2)C8—C14—H14105.9
C2—C3—C4110.5 (2)C13—C14—H14105.9
O3—C3—H3A108.4C15—C14—H14105.9
C2—C3—H3A108.4C16—C15—C14102.7 (2)
C4—C3—H3A108.4C16—C15—H15A111.2
C5—C4—C3112.1 (2)C14—C15—H15A111.2
C5—C4—H4A109.2C16—C15—H15B111.2
C3—C4—H4A109.2C14—C15—H15B111.2
C5—C4—H4B109.2H15A—C15—H15B109.1
C3—C4—H4B109.2C20—C16—C17118.9 (2)
H4A—C4—H4B107.9C20—C16—C15132.4 (3)
C6—C5—C10122.5 (2)C17—C16—C15108.5 (2)
C6—C5—C4120.8 (2)O17—C17—C16126.7 (2)
C10—C5—C4116.7 (2)O17—C17—C13126.8 (3)
C5—C6—C7124.9 (2)C16—C17—C13106.5 (2)
C5—C6—H6117.6C13—C18—H18A109.5
C7—C6—H6117.6C13—C18—H18B109.5
C6—C7—C8113.1 (2)H18A—C18—H18B109.5
C6—C7—H7A109.0C13—C18—H18C109.5
C8—C7—H7A109.0H18A—C18—H18C109.5
C6—C7—H7B109.0H18B—C18—H18C109.5
C8—C7—H7B109.0C10—C19—H19A109.5
H7A—C7—H7B107.8C10—C19—H19B109.5
C7—C8—C14111.7 (2)H19A—C19—H19B109.5
C7—C8—C9109.4 (2)C10—C19—H19C109.5
C14—C8—C9108.44 (18)H19A—C19—H19C109.5
C7—C8—H8109.1H19B—C19—H19C109.5
C14—C8—H8109.1C16—C20—C21130.2 (3)
C9—C8—H8109.1C16—C20—H20114.9
C11—C9—C8113.38 (19)C21—C20—H20114.9
C11—C9—C10112.8 (2)N26—C21—C22121.3 (3)
C8—C9—C10111.99 (19)N26—C21—C20113.9 (3)
C11—C9—H9106.0C22—C21—C20124.9 (2)
C8—C9—H9106.0C23—C22—C21119.7 (3)
C10—C9—H9106.0C23—C22—H22120.1
C5—C10—C1108.8 (2)C21—C22—H22120.1
C5—C10—C19108.5 (2)C24—C23—C22118.8 (3)
C1—C10—C19109.5 (2)C24—C23—H23120.6
C5—C10—C9110.9 (2)C22—C23—H23120.6
C1—C10—C9107.72 (18)C25—C24—C23118.1 (3)
C19—C10—C9111.4 (2)C25—C24—H24120.9
C12—C11—C9114.7 (2)C23—C24—H24120.9
C12—C11—H11A108.6N26—C25—C24124.3 (3)
C9—C11—H11A108.6N26—C25—H25117.8
C12—C11—H11B108.6C24—C25—H25117.8
C9—C11—H11B108.6H27A—O27—H27B87.3
H11A—C11—H11B107.6
C10—C1—C2—C357.1 (3)C7—C8—C14—C13178.1 (2)
C1—C2—C3—O3179.2 (2)C9—C8—C14—C1357.4 (3)
C1—C2—C3—C456.8 (3)C7—C8—C14—C1557.0 (3)
O3—C3—C4—C5174.4 (3)C9—C8—C14—C15177.6 (2)
C2—C3—C4—C553.3 (3)C17—C13—C14—C8172.93 (19)
C3—C4—C5—C6130.4 (3)C12—C13—C14—C864.2 (3)
C3—C4—C5—C1050.4 (3)C18—C13—C14—C860.9 (3)
C10—C5—C6—C70.1 (4)C17—C13—C14—C1540.1 (3)
C4—C5—C6—C7179.1 (3)C12—C13—C14—C15163.0 (2)
C5—C6—C7—C814.8 (4)C18—C13—C14—C1571.9 (3)
C6—C7—C8—C14163.7 (2)C8—C14—C15—C16161.1 (2)
C6—C7—C8—C943.6 (3)C13—C14—C15—C1632.4 (3)
C7—C8—C9—C11170.3 (2)C14—C15—C16—C20172.7 (3)
C14—C8—C9—C1148.3 (3)C14—C15—C16—C1712.0 (3)
C7—C8—C9—C1060.6 (3)C20—C16—C17—O1713.9 (5)
C14—C8—C9—C10177.3 (2)C15—C16—C17—O17170.0 (3)
C6—C5—C10—C1133.7 (3)C20—C16—C17—C13163.2 (3)
C4—C5—C10—C147.1 (3)C15—C16—C17—C1312.8 (3)
C6—C5—C10—C19107.3 (3)C12—C13—C17—O1732.7 (4)
C4—C5—C10—C1972.0 (3)C14—C13—C17—O17150.5 (3)
C6—C5—C10—C915.4 (3)C18—C13—C17—O1790.4 (3)
C4—C5—C10—C9165.4 (2)C12—C13—C17—C16150.1 (2)
C2—C1—C10—C550.1 (3)C14—C13—C17—C1632.3 (3)
C2—C1—C10—C1968.3 (3)C18—C13—C17—C1686.8 (3)
C2—C1—C10—C9170.4 (2)C17—C16—C20—C21173.2 (3)
C11—C9—C10—C5174.9 (2)C15—C16—C20—C211.7 (6)
C8—C9—C10—C545.5 (3)C25—N26—C21—C222.5 (5)
C11—C9—C10—C166.2 (3)C25—N26—C21—C20176.1 (3)
C8—C9—C10—C1164.4 (2)C16—C20—C21—N26167.4 (3)
C11—C9—C10—C1953.9 (3)C16—C20—C21—C2211.2 (5)
C8—C9—C10—C1975.5 (3)N26—C21—C22—C230.5 (5)
C8—C9—C11—C1248.4 (3)C20—C21—C22—C23177.9 (3)
C10—C9—C11—C12177.0 (2)C21—C22—C23—C242.3 (6)
C9—C11—C12—C1352.6 (3)C22—C23—C24—C253.0 (6)
C11—C12—C13—C17172.1 (2)C21—N26—C25—C241.7 (5)
C11—C12—C13—C1458.5 (3)C23—C24—C25—N261.0 (6)
C11—C12—C13—C1868.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N26i0.822.042.833 (3)162
O27—H27A···O31.012.052.886 (3)139
O27—H27B···O17i1.011.902.907 (3)176
Symmetry code: (i) x1, y, z1.

Experimental details

Crystal data
Chemical formulaC25H31NO2·H2O
Mr395.52
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)6.5376 (3), 11.8766 (10), 13.5312 (15)
β (°) 91.197 (12)
V3)1050.39 (15)
Z2
Radiation typeCu Kα
µ (mm1)0.64
Crystal size (mm)0.3 × 0.2 × 0.1
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.800, 0.988
No. of measured, independent and
observed [I > 2s(I)] reflections
2187, 2003, 1888
Rint0.023
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.117, 1.14
No. of reflections2003
No. of parameters267
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.22

Computer programs: CAD-4 EXPRESS (Enraf-Nonius, 1994), CAD-4 EXPRESS, MolEN (Fair, 1990), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ZORTEP (Zsolnai, 1997), SHELXL97.

Selected geometric parameters (Å, º) top
O17—C171.206 (3)C10—C191.549 (4)
C1—C21.523 (3)C13—C181.547 (4)
C2—C1—C10114.2 (2)C17—C13—C18104.7 (2)
O3—C3—C2108.1 (2)O17—C17—C13126.8 (3)
C5—C10—C19108.5 (2)
C10—C1—C2—C357.1 (3)C7—C8—C9—C1060.6 (3)
C10—C5—C6—C70.1 (4)C6—C5—C10—C915.4 (3)
C5—C6—C7—C814.8 (4)C8—C9—C10—C545.5 (3)
C6—C7—C8—C943.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N26i0.822.042.833 (3)162
O27—H27A···O31.012.052.886 (3)139
O27—H27B···O17i1.011.902.907 (3)176
Symmetry code: (i) x1, y, z1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds