Download citation
Download citation
link to html
The crystal structure of the title compound, C16H8N6, contains two independent mol­ecules with no significant difference in their structures. The pyrazine ring makes dihedral angles of 36.7 (2) and 36.5 (3)° with the two pyridine rings in one mol­ecule, and 43.1 (2) and 38.4 (1)° in the other. The dihedral angles between the two pyridine rings are 58.2 (2) and 56.0 (2)°, respectively. The favoured orientation of the pyridine rings is such that their N atoms face each other.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100017625/vj1118sup1.cif
Contains datablocks default, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100017625/vj1118Isup2.hkl
Contains datablock I

CCDC reference: 160005

Comment top

Bridging polypyridyl compounds have attracted great interest as building blocks for supramolecular assemblies (Scandola et al., 1992; Scott et al., 1999). Some of the polypyridyl ligands have been actively studied in recent years because of the potential functionality of their metal complexes as molecular devices (Nallas & Brewer, 1997; Brauns et al., 1997) and DNA probes (Yam et al., 1995; Holmin, et al., 1999). In the present paper, we report the synthesis and crystal structure of a new polypyridyl compound, 5,6-Bis(2-pyridyl)-2,3-pyrazinedicarbonitrile, (I). \sch

The title compound consists of a pyrazine ring substituted with two pyridine rings and two nitrile groups. The unit cell contains two symmetry-independent molecules without significant difference in this structure (Fig. 1). The two pyridine rings are not co-planar with each other or with the pyrazine ring due to the steric clashes between the H atoms in the pyridyl rings. The torsional angles between the carbon-carbon bonds connecting the pyridine rings to pyrazine ring (C7—C5—C6—C12 and C23—C21—C22—C28) are 18.8 (3) and 20.0 (4)° for the two molecules, respectively. In the pyrazine rings, the maximum deviation of any atom from the best-fit planes describing them are 0.0663 (2) and 0.0707 (1) Å. The pyrazine rings make dihedral angles of 36.7 (2) and 36.5 (3)° with the two pyridine rings in one molecule and 43.1 (2) versus 38.4 (1)° in the other. The dihedral angles of the pyridine rings are 58.2 (2) and 56.0 (2)°, and their N atoms face each other. These distortions from planarity in the molecue are similar to its analogues (Rasmussen et al., 1990). Both nitriles in each molecule are equivalent and typical N—C triple bonds. The other C—N bond distances lie in the range 1.329 (5)–1.352 (4) Å. The bond angles of C2—C1—N1, C18—C17—N7, C4—C3—N2 and C20—C19—N8 are close to 180°. There are no hydrogen bonds or π···π stacking interactions between different molecules.

Related literature top

For related literature, see: Brauns et al. (1997); Nallas & Brewer (1997); Rasmussen et al. (1990); Scandola et al. (1992); Scott et al. (1999); Yam et al. (1995).

Experimental top

The title compound was synthesized by stirring 1:1 molar ratio 2,2'-pyridine (0.43 g, 2.0 mmol) and diaminomaleonitrile (0.22 g, 2.0 mmol) in the presence of several drops of acetic acid in ethanol solution (50 ml) under Ar atmosphere at reflux for ca 6 h. The solvent was concentrated in vacuo to afford a colorless solid which was purified by recrystallization from CH2Cl2/CH3OH to obtain the single crystals suitable for X-ray diffraction. The title compound is not stable when exposed to air for a period of several months.

Refinement top

H atoms were located by geometry but their parameters were not refined.

Structure description top

Bridging polypyridyl compounds have attracted great interest as building blocks for supramolecular assemblies (Scandola et al., 1992; Scott et al., 1999). Some of the polypyridyl ligands have been actively studied in recent years because of the potential functionality of their metal complexes as molecular devices (Nallas & Brewer, 1997; Brauns et al., 1997) and DNA probes (Yam et al., 1995; Holmin, et al., 1999). In the present paper, we report the synthesis and crystal structure of a new polypyridyl compound, 5,6-Bis(2-pyridyl)-2,3-pyrazinedicarbonitrile, (I). \sch

The title compound consists of a pyrazine ring substituted with two pyridine rings and two nitrile groups. The unit cell contains two symmetry-independent molecules without significant difference in this structure (Fig. 1). The two pyridine rings are not co-planar with each other or with the pyrazine ring due to the steric clashes between the H atoms in the pyridyl rings. The torsional angles between the carbon-carbon bonds connecting the pyridine rings to pyrazine ring (C7—C5—C6—C12 and C23—C21—C22—C28) are 18.8 (3) and 20.0 (4)° for the two molecules, respectively. In the pyrazine rings, the maximum deviation of any atom from the best-fit planes describing them are 0.0663 (2) and 0.0707 (1) Å. The pyrazine rings make dihedral angles of 36.7 (2) and 36.5 (3)° with the two pyridine rings in one molecule and 43.1 (2) versus 38.4 (1)° in the other. The dihedral angles of the pyridine rings are 58.2 (2) and 56.0 (2)°, and their N atoms face each other. These distortions from planarity in the molecue are similar to its analogues (Rasmussen et al., 1990). Both nitriles in each molecule are equivalent and typical N—C triple bonds. The other C—N bond distances lie in the range 1.329 (5)–1.352 (4) Å. The bond angles of C2—C1—N1, C18—C17—N7, C4—C3—N2 and C20—C19—N8 are close to 180°. There are no hydrogen bonds or π···π stacking interactions between different molecules.

For related literature, see: Brauns et al. (1997); Nallas & Brewer (1997); Rasmussen et al. (1990); Scandola et al. (1992); Scott et al. (1999); Yam et al. (1995).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 30% probability displacement ellipsoids.
6,7-dicyano-2,3-di(2-pyridyl) pyrazine top
Crystal data top
C16H8N6F(000) = 1168
Mr = 284.28Dx = 1.322 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 10162 reflections
a = 16.996 (2) Åθ = 2.0–25.0°
b = 8.1356 (11) ŵ = 0.09 mm1
c = 20.660 (3) ÅT = 298 K
V = 2856.8 (7) Å3Prism, colorless
Z = 80.30 × 0.25 × 0.20 mm
Data collection top
BRUKER SMART 1000
diffractometer
2589 reflections with I > 2.0σ(I)
ω scansRint = 0.037
Absorption correction: multi-scan
[SAINT (Bruker, 1998) and SADABS (Sheldrick, 1997)]
θmax = 25.0°
Tmin = 0.975, Tmax = 0.983h = 1720
11285 measured reflectionsk = 99
3743 independent reflectionsl = 1524
Refinement top
Refinement on F2 w = 1/[σ2(Fo2) + (0.0552P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.037(Δ/σ)max = 0.003
wR(F2) = 0.101Δρmax = 0.13 e Å3
S = 0.98Δρmin = 0.13 e Å3
3743 reflectionsExtinction correction: SHELXL97 (Sheldrick, 1997)
398 parametersExtinction coefficient: 0.0062 (6)
H-atom parameters constrained
Crystal data top
C16H8N6V = 2856.8 (7) Å3
Mr = 284.28Z = 8
Orthorhombic, Pna21Mo Kα radiation
a = 16.996 (2) ŵ = 0.09 mm1
b = 8.1356 (11) ÅT = 298 K
c = 20.660 (3) Å0.30 × 0.25 × 0.20 mm
Data collection top
BRUKER SMART 1000
diffractometer
3743 independent reflections
Absorption correction: multi-scan
[SAINT (Bruker, 1998) and SADABS (Sheldrick, 1997)]
2589 reflections with I > 2.0σ(I)
Tmin = 0.975, Tmax = 0.983Rint = 0.037
11285 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037398 parameters
wR(F2) = 0.101H-atom parameters constrained
S = 0.98Δρmax = 0.13 e Å3
3743 reflectionsΔρmin = 0.13 e Å3
Special details top

Refinement. Full-MATRIX

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.6311 (3)0.2871 (6)0.5624 (2)0.1228 (16)
N20.4265 (2)0.4290 (4)0.48212 (19)0.0961 (12)
N30.69013 (15)0.3577 (3)0.40500 (14)0.0626 (8)
N40.54378 (14)0.4089 (3)0.34917 (13)0.0543 (7)
N50.75346 (15)0.5233 (4)0.25727 (15)0.0641 (8)
N60.63400 (14)0.2649 (3)0.21124 (16)0.0581 (8)
C10.6296 (2)0.3184 (5)0.5085 (2)0.0826 (12)
C20.6241 (2)0.3566 (4)0.44041 (16)0.0602 (9)
C30.4825 (2)0.4150 (4)0.45223 (19)0.0695 (10)
C40.55239 (19)0.3941 (4)0.41345 (17)0.0565 (8)
C50.68305 (17)0.3849 (4)0.34128 (17)0.0521 (8)
C60.60770 (16)0.3947 (4)0.31220 (16)0.0481 (7)
C70.75663 (17)0.4087 (4)0.30460 (18)0.0552 (8)
C80.82426 (17)0.3206 (5)0.3196 (2)0.0687 (10)
C90.8906 (2)0.3495 (6)0.2825 (2)0.0842 (13)
C100.8882 (2)0.4633 (6)0.2341 (2)0.0854 (12)
C110.8191 (2)0.5478 (5)0.2228 (2)0.0758 (11)
C120.59251 (15)0.3803 (4)0.24177 (15)0.0462 (7)
C130.53403 (17)0.4725 (4)0.21271 (17)0.0553 (8)
C140.5191 (2)0.4492 (4)0.14796 (18)0.0682 (10)
C150.5612 (2)0.3319 (5)0.11529 (19)0.0721 (10)
C160.6174 (2)0.2445 (4)0.1482 (2)0.0680 (11)
H8A0.82490.24500.35340.082*
H9A0.93670.29150.29060.101*
H10A0.93260.48380.20910.102*
H11A0.81810.62510.18960.091*
H13A0.50530.54880.23650.066*
H14A0.48130.51180.12680.082*
H15A0.55190.31200.07160.087*
H16A0.64590.16590.12540.082*
N70.32586 (19)0.5007 (5)0.2028 (2)0.0980 (12)
N80.1291 (3)0.6880 (6)0.1271 (2)0.1095 (13)
N90.21888 (14)0.5689 (3)0.33991 (13)0.0499 (6)
N100.07343 (14)0.6470 (3)0.28673 (13)0.0544 (7)
N110.13306 (14)0.7413 (3)0.47788 (16)0.0596 (8)
N120.00725 (15)0.5052 (3)0.43648 (15)0.0605 (7)
C170.2744 (2)0.5338 (4)0.2354 (2)0.0657 (9)
C180.20836 (18)0.5781 (4)0.27597 (16)0.0500 (8)
C190.1323 (2)0.6637 (5)0.1814 (2)0.0713 (10)
C200.13843 (18)0.6301 (4)0.25011 (16)0.0536 (8)
C210.15692 (16)0.6009 (3)0.37760 (16)0.0452 (7)
C220.08112 (16)0.6230 (3)0.35011 (15)0.0464 (7)
C230.17320 (16)0.6201 (4)0.44774 (15)0.0476 (7)
C240.22946 (17)0.5271 (4)0.47863 (16)0.0546 (8)
C250.2434 (2)0.5521 (4)0.54376 (19)0.0666 (9)
C260.2023 (2)0.6735 (5)0.57491 (18)0.0719 (10)
C270.1481 (2)0.7647 (5)0.5403 (2)0.0697 (10)
C280.00712 (16)0.6148 (3)0.38850 (16)0.0495 (7)
C290.05674 (17)0.7104 (4)0.37271 (19)0.0613 (9)
C300.1236 (2)0.6952 (5)0.4092 (2)0.0777 (11)
C310.1253 (2)0.5862 (5)0.4595 (2)0.0763 (11)
C320.0589 (2)0.4935 (5)0.4715 (2)0.0733 (11)
H24A0.25780.44810.45590.066*
H25A0.27980.48810.56590.080*
H26A0.21070.69420.61860.086*
H27A0.12070.84700.56190.084*
H29A0.05460.78350.33810.074*
H30A0.16760.75870.39980.093*
H31A0.17010.57490.48500.092*
H32A0.06010.41900.50570.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.184 (4)0.123 (4)0.061 (3)0.067 (3)0.003 (3)0.005 (3)
N20.102 (3)0.108 (3)0.078 (3)0.026 (2)0.027 (2)0.008 (2)
N30.0676 (18)0.0604 (17)0.060 (2)0.0130 (13)0.0128 (15)0.0103 (15)
N40.0552 (15)0.0552 (17)0.0525 (17)0.0018 (12)0.0019 (13)0.0031 (13)
N50.0617 (17)0.0562 (17)0.075 (2)0.0030 (13)0.0013 (15)0.0028 (16)
N60.0630 (16)0.0536 (17)0.058 (2)0.0043 (12)0.0052 (14)0.0035 (14)
C10.109 (3)0.089 (3)0.050 (3)0.042 (2)0.006 (2)0.009 (2)
C20.081 (2)0.054 (2)0.046 (2)0.0150 (17)0.0040 (19)0.0069 (16)
C30.085 (3)0.069 (2)0.054 (2)0.0158 (19)0.009 (2)0.0021 (18)
C40.069 (2)0.0488 (19)0.051 (2)0.0060 (15)0.0008 (18)0.0016 (16)
C50.056 (2)0.0439 (18)0.057 (2)0.0070 (14)0.0095 (16)0.0065 (15)
C60.0497 (17)0.0401 (17)0.054 (2)0.0011 (12)0.0002 (17)0.0016 (14)
C70.0484 (17)0.0496 (18)0.067 (2)0.0017 (14)0.0094 (16)0.0139 (18)
C80.0524 (18)0.072 (2)0.081 (3)0.0062 (17)0.0108 (19)0.018 (2)
C90.058 (2)0.087 (3)0.108 (4)0.0123 (19)0.014 (2)0.031 (3)
C100.054 (2)0.097 (3)0.105 (4)0.010 (2)0.009 (2)0.029 (3)
C110.077 (2)0.069 (2)0.081 (3)0.0122 (19)0.010 (2)0.011 (2)
C120.0460 (16)0.0449 (18)0.0476 (19)0.0030 (13)0.0003 (14)0.0015 (15)
C130.0525 (17)0.0560 (19)0.057 (2)0.0052 (14)0.0033 (16)0.0022 (17)
C140.072 (2)0.073 (3)0.060 (2)0.0043 (18)0.0154 (19)0.002 (2)
C150.091 (3)0.075 (3)0.050 (2)0.005 (2)0.001 (2)0.003 (2)
C160.085 (2)0.061 (2)0.058 (3)0.0025 (19)0.012 (2)0.0108 (18)
N70.092 (2)0.113 (3)0.089 (3)0.0242 (19)0.032 (2)0.024 (2)
N80.157 (3)0.118 (3)0.053 (3)0.035 (3)0.007 (2)0.010 (2)
N90.0496 (14)0.0511 (15)0.0491 (17)0.0021 (11)0.0030 (13)0.0031 (12)
N100.0580 (16)0.0525 (17)0.0528 (18)0.0046 (12)0.0068 (13)0.0033 (14)
N110.0627 (15)0.0593 (18)0.057 (2)0.0062 (14)0.0005 (15)0.0079 (14)
N120.0568 (16)0.0566 (16)0.068 (2)0.0021 (13)0.0089 (14)0.0012 (15)
C170.069 (2)0.068 (2)0.060 (2)0.0060 (17)0.011 (2)0.0092 (19)
C180.0562 (18)0.0436 (18)0.050 (2)0.0006 (14)0.0074 (16)0.0016 (15)
C190.091 (3)0.064 (2)0.060 (3)0.0135 (18)0.006 (2)0.004 (2)
C200.062 (2)0.0468 (18)0.052 (2)0.0019 (15)0.0012 (16)0.0009 (15)
C210.0486 (16)0.0392 (17)0.0480 (19)0.0003 (13)0.0017 (16)0.0038 (14)
C220.0476 (18)0.0393 (17)0.052 (2)0.0005 (13)0.0011 (15)0.0008 (15)
C230.0454 (16)0.0478 (18)0.050 (2)0.0050 (14)0.0025 (14)0.0004 (15)
C240.0502 (17)0.061 (2)0.053 (2)0.0005 (14)0.0015 (16)0.0012 (17)
C250.071 (2)0.072 (2)0.056 (2)0.0046 (18)0.0134 (19)0.009 (2)
C260.084 (2)0.085 (3)0.047 (2)0.010 (2)0.001 (2)0.007 (2)
C270.077 (2)0.073 (3)0.059 (3)0.0031 (19)0.011 (2)0.012 (2)
C280.0487 (17)0.0450 (17)0.055 (2)0.0021 (14)0.0015 (15)0.0077 (16)
C290.0555 (17)0.062 (2)0.067 (2)0.0095 (16)0.0095 (18)0.0049 (18)
C300.054 (2)0.090 (3)0.089 (3)0.0125 (19)0.002 (2)0.022 (3)
C310.053 (2)0.092 (3)0.084 (3)0.0088 (19)0.020 (2)0.030 (3)
C320.074 (2)0.066 (2)0.080 (3)0.0142 (19)0.021 (2)0.006 (2)
Geometric parameters (Å, º) top
N1—C11.143 (6)C17—N71.137 (4)
N2—C31.140 (4)C17—C181.446 (5)
N3—C21.340 (4)C18—N91.335 (4)
N3—C51.340 (4)C18—C201.370 (4)
N4—C61.333 (3)C19—N81.140 (5)
N4—C41.342 (4)C19—C201.449 (5)
N5—C111.339 (4)C20—N101.346 (4)
N5—C71.352 (4)C21—N91.335 (4)
N6—C121.333 (4)C21—C221.419 (4)
N6—C161.342 (5)C21—C231.484 (4)
C1—C21.444 (5)C22—N101.330 (4)
C2—C41.374 (4)C22—C281.488 (4)
C3—C41.443 (5)C23—N111.351 (4)
C5—C61.417 (4)C23—C241.377 (4)
C5—C71.475 (4)C24—C251.381 (5)
C6—C121.483 (4)C25—C261.371 (5)
C7—C81.390 (4)C26—C271.381 (5)
C8—C91.384 (5)C27—N111.329 (5)
C9—C101.363 (6)C28—N121.333 (4)
C10—C111.382 (5)C28—C291.375 (4)
C12—C131.382 (4)C29—C301.369 (5)
C13—C141.375 (5)C30—C311.366 (6)
C14—C151.371 (5)C31—C321.380 (5)
C15—C161.372 (5)C32—N121.341 (4)
C2—N3—C5117.5 (3)N7—C17—C18178.9 (4)
C6—N4—C4118.1 (3)N9—C18—C20121.3 (3)
C11—N5—C7117.0 (3)N9—C18—C17117.1 (3)
C12—N6—C16115.8 (3)C20—C18—C17121.6 (3)
N1—C1—C2177.5 (5)N8—C19—C20178.4 (4)
N3—C2—C4121.3 (3)N10—C20—C18121.6 (3)
N3—C2—C1118.6 (3)N10—C20—C19118.2 (3)
C4—C2—C1120.0 (3)C18—C20—C19120.1 (3)
N2—C3—C4178.6 (4)N9—C21—C22120.5 (3)
N4—C4—C2121.2 (3)N9—C21—C23116.3 (2)
N4—C4—C3116.7 (3)C22—C21—C23123.1 (3)
C2—C4—C3122.1 (3)N10—C22—C21120.1 (3)
N3—C5—C6120.5 (3)N10—C22—C28116.6 (3)
N3—C5—C7116.8 (3)C21—C22—C28123.2 (3)
C6—C5—C7122.8 (3)N11—C23—C24122.6 (3)
N4—C6—C5119.9 (3)N11—C23—C21115.6 (3)
N4—C6—C12115.3 (2)C24—C23—C21121.6 (3)
C5—C6—C12124.7 (3)C23—C24—C25119.3 (3)
N5—C7—C8123.4 (3)C26—C25—C24118.4 (3)
N5—C7—C5115.4 (3)C25—C26—C27118.9 (4)
C8—C7—C5121.3 (4)N11—C27—C26123.6 (4)
C9—C8—C7117.6 (4)N12—C28—C29123.8 (3)
C10—C9—C8119.8 (4)N12—C28—C22115.1 (3)
C9—C10—C11119.2 (4)C29—C28—C22121.0 (3)
N5—C11—C10123.0 (4)C30—C29—C28118.2 (4)
N6—C12—C13123.9 (3)C31—C30—C29119.7 (3)
N6—C12—C6115.3 (3)C30—C31—C32118.3 (4)
C13—C12—C6120.6 (3)N12—C32—C31123.3 (4)
C14—C13—C12118.7 (3)C18—N9—C21117.4 (3)
C15—C14—C13118.6 (3)C22—N10—C20117.2 (2)
C16—C15—C14118.7 (4)C27—N11—C23117.1 (3)
N6—C16—C15124.3 (3)C28—N12—C32116.6 (3)

Experimental details

Crystal data
Chemical formulaC16H8N6
Mr284.28
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)298
a, b, c (Å)16.996 (2), 8.1356 (11), 20.660 (3)
V3)2856.8 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBRUKER SMART 1000
Absorption correctionMulti-scan
[SAINT (Bruker, 1998) and SADABS (Sheldrick, 1997)]
Tmin, Tmax0.975, 0.983
No. of measured, independent and
observed [I > 2.0σ(I)] reflections
11285, 3743, 2589
Rint0.037
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.101, 0.98
No. of reflections3743
No. of parameters398
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.13

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), XP (Sheldrick, 1997).

Selected geometric parameters (Å, º) top
N1—C11.143 (6)C17—N71.137 (4)
N2—C31.140 (4)C18—N91.335 (4)
N3—C21.340 (4)C19—N81.140 (5)
N3—C51.340 (4)C20—N101.346 (4)
N4—C61.333 (3)C21—N91.335 (4)
N4—C41.342 (4)C22—N101.330 (4)
C2—N3—C5117.5 (3)N7—C17—C18178.9 (4)
C6—N4—C4118.1 (3)N8—C19—C20178.4 (4)
N1—C1—C2177.5 (5)C18—N9—C21117.4 (3)
N2—C3—C4178.6 (4)C22—N10—C20117.2 (2)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds