Download citation
Download citation
link to html
The crystal structure of the tri­tosyl­ated diethano­lamine N,N-bis­(tosyl­oxy­ethyl)-p-toluene­sulfon­amide, C25H29NO8S3, has been determined. The conformation of the mol­ecule is such that the tosyl groups are as far apart as possible. The mol­ecules are interconnected by C-H...O hydrogen bonds and form columns in the crystal structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100019788/vj1127sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100019788/vj1127Isup2.hkl
Contains datablock I

CCDC reference: 162584

Comment top

The development of mixed donor cyclic ligands have received considerable attention due to their ability to discriminate between metal ions (Adam et al., 1995). Of tridentate cyclic ligands, [9]aneNS2 is interesting since it has both hard N-donor and soft S-donor atoms (Blake et al., 1998). One strategy for the synthesis of the macrocycles based on an NS2 donor set involves the title compound as an important precursor followed by the macrocyclization with corresponding dithiol and detosylation (Blake et al., 1998). During our search for new macrocycles containing NS2Xn (X = O or S, n = 0–4) mixed donor atoms, we have determined the crystal structure of this compound, (I). \sch

The back bone of the molecule is fully stretched and the torsion angles in both the –NCH2CH2O– units correspond to the anti conformation [179.3 (2) and 167.7 (2)°]. The three tosyl groups are separated from one another as much as possible, presumably to minimize steric repulsion. The interplanar angles between the two O-tosyl aromatic rings is 76.7 (1)° and those between O-tosyl and N-tosyl aromaic rings are 53.3 (1) and 27.9 (1)°.

Although H atoms have been included in their idealized positions, some aromatic and methylene H atoms are situated close to the sulfonyl O atoms of O-tosyl groups, providing evidence for C—H···O hydrogen bonds (Taylor & Kennard, 1982). As illustrated in Fig. 2, the molecules are interconnected by hydrogen bonds in such a way that they form columns parallel to the crystallographic c axis. Aromatic and aliphatic C—H···O hydrogen bonds alternate in the column. Their parameters are given in Table 1.

Related literature top

For related literature, see: Adam et al. (1995); Blake et al. (1998); Searle & Geue (1984); Taylor & Kennard (1982).

Experimental top

Compound (I) was prepared by the reaction of diethanolamine and tosyl chloride according to the published procedure (Searle & Geue, 1984). Single crystals suitable for X-ray crystallography were prepared by vapor diffusion of diethyl ether into the acetonitrile solution of compound (I) at room temperature.

Refinement top

H atoms were added at calculated positions (C—H 0.96 Å) and refined using a riding model. They were assigned isotropic displacement parameters equal to 1.2 times the equivalent isotropic displacement parameter of the atom to which they are attached.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SHELXTL (Sheldrick, 1996b); program(s) used to solve structure: SHELXTL; program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. Perspective view of the molecule with atom numbering; displacement ellipsoids are drawn at 30% probability level and H atoms have been omitted for clarity.
[Figure 2] Fig. 2. Stereoview of one column of the molecules stabilized by alternating aromatic(dashed lines) and aliphatic(dotted lines) C—H···O hydrogen bonds. Non-hydrogen-bonded H atoms have been omitted for clarity.
N-(tolyl-p-sulfonyl)-3-aza-1,5-bis(tolyl-p-sulfonyloxy)pentane top
Crystal data top
C25H29NO8S3F(000) = 1192
Mr = 567.67Dx = 1.394 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.3887 (10) ÅCell parameters from 17590 reflections
b = 22.0576 (19) Åθ = 1.9–28.4°
c = 11.7301 (10) ŵ = 0.32 mm1
β = 113.330 (1)°T = 293 K
V = 2705.8 (4) Å3Plate, colorless
Z = 40.40 × 0.30 × 0.10 mm
Data collection top
CCD area detector
diffractometer
3614 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.047
Graphite monochromatorθmax = 28.4°, θmin = 1.9°
ϕ and ω scansh = 1513
17590 measured reflectionsk = 2923
6572 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.068P)2]
where P = (Fo2 + 2Fc2)/3
6572 reflections(Δ/σ)max < 0.001
334 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C25H29NO8S3V = 2705.8 (4) Å3
Mr = 567.67Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.3887 (10) ŵ = 0.32 mm1
b = 22.0576 (19) ÅT = 293 K
c = 11.7301 (10) Å0.40 × 0.30 × 0.10 mm
β = 113.330 (1)°
Data collection top
CCD area detector
diffractometer
3614 reflections with I > 2σ(I)
17590 measured reflectionsRint = 0.047
6572 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.00Δρmax = 0.28 e Å3
6572 reflectionsΔρmin = 0.29 e Å3
334 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.37323 (6)0.40954 (3)0.81419 (6)0.04859 (18)
S20.07641 (7)0.61162 (3)0.96867 (6)0.05512 (19)
S30.18899 (7)0.38665 (3)0.49546 (6)0.0623 (2)
O10.06145 (17)0.36808 (8)0.60595 (15)0.0614 (5)
O20.18674 (18)0.57087 (8)0.96467 (16)0.0636 (5)
O30.45664 (17)0.46049 (8)0.84379 (17)0.0640 (5)
O40.33576 (18)0.38053 (8)0.69667 (15)0.0644 (5)
O50.0241 (2)0.57494 (9)0.97176 (19)0.0791 (6)
O60.1396 (2)0.65128 (8)1.06877 (16)0.0811 (6)
O70.26634 (19)0.33362 (9)0.47450 (19)0.0853 (6)
O80.1611 (2)0.41154 (10)0.39737 (17)0.0836 (6)
N0.24073 (17)0.43264 (8)0.82231 (17)0.0471 (5)
C10.0429 (2)0.41098 (12)0.6444 (2)0.0598 (7)
H1A0.01190.45150.64390.072*
H1B0.08740.40930.59000.072*
C20.1302 (2)0.39234 (11)0.7747 (2)0.0500 (6)
H2A0.08430.39410.82780.060*
H2B0.15840.35140.77410.060*
C30.2489 (2)0.47456 (10)0.9228 (2)0.0489 (6)
H3A0.33400.49060.96140.059*
H3B0.22960.45340.98480.059*
C40.1552 (3)0.52530 (12)0.8695 (2)0.0671 (8)
H4A0.16240.54140.79650.081*
H4B0.06930.51110.84760.081*
C50.4402 (2)0.35443 (10)0.9291 (2)0.0452 (5)
C60.4132 (3)0.29397 (12)0.9028 (3)0.0668 (8)
H60.35720.28150.82080.080*
C70.4670 (3)0.25161 (12)0.9944 (3)0.0730 (8)
H70.44730.20950.97530.088*
C80.5484 (2)0.26772 (12)1.1131 (2)0.0577 (7)
C90.5742 (3)0.32818 (12)1.1366 (2)0.0643 (7)
H90.63110.34051.21840.077*
C100.5215 (2)0.37172 (12)1.0471 (2)0.0562 (6)
H100.54090.41381.06650.067*
C110.6083 (3)0.22042 (15)1.2105 (3)0.0885 (10)
H11A0.57840.18111.17650.106*
H11B0.58540.22781.27970.106*
H11C0.69970.22211.23780.106*
C120.0198 (2)0.65134 (10)0.8280 (2)0.0441 (5)
C130.0861 (2)0.63005 (11)0.7304 (2)0.0564 (7)
H130.12680.59320.73850.068*
C140.1328 (3)0.66221 (12)0.6213 (2)0.0605 (7)
H140.20660.64720.55340.073*
C150.0773 (3)0.71512 (11)0.6063 (2)0.0533 (6)
C160.0292 (3)0.73507 (11)0.7055 (2)0.0606 (7)
H160.07030.77180.69690.073*
C170.0786 (2)0.70413 (11)0.8163 (2)0.0559 (6)
H170.15270.71910.88420.067*
C180.1304 (3)0.74921 (13)0.4865 (3)0.0778 (9)
H18A0.08010.78500.49290.093*
H18B0.21730.76060.46880.093*
H18C0.12800.72400.42080.093*
C190.2501 (2)0.44420 (11)0.5588 (2)0.0517 (6)
C200.2557 (3)0.43598 (12)0.6741 (2)0.0597 (7)
H200.22140.39990.72150.072*
C210.3106 (3)0.48001 (13)0.7190 (2)0.0613 (7)
H210.31460.47430.79850.074*
C220.3604 (2)0.53219 (12)0.6537 (2)0.0556 (6)
C230.3551 (2)0.53909 (12)0.5378 (2)0.0566 (7)
H230.39100.57470.48960.068*
C240.2997 (2)0.49590 (12)0.4915 (2)0.0543 (6)
H240.29550.50170.41210.065*
C250.4185 (3)0.58014 (14)0.7057 (3)0.0791 (9)
H25A0.41400.56760.78570.095*
H25B0.50640.58600.65080.095*
H25C0.37250.61750.71390.095*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0483 (3)0.0542 (4)0.0458 (3)0.0090 (3)0.0214 (3)0.0081 (3)
S20.0721 (4)0.0486 (4)0.0493 (4)0.0125 (3)0.0289 (3)0.0048 (3)
S30.0580 (4)0.0741 (5)0.0430 (4)0.0003 (4)0.0073 (3)0.0048 (3)
O10.0548 (11)0.0618 (11)0.0538 (10)0.0011 (9)0.0069 (8)0.0014 (8)
O20.0683 (12)0.0601 (11)0.0549 (10)0.0180 (9)0.0163 (9)0.0046 (8)
O30.0556 (10)0.0624 (11)0.0790 (12)0.0030 (9)0.0320 (9)0.0159 (9)
O40.0719 (12)0.0822 (13)0.0418 (10)0.0207 (10)0.0255 (9)0.0042 (9)
O50.0896 (15)0.0773 (13)0.0860 (14)0.0006 (11)0.0513 (12)0.0240 (11)
O60.1198 (17)0.0647 (12)0.0459 (10)0.0169 (12)0.0191 (11)0.0078 (9)
O70.0759 (14)0.0760 (13)0.0819 (14)0.0190 (11)0.0078 (11)0.0256 (11)
O80.0899 (15)0.1155 (17)0.0463 (11)0.0188 (13)0.0280 (10)0.0076 (10)
N0.0425 (11)0.0484 (11)0.0477 (11)0.0084 (9)0.0151 (9)0.0033 (9)
C10.0537 (15)0.0672 (16)0.0517 (15)0.0017 (13)0.0135 (12)0.0063 (13)
C20.0474 (14)0.0523 (14)0.0474 (13)0.0020 (12)0.0158 (11)0.0018 (11)
C30.0521 (14)0.0464 (13)0.0449 (13)0.0056 (11)0.0158 (11)0.0001 (10)
C40.083 (2)0.0641 (17)0.0469 (15)0.0216 (15)0.0177 (14)0.0047 (13)
C50.0433 (13)0.0484 (14)0.0452 (13)0.0054 (11)0.0188 (11)0.0010 (10)
C60.0675 (18)0.0529 (16)0.0624 (17)0.0056 (14)0.0072 (14)0.0048 (13)
C70.0749 (19)0.0446 (15)0.083 (2)0.0033 (14)0.0141 (16)0.0070 (14)
C80.0538 (16)0.0602 (17)0.0617 (16)0.0151 (13)0.0257 (13)0.0152 (13)
C90.0681 (18)0.0662 (18)0.0460 (14)0.0089 (15)0.0093 (13)0.0023 (13)
C100.0584 (16)0.0532 (15)0.0483 (14)0.0011 (12)0.0119 (12)0.0018 (12)
C110.088 (2)0.085 (2)0.093 (2)0.0257 (18)0.0356 (19)0.0404 (18)
C120.0516 (14)0.0405 (13)0.0448 (13)0.0033 (11)0.0239 (11)0.0004 (10)
C130.0571 (16)0.0478 (14)0.0611 (16)0.0113 (12)0.0201 (13)0.0048 (12)
C140.0570 (16)0.0595 (16)0.0551 (15)0.0106 (13)0.0116 (13)0.0017 (13)
C150.0599 (15)0.0533 (14)0.0473 (14)0.0027 (13)0.0219 (12)0.0038 (12)
C160.0657 (17)0.0510 (15)0.0636 (17)0.0150 (13)0.0240 (14)0.0052 (13)
C170.0585 (15)0.0515 (15)0.0527 (15)0.0089 (12)0.0167 (12)0.0028 (12)
C180.088 (2)0.077 (2)0.0593 (17)0.0085 (18)0.0198 (15)0.0128 (15)
C190.0461 (13)0.0628 (16)0.0386 (13)0.0090 (12)0.0089 (10)0.0023 (11)
C200.0645 (17)0.0652 (17)0.0432 (14)0.0005 (14)0.0148 (12)0.0133 (12)
C210.0645 (17)0.0751 (18)0.0443 (14)0.0062 (15)0.0217 (13)0.0033 (14)
C220.0418 (13)0.0666 (17)0.0547 (15)0.0102 (12)0.0152 (12)0.0032 (13)
C230.0501 (14)0.0583 (16)0.0526 (15)0.0070 (12)0.0108 (12)0.0087 (12)
C240.0551 (15)0.0628 (16)0.0403 (13)0.0089 (13)0.0140 (11)0.0080 (12)
C250.0664 (19)0.091 (2)0.078 (2)0.0045 (17)0.0270 (16)0.0083 (17)
Geometric parameters (Å, º) top
S1—O31.4228 (18)C6—C71.372 (4)
S1—O41.4234 (18)C7—C81.379 (4)
S1—N1.6307 (19)C8—C91.370 (4)
S1—C51.750 (2)C8—C111.498 (3)
S2—O61.4117 (18)C9—C101.373 (3)
S2—O51.414 (2)C12—C131.375 (3)
S2—O21.5606 (18)C12—C171.377 (3)
S2—C121.750 (2)C13—C141.373 (3)
S3—O81.420 (2)C14—C151.371 (3)
S3—O71.426 (2)C15—C161.379 (4)
S3—O11.5704 (18)C15—C181.494 (3)
S3—C191.749 (3)C16—C171.376 (3)
O1—C11.445 (3)C19—C241.374 (3)
O2—C41.438 (3)C19—C201.390 (3)
N—C21.459 (3)C20—C211.369 (4)
N—C31.472 (3)C21—C221.374 (4)
C1—C21.513 (3)C22—C231.392 (3)
C3—C41.502 (3)C22—C251.500 (4)
C5—C61.376 (3)C23—C241.368 (4)
C5—C101.379 (3)
O3—S1—O4120.43 (12)C10—C5—S1119.70 (18)
O3—S1—N106.43 (10)C7—C6—C5119.6 (2)
O4—S1—N105.52 (11)C6—C7—C8121.9 (3)
O3—S1—C5108.39 (11)C9—C8—C7117.3 (2)
O4—S1—C5107.81 (11)C9—C8—C11121.8 (3)
N—S1—C5107.64 (11)C7—C8—C11120.8 (3)
O6—S2—O5119.00 (14)C8—C9—C10122.2 (2)
O6—S2—O2103.32 (12)C9—C10—C5119.4 (2)
O5—S2—O2109.93 (12)C13—C12—C17120.4 (2)
O6—S2—C12110.48 (11)C13—C12—S2119.20 (18)
O5—S2—C12108.12 (12)C17—C12—S2120.34 (18)
O2—S2—C12105.09 (10)C14—C13—C12119.2 (2)
O8—S3—O7119.92 (13)C15—C14—C13122.1 (2)
O8—S3—O1109.81 (12)C14—C15—C16117.4 (2)
O7—S3—O1103.57 (11)C14—C15—C18120.9 (2)
O8—S3—C19108.54 (13)C16—C15—C18121.7 (2)
O7—S3—C19110.24 (13)C17—C16—C15122.2 (2)
O1—S3—C19103.45 (10)C16—C17—C12118.7 (2)
C1—O1—S3117.68 (15)C24—C19—C20120.0 (3)
C4—O2—S2117.98 (16)C24—C19—S3120.03 (19)
C2—N—C3117.43 (19)C20—C19—S3119.8 (2)
C2—N—S1117.72 (15)C21—C20—C19119.1 (2)
C3—N—S1118.45 (15)C20—C21—C22122.0 (2)
O1—C1—C2105.52 (19)C21—C22—C23117.9 (2)
N—C2—C1110.08 (19)C21—C22—C25120.9 (3)
N—C3—C4108.99 (18)C23—C22—C25121.1 (3)
O2—C4—C3106.2 (2)C24—C23—C22121.1 (2)
C6—C5—C10119.7 (2)C23—C24—C19119.9 (2)
C6—C5—S1120.64 (18)
O1—C1—C2—N179.29 (19)O2—C4—C3—N167.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O8i0.962.503.451 (4)174
C20—H20···O6ii0.962.533.376 (3)148
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC25H29NO8S3
Mr567.67
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.3887 (10), 22.0576 (19), 11.7301 (10)
β (°) 113.330 (1)
V3)2705.8 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.40 × 0.30 × 0.10
Data collection
DiffractometerCCD area detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
17590, 6572, 3614
Rint0.047
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.136, 1.00
No. of reflections6572
No. of parameters334
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.29

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXTL (Sheldrick, 1996b), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O8i.962.4953.451 (4)174.4
C20—H20···O6ii.962.5263.376 (3)147.5
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1, z+2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds