Download citation
Download citation
link to html
The title complex, [La2(C6H7)4(C6H5S)2(C4H8O)2]·2C4H8O, is a centrosymmetric dimer bridged through the S atoms of the benzene­thiolate ligands. The bridging La2S2 unit is completely planar, while the geometry around the nine-coordinate La atom is that of a distorted trigonal bipyramid. The La-S-La and S-La-S angles are 117.51 (4) and 62.5 (1)°, respectively, and the average La-S bond length is 2.9759 Å. The crystals contain two tetra­hydro­furan solvate mol­ecules for every complex mol­ecule.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100017996/vj1111sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100017996/vj1111Isup2.hkl
Contains datablock I

CCDC reference: 170160

Comment top

The synthesis of lanthanide–thiolate compounds is of current interest as these compounds are used in organic synthesis (Taniguchi et al., 1994), as rational molecular precursors to materials (Brewer et al., 1994) and as an initiator for syndiospecific polymerization of methyl methacrylate (Nakayama et al., 1996). While studying the catalytic properties of organolanthanide thiolates, we obtained di-µ-phenylthio-bis[bis(η5-methylcyclopentadienyl)(tetrahydrofuran)- lanthanum(III)] bis(tetrahydrofuran) solvate, (I), from the reaction of Cp'3La (Cp' is η5-methylcyclopentadienyl) with benzenethiol in a 1:1 molar ratio in tetrahydrofuran (THF). \sch

The crystal structure determination of (I) demonstrates that the complex is a centrosymmetric binuclear molecule, with the benzenethiol ligands as bridging groups. The La atom is coordinated by two Cp' rings, two benzenethiol S atoms and one THF O atom, forming a distorted trigonal-bipyramid geometry, giving the central metal a formal coordination number of nine if the Cp' group is regarded as occupying three coordination sites.

The two La—S distances in (I) are not equal (Table 1) and have an average value of 2.9759 Å, the average being consistent with that found in the related sulfur-bridged complex [Ce(Me3CC5H4)2(µ-SCHMe2)]2 [2.882 (6) Å; Stults et al., 1990], once the difference in the ionic radii of the metal atoms has been taken into consideration.

The La—S—La angle in (I) [117.51 (4)°] is larger than that found in the complex [Yb(C5H5)2(µ-SCH2CH2CH2CH3)]2, (II) [94.43 (8)°; Wu et al., 1996]. However, the S—La—S angle in (I) [62.5 (1)°] is much smaller than that found in (II) [85.57 (8)°]. The Cp'centroid—La distances in (I) [2.565 (7) and 2.562 (6) Å] are much longer than those observed for the Cp'centroid—Yb distances in (II) (2.315 and 2.412 Å). These differences may be due to the difference in the ionic radii of the metal atoms in (I) and (II).

Related literature top

For related literature, see: Brewer et al. (1994); Nakayama et al. (1996); Stults et al. (1990); Taniguchi et al. (1994); Wu et al. (1996).

Experimental top

Complex (I) was isolated from the reaction of LaCp'3 with one equivalent of benzenethiol in THF, followed by crystallization from a toluene–THF solution at 263 K. The complex is very sensitive to air and moisture; therefore, all manipulations were conducted under purified argon using Schlenk techniques. A crystal suitable for analysis was sealed in a thin-walled glass capillary.

Refinement top

H atoms were included (C—H = 0.93–0.98 Å) but not refined.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 40% probability displacement ellipsoids and the atom-numbering scheme [symmetry code: (i) 1 - x, -y, -z]. H atoms have been omitted for clarity.
Di-µ-phenylthiobis[bis(η5-methylcyclopentadienyl)(tetrahydrofuran) lanthanum(III)] bis(tetrahydrofuran) solvate top
Crystal data top
[La2(C6H7)4(C6H5S)2(C4H8O)2]·2C4H8ODx = 1.406 Mg m3
Mr = 1101.07Melting point: not measured K
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.1535 (11) ÅCell parameters from 6888 reflections
b = 17.337 (2) Åθ = 4.7–52.7°
c = 16.637 (2) ŵ = 1.74 mm1
β = 100.031 (2)°T = 298 K
V = 2599.8 (5) Å3Prismatic, colourless
Z = 20.70 × 0.45 × 0.40 mm
F(000) = 1120
Data collection top
Bruker SMART CCD area-detector
diffractometer
4585 independent reflections
Radiation source: fine-focus sealed tube3679 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.345, Tmax = 0.498k = 1620
10479 measured reflectionsl = 1619
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.045P)2 + 3.4381P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.003
4585 reflectionsΔρmax = 0.63 e Å3
272 parametersΔρmin = 0.58 e Å3
10 restraintsExtinction correction: SHELXL97, Fc*=3DkFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0025 (3)
Crystal data top
[La2(C6H7)4(C6H5S)2(C4H8O)2]·2C4H8OV = 2599.8 (5) Å3
Mr = 1101.07Z = 2
Monoclinic, P21/nMo Kα radiation
a = 9.1535 (11) ŵ = 1.74 mm1
b = 17.337 (2) ÅT = 298 K
c = 16.637 (2) Å0.70 × 0.45 × 0.40 mm
β = 100.031 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4585 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3679 reflections with I > 2σ(I)
Tmin = 0.345, Tmax = 0.498Rint = 0.025
10479 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03510 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.07Δρmax = 0.63 e Å3
4585 reflectionsΔρmin = 0.58 e Å3
272 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
La10.60330 (3)0.063780 (14)0.135744 (15)0.04470 (13)
S10.56907 (17)0.06436 (7)0.04544 (8)0.0618 (4)
O10.7739 (4)0.1781 (2)0.1058 (2)0.0636 (9)
C10.4132 (14)0.0980 (7)0.2457 (7)0.128 (4)
H1A0.41170.07010.29670.153*
C20.3209 (11)0.0831 (6)0.1740 (11)0.139 (5)
H2A0.24200.04420.16620.167*
C30.3321 (8)0.1426 (7)0.1233 (5)0.110 (3)
H3A0.26370.15290.07230.132*
C40.4311 (8)0.1937 (4)0.1627 (6)0.091 (2)
H4A0.44640.24610.14380.109*
C50.4838 (8)0.1663 (6)0.2405 (5)0.101 (2)
C60.5797 (14)0.2051 (9)0.3101 (7)0.244 (9)
H6A0.51960.23670.33880.366*
H6B0.65140.23680.29000.366*
H6C0.63000.16690.34660.366*
C70.8943 (7)0.0266 (4)0.2154 (4)0.0814 (18)
H7A0.98300.05700.21140.098*
C80.8122 (9)0.0347 (5)0.2742 (4)0.095 (2)
H8A0.83570.06990.32070.115*
C90.7168 (9)0.0261 (6)0.2706 (5)0.099 (2)
H9A0.66240.04110.31400.119*
C100.7378 (8)0.0717 (3)0.2072 (5)0.089 (2)
H10A0.69780.12390.19690.106*
C110.8510 (7)0.0393 (4)0.1704 (4)0.0776 (17)
C120.9157 (11)0.0696 (6)0.0991 (6)0.150 (4)
H12A0.99760.10320.11870.225*
H12B0.94980.02710.07020.225*
H12C0.84110.09760.06300.225*
C130.5856 (5)0.1524 (3)0.0964 (3)0.0551 (12)
C140.6645 (7)0.1557 (4)0.1600 (4)0.0780 (16)
H14A0.70530.11090.17750.094*
C150.6832 (8)0.2255 (5)0.1979 (4)0.096 (2)
H15A0.73720.22720.24030.115*
C160.6242 (9)0.2905 (5)0.1740 (5)0.104 (3)
H16A0.63900.33710.19920.125*
C170.5424 (8)0.2886 (4)0.1127 (5)0.096 (2)
H17A0.49900.33340.09700.115*
C180.5245 (7)0.2194 (3)0.0742 (4)0.0766 (16)
H18A0.46960.21840.03210.092*
C190.7844 (9)0.2563 (4)0.1355 (5)0.108 (3)
H19A0.82200.25710.19370.130*
H19B0.68760.28070.12550.130*
C200.8863 (11)0.2972 (4)0.0914 (6)0.126 (3)
H20A0.97100.31650.12930.151*
H20B0.83640.34040.06140.151*
C210.9350 (9)0.2407 (4)0.0345 (5)0.104 (2)
H21A0.88530.25030.02100.125*
H21B1.04130.24410.03640.125*
C220.8949 (6)0.1657 (4)0.0619 (4)0.0801 (17)
H22A0.86420.13180.01570.096*
H22B0.97860.14240.09740.096*
O20.152 (3)0.9135 (10)0.3713 (9)0.405 (14)
C230.274 (3)0.9617 (13)0.3802 (13)0.340 (16)
H23A0.27060.99590.33380.408*
H23B0.36620.93310.38900.408*
C240.250 (3)1.0049 (8)0.4562 (16)0.358 (16)
H24A0.33271.03800.47810.429*
H24B0.15791.03380.44820.429*
C250.243 (3)0.9324 (15)0.5064 (8)0.364 (18)
H25A0.34000.90810.52040.437*
H25B0.20390.94260.55570.437*
C260.138 (3)0.8843 (10)0.4462 (14)0.313 (14)
H26A0.16530.83020.45040.375*
H26B0.03670.88960.45570.375*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.04480 (18)0.04271 (18)0.04795 (18)0.00054 (11)0.01188 (11)0.00308 (12)
S10.0907 (10)0.0456 (7)0.0477 (6)0.0213 (6)0.0079 (6)0.0050 (5)
O10.060 (2)0.056 (2)0.076 (2)0.0103 (17)0.0149 (17)0.0045 (17)
C10.143 (9)0.133 (8)0.137 (8)0.052 (7)0.107 (7)0.041 (7)
C20.078 (6)0.101 (7)0.264 (16)0.020 (5)0.104 (8)0.062 (9)
C30.060 (4)0.157 (8)0.107 (6)0.046 (5)0.001 (4)0.044 (6)
C40.088 (5)0.063 (4)0.134 (6)0.024 (4)0.057 (5)0.002 (4)
C50.087 (5)0.124 (7)0.095 (5)0.012 (5)0.029 (4)0.051 (5)
C60.179 (11)0.34 (2)0.189 (12)0.091 (12)0.036 (9)0.181 (13)
C70.058 (3)0.086 (4)0.091 (5)0.008 (3)0.012 (3)0.016 (4)
C80.106 (6)0.104 (5)0.065 (4)0.014 (5)0.018 (4)0.014 (4)
C90.100 (5)0.126 (7)0.074 (4)0.022 (5)0.020 (4)0.042 (5)
C100.078 (4)0.054 (4)0.123 (6)0.002 (3)0.014 (4)0.022 (4)
C110.067 (4)0.083 (4)0.076 (4)0.027 (3)0.005 (3)0.000 (3)
C120.140 (8)0.177 (10)0.132 (7)0.097 (7)0.019 (6)0.022 (6)
C130.058 (3)0.050 (3)0.054 (3)0.016 (2)0.002 (2)0.012 (2)
C140.087 (4)0.078 (4)0.073 (4)0.014 (3)0.025 (3)0.010 (3)
C150.099 (5)0.106 (6)0.087 (5)0.028 (4)0.029 (4)0.032 (4)
C160.102 (5)0.083 (5)0.118 (6)0.025 (4)0.008 (5)0.050 (5)
C170.099 (5)0.058 (4)0.126 (6)0.004 (3)0.006 (5)0.019 (4)
C180.085 (4)0.059 (3)0.086 (4)0.000 (3)0.016 (3)0.015 (3)
C190.125 (6)0.067 (4)0.147 (7)0.029 (4)0.062 (5)0.031 (4)
C200.157 (8)0.074 (5)0.156 (8)0.043 (5)0.053 (7)0.001 (5)
C210.103 (5)0.090 (5)0.128 (6)0.023 (4)0.044 (5)0.006 (5)
C220.058 (3)0.079 (4)0.108 (5)0.009 (3)0.030 (3)0.006 (3)
O20.60 (4)0.30 (2)0.271 (19)0.14 (2)0.04 (2)0.085 (15)
C230.49 (4)0.182 (18)0.41 (4)0.11 (2)0.24 (3)0.02 (2)
C240.61 (5)0.126 (14)0.33 (3)0.00 (2)0.07 (3)0.057 (18)
C250.55 (5)0.34 (4)0.148 (15)0.05 (3)0.08 (2)0.011 (18)
C260.54 (4)0.210 (19)0.23 (2)0.14 (2)0.17 (3)0.033 (17)
Geometric parameters (Å, º) top
La1—C12.799 (7)C12—H12A0.96
La1—C22.788 (7)C12—H12B0.96
La1—C32.810 (6)C12—H12C0.96
La1—C42.829 (6)C13—C181.367 (8)
La1—C52.839 (6)C13—C141.382 (7)
La1—C72.834 (6)C14—C151.389 (9)
La1—C82.772 (6)C14—H14A0.93
La1—C92.781 (6)C15—C161.339 (11)
La1—C102.817 (6)C15—H15A0.93
La1—C112.866 (5)C16—C171.367 (11)
La1—O12.624 (3)C16—H16A0.93
La1—S12.9758 (13)C17—C181.383 (8)
S1—C131.766 (5)C17—H17A0.93
S1—La1i2.9760 (13)C18—H18A0.93
O1—C191.441 (7)C19—C201.465 (10)
O1—C221.444 (6)C19—H19A0.97
C1—C51.359 (13)C19—H19B0.97
C1—C21.361 (14)C20—C211.483 (11)
C1—H1A0.98C20—H20A0.97
C2—C31.347 (13)C20—H20B0.97
C2—H2A0.98C21—C221.447 (9)
C3—C41.351 (11)C21—H21A0.97
C3—H3A0.98C21—H21B0.97
C4—C51.383 (11)C22—H22A0.97
C4—H4A0.98C22—H22B0.97
C5—C61.487 (12)O2—C261.37 (3)
C6—H6A0.96O2—C231.38 (4)
C6—H6B0.96C23—C241.52 (3)
C6—H6C0.96C23—H23A0.97
C7—C81.342 (10)C23—H23B0.97
C7—C111.385 (9)C24—C251.52 (3)
C7—H7A0.98C24—H24A0.97
C8—C91.363 (11)C24—H24B0.97
C8—H8A0.98C25—C261.51 (3)
C9—C101.359 (10)C25—H25A0.97
C9—H9A0.98C25—H25B0.97
C10—C111.408 (10)C26—H26A0.97
C10—H10A0.98C26—H26B0.97
C11—C121.510 (10)
O1—La1—C887.0 (2)H6A—C6—H6C109.5
O1—La1—C9115.2 (2)H6B—C6—H6C109.5
C8—La1—C928.4 (2)C8—C7—C11109.7 (6)
O1—La1—C2124.0 (2)C8—C7—La173.6 (4)
C8—La1—C2111.4 (4)C11—C7—La177.2 (3)
C9—La1—C296.5 (4)C8—C7—H7A124.7
O1—La1—C1115.0 (3)C11—C7—H7A124.7
C8—La1—C185.0 (3)La1—C7—H7A124.7
C9—La1—C177.2 (3)C7—C8—C9108.9 (7)
C2—La1—C128.2 (3)C7—C8—La178.8 (4)
O1—La1—C399.6 (3)C9—C8—La176.1 (4)
C8—La1—C3128.5 (2)C7—C8—H8A124.6
C9—La1—C3122.2 (3)C9—C8—H8A124.6
C2—La1—C327.8 (3)La1—C8—H8A124.6
C1—La1—C345.8 (3)C10—C9—C8107.9 (7)
O1—La1—C10118.60 (16)C10—C9—La177.4 (4)
C8—La1—C1046.4 (2)C8—C9—La175.4 (4)
C9—La1—C1028.1 (2)C10—C9—H9A125.2
C2—La1—C10111.0 (4)C8—C9—H9A125.2
C1—La1—C10100.2 (3)La1—C9—H9A125.2
C3—La1—C10138.8 (3)C9—C10—C11108.7 (6)
O1—La1—C478.21 (17)C9—C10—La174.5 (4)
C8—La1—C4109.6 (3)C11—C10—La177.6 (3)
C9—La1—C4117.3 (3)C9—C10—H10A125.0
C2—La1—C445.9 (2)C11—C10—H10A125.0
C1—La1—C445.6 (2)La1—C10—H10A125.0
C3—La1—C427.7 (2)C7—C11—C10104.9 (6)
C10—La1—C4144.2 (3)C7—C11—C12126.6 (8)
O1—La1—C773.65 (16)C10—C11—C12128.5 (8)
C8—La1—C727.7 (2)C7—C11—La174.7 (3)
C9—La1—C746.1 (2)C10—C11—La173.7 (3)
C2—La1—C7138.9 (4)C12—C11—La1117.6 (4)
C1—La1—C7112.5 (3)C11—C12—H12A109.5
C3—La1—C7153.0 (2)C11—C12—H12B109.5
C10—La1—C746.15 (19)H12A—C12—H12B109.5
C4—La1—C7127.7 (2)C11—C12—H12C109.5
O1—La1—C587.1 (2)H12A—C12—H12C109.5
C8—La1—C583.5 (2)H12B—C12—H12C109.5
C9—La1—C589.2 (3)C18—C13—C14117.8 (5)
C2—La1—C546.6 (3)C18—C13—S1122.0 (4)
C1—La1—C527.9 (3)C14—C13—S1120.2 (4)
C3—La1—C546.4 (2)C13—C14—C15120.3 (6)
C10—La1—C5116.7 (3)C13—C14—H14A119.9
C4—La1—C528.3 (2)C15—C14—H14A119.9
C7—La1—C5106.7 (2)C16—C15—C14120.8 (7)
O1—La1—C1191.88 (17)C16—C15—H15A119.6
C8—La1—C1146.5 (2)C14—C15—H15A119.6
C9—La1—C1146.9 (2)C15—C16—C17120.1 (6)
C2—La1—C11139.6 (4)C15—C16—H16A119.9
C1—La1—C11124.1 (2)C17—C16—H16A119.9
C3—La1—C11167.5 (3)C16—C17—C18119.4 (7)
C10—La1—C1128.7 (2)C16—C17—H17A120.3
C4—La1—C11155.2 (2)C18—C17—H17A120.3
C7—La1—C1128.13 (18)C13—C18—C17121.6 (6)
C5—La1—C11130.0 (2)C13—C18—H18A119.2
O1—La1—S176.48 (8)C17—C18—H18A119.2
C8—La1—S1141.10 (18)O1—C19—C20107.1 (6)
C9—La1—S1141.1 (2)O1—C19—H19A110.3
C2—La1—S1107.0 (4)C20—C19—H19A110.3
C1—La1—S1133.9 (3)O1—C19—H19B110.3
C3—La1—S189.33 (18)C20—C19—H19B110.3
C10—La1—S1113.03 (19)H19A—C19—H19B108.5
C4—La1—S1101.23 (19)C19—C20—C21106.7 (6)
C7—La1—S1113.50 (16)C19—C20—H20A110.4
C5—La1—S1129.5 (2)C21—C20—H20A110.4
C11—La1—S198.39 (13)C19—C20—H20B110.4
C13—S1—La1119.13 (17)C21—C20—H20B110.4
C13—S1—La1i119.03 (16)H20A—C20—H20B108.6
La1—S1—La1i117.51 (4)C22—C21—C20105.7 (6)
C19—O1—C22107.6 (4)C22—C21—H21A110.6
C19—O1—La1130.7 (3)C20—C21—H21A110.6
C22—O1—La1121.2 (3)C22—C21—H21B110.6
C5—C1—C2109.8 (9)C20—C21—H21B110.6
C5—C1—La177.7 (4)H21A—C21—H21B108.7
C2—C1—La175.4 (4)O1—C22—C21106.5 (5)
C5—C1—H1A124.4O1—C22—H22A110.4
C2—C1—H1A124.4C21—C22—H22A110.4
La1—C1—H1A124.4O1—C22—H22B110.4
C3—C2—C1107.4 (9)C21—C22—H22B110.4
C3—C2—La177.0 (4)H22A—C22—H22B108.6
C1—C2—La176.4 (5)C26—O2—C23109.1 (9)
C3—C2—H2A125.3O2—C23—C2499.1 (10)
C1—C2—H2A125.3O2—C23—H23A112.0
La1—C2—H2A125.3C24—C23—H23A111.9
C2—C3—C4108.4 (9)O2—C23—H23B112.0
C2—C3—La175.2 (4)C24—C23—H23B111.9
C4—C3—La176.9 (4)H23A—C23—H23B109.6
C2—C3—H3A125.1C25—C24—C2394.3 (9)
C4—C3—H3A125.1C25—C24—H24A112.9
La1—C3—H3A125.1C23—C24—H24A112.9
C3—C4—C5108.9 (8)C25—C24—H24B112.9
C3—C4—La175.4 (4)C23—C24—H24B112.9
C5—C4—La176.3 (4)H24A—C24—H24B110.3
C3—C4—H4A124.9C26—C25—C24100.1 (9)
C5—C4—H4A124.9C26—C25—H25A111.8
La1—C4—H4A124.9C24—C25—H25A111.8
C1—C5—C4105.4 (8)C26—C25—H25B111.8
C1—C5—C6124.6 (12)C24—C25—H25B111.8
C4—C5—C6129.5 (11)H25A—C25—H25B109.5
C1—C5—La174.4 (4)O2—C26—C25104.3 (8)
C4—C5—La175.5 (3)O2—C26—H26A110.9
C6—C5—La1121.5 (6)C25—C26—H26A110.9
C5—C6—H6A109.5O2—C26—H26B110.9
C5—C6—H6B109.5C25—C26—H26B110.9
H6A—C6—H6B109.5H26A—C26—H26B108.9
C5—C6—H6C109.5
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formula[La2(C6H7)4(C6H5S)2(C4H8O)2]·2C4H8O
Mr1101.07
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)9.1535 (11), 17.337 (2), 16.637 (2)
β (°) 100.031 (2)
V3)2599.8 (5)
Z2
Radiation typeMo Kα
µ (mm1)1.74
Crystal size (mm)0.70 × 0.45 × 0.40
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.345, 0.498
No. of measured, independent and
observed [I > 2σ(I)] reflections
10479, 4585, 3679
Rint0.025
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.097, 1.07
No. of reflections4585
No. of parameters272
No. of restraints10
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.58

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SAINT, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b), SHELXTL.

Selected bond lengths (Å) top
La1—C12.799 (7)La1—C92.781 (6)
La1—C22.788 (7)La1—C102.817 (6)
La1—C32.810 (6)La1—C112.866 (5)
La1—C42.829 (6)La1—O12.624 (3)
La1—C52.839 (6)La1—S12.9758 (13)
La1—C72.834 (6)S1—La1i2.9760 (13)
La1—C82.772 (6)
Symmetry code: (i) x+1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds